
Image Encryption Based on Hybrid Parallel Algorithm: DES-Present Using 2D-Chaotic

System

Suha Husam Jasim1* , Haider Kadhim Hoomod , Khalid Ali Hussein

Computer Science, College of Education, University Mustansiriyah, Baghdad 10052, Iraq

Corresponding Author Email: suha_hussam@uomustansiriyah.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140229 ABSTRACT

Received: 24 January 2024

Revised: 13 March 2024

Accepted: 22 March 2024

Available online: 26 April 2024

Image encryption algorithms have recently been developed to protect data from hackers

and give recipients privacy. DES is a widely recognized block cypher that has certain

vulnerabilities that make it susceptible to differential attacks. The present is a lightweight

symmetric algorithm that provides privacy for transferring information over the network

but has some drawbacks in that it is difficult to maintain an appropriate level of

complexity. The study suggests that to encrypt and decrypt images as quickly as possible,

the system uses parallel environments in algorithms (Present and DES). It also uses a 2D-

Chaotic key generation system to make the system stronger against statistical, differential,

and brute force attacks. Where the DES algorithm uses four rounds, within each one round

from the des, the present algorithm executes only four rounds, and the same 2D-Chaotic

System is used to generate the key. The keys and blocks are distributed to 4 cores, 5 cores,

or 6 cores at the same time. The performance evaluation of the proposed algorithm is

quantified by several metrics: All peak signal-to-noise ratio (PSNR) values are low, which

means the quality image encryption is good. Unlike MSE, all the values are very high,

which indicates that the image we have encrypted has no similarity to the encrypted

image. The NPCR value of 99.6658% indicates a high degree of accuracy in changing

pixel values. Additionally, a unified average changing intensity (UACI) that doesn't go

over 30.90% shows that the algorithm is good at making big changes in pixel intensities.

And the analysis speed of the proposed system based on the parallelism of the

environment is faster than the sequence algorithms (DES-Present). The results

demonstrate the algorithm's ability to encrypt color images, making it useful in

applications that require strong data and image security.

Keywords:

chaotic keys generation, Data Encryption

Standard (DES), image, parallel computing,

present light weight

1. INTRODUCTION

Image encryption has become a vital tool for maintaining

privacy in a variety of contexts, especially those involving

sensitive data [1]. By using encryption techniques, visual

content is safe from unauthorized access [2]. Symmetric and

asymmetric systems are the general categories into which

cryptographic techniques fall. In symmetric key cryptography,

the sender and recipient agree on which key will be used.

Asymmetric key cryptography, on the other hand, gives each

user a distinct set of public and private keys [3]. Within a

variety of encryption algorithms, researchers have argued for

the use of large keys in an attempt to increase data security.

Although stronger data protection is often associated with

larger key sizes, it is important to recognize the complexity

that comes with key management, use hybrid algorithms to

take advantage of the advantages of each algorithm, and use a

parallel environment to get faster output [4, 5].

2. RELATED WORKS

Fernando et al. [6] suggested and tested AES and DES on

Raspberry Pi minicomputers. I suggested finding time- and

memory-efficient algorithms to encrypt and decrypt the same

key. The study found that AES encrypted messages faster. Wu

and Dai [7] suggested using a quantum genetic algorithm to

optimize the DES S-box design. The 64 DES cipher texts and

variable bits differ by 32 bits while encrypting accounting data.

Laia et al. [8] suggested the successful operation of the DES

algorithm and the Blum-Blum-Shub (BBS) algorithm to

encrypt and decrypt messages to improve their security. Xing

et al. [9] suggested testing serial AES and DES code on their

experimental platform through task-based evaluations. Serial

DES and AES were 40 and 72 times slower than parallel ones.

Barhoush et al. [10] suggested increasing the size of the DES

key to make it more secure without increasing the cost.

Mihalkovic et al. [11] suggested discussing the new CBC

symmetric cryptographic function and matrix power function.

AES-128 versus Triple DES evaluates three 64-bit arithmetic

ciphers. Yunus et al. [12] suggested using the Triple DES

(3DES) algorithm to secure medical record data in Jember

Family Health Home Clinic's electronic health record system,

as shown in Table 1.

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 633-646

Journal homepage: http://iieta.org/journals/ijsse

633

mailto:suha_hussam@uomustansiriyah.edu.iq
https://orcid.org/0009-0009-4826-8181
https://orcid.org/0000-0002-7185-886X
https://orcid.org/0000-0001-5319-2833
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140229&domain=pdf

Table 1. Comparison between the proposed algorithm and related works

References Encryption Method The Result

[6]
AES -DES algorithm test on

Raspberry Pi

According to the findings of the study, AES encrypted messages more quickly than DES.

AES-encrypted messages require more memory than DES-encrypted ones do.

[7]
The DES algorithm based on

logistic discrete chaotic.

The chaotic system has good chaotic characteristics, but its system structure is simple, and

its resistance to some differential attacks has not been fully considered. However, large

data transmissions significantly reduce system performance.

[8]
examining force analysis attacks on

BC3, AES, and DES

The success rate for analysis attacks to recover cryptographic device secret keys is one

hundred percent for AES and seventy-five percent for DES.

[9]
Comparing Blowfish, DES, and

AES on small and large data files.

When it comes to small text files that are less than one thousand bytes in size, DES

performs better than both AES and Blowfish.

[10] DES AES

To make DES more secure and faster than AES, the key size and permutation table were

increased. The extended DES is DES22. The experiment shows that DES22 is faster and

safer than AES.

[11] AES and TDES
The encryption is approximately 47 times faster than TDES and roughly 1.5 times faster

than AES-128.

[12]
EHR system and the Triple DES

(3DES) algorithm.

The EHR system will have file security with the Triple DES (3DES) algorithm, which uses

UML diagrams to protect critical medical record data.

The proposed (DES-Presnt)

Key space (2232.4) and pass all the test NIST.

Higher speed (encryption/decryption). (4.434164762/ 3.40021944) mile/second.

High Performance (speed 3.311008704, efficient 0.551834784, cost 25.80416393,

overhead 11.5645287) that the algorithm can resist statistical attacks, differential attacks,

and brute force attacks

3. CONTRIBUTION

A hybrid algorithm has been proposed between the DES and

Present algorithms using parallel execution of these

algorithms. Depending on the specified number of cores, there

can be four, five, or six types, and using the two-dimensional

chaotic system to create the keys in a dynamic way. It is

difficult to predict the key with each execution process, which

increases the difficulty of guessing the keys. To an

unauthorized person. There are numerous algorithms in IoT

applications that are highly efficient but require significant

time, processor power, and memory, which are limited

resources. Hence, it is crucial to discover an algorithm that

achieves a harmonious equilibrium between complexity,

implementation time, resource utilization, and enhanced

security. The algorithm DES, which exhibits sluggishness in

the encryption process and possesses vulnerabilities that

render it susceptible to attacks, the present lightweight

algorithm's low complexity renders it susceptible to a wide

range of attacks. The objective of this is to develop a highly

efficient algorithm for encrypting color images. To achieve

this, the DES algorithm will be combined with the Present

lightweight and take advantage of the strengths of both

algorithms to achieve a balance between strong security and

fast encryption time between different encryption techniques.

Additionally, efforts will be made to implement this algorithm

in a parallel manner to maximize speed and efficiency.

3.1 Data Encryption Standard (DES)

The Data Encryption Standard (DES) block is a symmetric-

key algorithm for the encryption of digital images. To meet the

need for a standardized encryption algorithm, IBM and NIST.

Researchers created the 1970s-era DES [13]. A safe and

effective way to encrypt and decrypt internet data was the goal.

Many mathematical operations are performed on a user-

provided initial key to create these keys. Key generation

begins with the PC-1 permutation function compressing the

64-bit key into a 56-bit sub key. This sub key is split into 28-

bit C0 and D0. Each round of encryption or decryption shifts

Cn and Dn left by one or two bits, odd or even. After PC-2, the

Cn+1 and Dn+1 halves form the 48-bit sub keys KN+1a and

KN+1b [14]. In the next step, the initial permutation

reorganizes input data before DES processing. One 64-

position permutation table rearranges input bits. This first

permutation has two goals. The diffusion mechanism spreads

input-bit effects to output bits. Second, 1-bit plaintext changes

affect multiple cipher text bits, complicating and securing DES

[15]. Expanding DES diffusion and complexity require

permutation. The expansion function expands the last round's

32-bit half-block to 48 bits. XOR add input block bits in E.

expansion. Larger initial blocks increase the DES encryption

and decryption error rooms. Horst DES relies on Feistel's

network structure. Left and right are equal plaintext feistily

networked parts. Functions use Ln-1 and round pre-processing

sub key KN to calculate Rn. Each round, Rn-1 becomes Ln.

Bitwise operations include XOR, permutations, and S-boxes.

Repeat until L16=R16. Last Permutation Feistily network

intermediate cipher texts L16R16 permute final or inverse

initial after all rounds. This step reverses the first permutation

and generates cipher text for transmission or storage.

Removing intermediate cipher text patterns in the final

permutation increases diffusion. Therefore, DES hopes an

attacker without the right key will struggle to decipher the

cipher text [16]. As illustrated in Figure 1, for a single round

implementation [17].

3.2 Present lightweight algorithm

This block cipher-symmetric algorithm protects cyber data.

Made for low-resource devices. Andrey Bogdanov and his

team have been using it since 2007. Insurance, computer

science, etc. use it. The fast, efficient solution maximizes data

security [18]. The 31-round SP network and 64-bit blocks

encrypt data. The key can be 128 or 80 bits. A 4-bit to 4-bit S-

box (16 round parallel rounds) replaces an 8-bit S-box for

nonlinear layers. Because of its adaptability and simplicity.

Step-present algorithm [19], as shown in Figure 2.

634

Figure 1. One round of DES algorithm [17]

Figure 2. Present lightweight algorithm

Present algorithms include Round Key, S-Box, P-Layer,

and Key Update. First, Status = Status XOR (round key).

These use "S" containers. S-Boxes substitute four-bit inputs

into outputs nonlinearly. The initial input and final output of

an S-box circuit are shown. Next after the permutation layer

operation P (m) [20, 21]. Provide key updates. From K79 to K0,

Register K stores user input permanently. In K78, K77, K76,

etc.’s 64-bit round key, I am registering K's remaining 64 bits.

Ki= (K63 K62 K61...K0) Eq. (1) explain [22].

[𝐾79𝐾78 … . . 𝐾1𝐾0] = [𝐾18𝐾17 … . . 𝐾20𝐾19].
And [𝐾79𝐾78𝐾77𝐾76] = 𝑆[𝐾79𝐾78𝐾77𝐾76].

Finally[𝐾19𝐾18𝐾17𝐾16𝐾15]
= [𝐾19𝐾18𝐾17𝐾16𝐾15]
⊕ 𝑅𝑜𝑢𝑛𝑑_𝐶𝑜𝑢𝑛𝑡𝑒𝑟

(1)

3.3 Chaotic map generation

The suggested encryption algorithm generates chaotic map

key streams. The chaotic system has two quadratic nonlinear

equations, two initial values, and five control parameters. It

has two equations, x and y. This map generation generates X,

Y, and Z stream vectors. Image width and height are pixels,

and each vector is (W×H×3), as in Eq. (2), as shown in Table

2.

𝑋𝑖+1 = 𝑎 𝑌𝑖
2 − 𝑏 𝑋𝑖

2 − 𝑐

𝑌𝑖+1 = 𝑑 𝑋𝑖 𝑌𝑖 − 𝑒 𝑋𝑖
(2)

where, a=4, b=1.1, c=4.4, d=0.1, and e=8. These values

created chaotic phase portraits [23, 24].

Table 2. Two-dimensional chaotic key generation

Algorithm 1. Chaotic Keys Generation

Input: a, b, c, d, e, 𝑋0, 𝑦0, W, H

Output: X, Y, Z // keys stream vectors of dimension (1 N)

start Algorithm

Processing Algorithm:

Step1: 𝑋1 = 𝑋0 , : 𝑦1 = 𝑦0 , : 𝑧10 = 𝑋1 ⊕ 𝑦1

Step2: N = W×H × 3

Step3: Iterate (N-1) times

𝑋𝑖+1 = 𝑎 𝑌𝑖
2 − 𝑏 𝑋𝑖

2 − 𝑐 // i= (2, 3......N).

𝑌𝑖+1 = 𝑑 𝑋𝑖 𝑌𝑖 − 𝑒 𝑋𝑖// i= (2, 3......N).

𝑧𝑖+1 = 𝑋𝑖+11
 ⊕ 𝑌𝑖+1 .

𝑋𝑖=𝑋𝑖+1

𝑌𝑖 =𝑌𝑖+1

End Iteration

End Algorithm.

3.4 Parallel computing

The general field that covers all facets of computing with

parallelism—hardware, software, and algorithms—is called

parallel computing. One important technique in parallel

Add Round Key

Block 64 bit

S-box Layer

P-layer

Update Key Register

Register

Update Key Register

S-box Layer

P-layer

Cipher Block 64

Key Register

Add Round Key

(31) Round

635

computing is parallel processing, which is the act of carrying

out multiple computations at once. An essential element of

efficient parallel computing and processing is a parallel

algorithm, which is a set of instructions created with the

express purpose of being executed in parallel [25, 26].

4. PROPOSED ENCRYPTION ALGORIT

Data Encryption Standard (DES) and Present are two

algorithms proposed to encrypt images in a parallel

environment to ensure instantaneous transmission and

reception of images. The two proposed algorithms are

illustrated in Figure 3 and Figure 4. The first step is to

download the image that needs to be encrypted from its storage

location, then the image must be divided into three vectors

called red, green, and blue, each of which is a two-dimensional

matrix. After that, the vectors are summed into a single vector,

and then the single vector must be divided into a block in order

to apply the proposed algorithm. The DES algorithm is

executed twice. A 128-bit block is inserted. Each block is

divided into 64 bits to be an input to the DES algorithm. The

56-bit key is generated using the two-dimensional chaos

system equation and four rounds instead of 16 rounds. This is

considered an improvement to the DES algorithm, and within

each round there is one round. From the Des algorithm, the

present algorithm is executed only four rounds instead of 31

rounds. The present algorithm takes its input from the left side

of the DES algorithm, where each side equals 32 bits. When

the left sides of the algorithm are combined, it becomes 64 bits,

and the key is 80 or 128 bits long, which is generated using the

two-dimensional chaos system equation. After that, the sub-

images and encryption keys are distributed across a number of

cores (4, 5, or 6), which are synchronized depending on the

parallel kernel environment. The encryption image is

generated by initially resampling the coding matrix (consisting

of red, blue, and green components) into RGB format and

subsequently merging them into a unified RGB sequence. This

process is iterated until the encrypted image is acquired, as

shown in Tables 3-6.

Table 3. Preprocessing input image

Algorithm 2. preprocessing input file (image)

Input: block size, RGB image

Output: number the blocks

Steps

1: begin.

2: Enter color image.

3: Get image size (rows, columns).

4: separated the color image into three distinct sections:

 Red, green, and blue.

5: Each color channel should have its reshape converted

 Into a two-dimensional matrix. It is red, green, and blue.

6: Three channels become one T channel.

7: Split the T channel into equal blocks of a certain size.

8: End Algorithm.

Table 4. Key generation

Algorithm 3. Key sub generation for DES.

Input: A, B, (c, d, e, f, and g), key size.

Output: 𝐾𝑒𝑦a(i), 𝐾𝑒𝑦b(i)
Steps

1: specifying general Number (key size).\\ Apply the

 (DES-Present) Algorithm.

2: For i 0 To (key size).

 𝐴(𝑖+1) 𝑐 𝐵𝑖
2 − 𝑑 𝐴𝑖

2 − 𝑒 .

 𝐵(𝑖+1) 𝑓 𝐴𝑖 𝐵𝑖 − 𝑔 𝐴𝑖 .

 T1 Round (𝐴(𝑖+1) × 105) Mod (256).

 𝐾𝑒𝑦𝑎(i) T1.

 T2 Round (𝐵(𝑖+1) × 105) Mod (256).

 𝐾𝑒𝑦b(i) T2.

3: For J 1 to 8. \\ for the DES, after the apply the

 table PC1

 𝑐𝑜𝑙𝑢𝑚𝑛1 Convert to binary 𝐾𝑒𝑦a(i).

 𝑅𝑜𝑤1 Get first seven bit of COL1.

 𝐾𝑒𝑦𝑎1 to merge)𝐶𝑂𝐿1,𝑅𝑂𝑊1).

4: split 𝐾𝑒𝑦𝑏1 into 𝐶0 and 𝐷0.

 𝐶0 𝐾𝑒𝑦𝑎1[0 𝑇𝑜 27].

 𝐷0 𝐾𝑒𝑦𝑎1[28 𝑇𝑜 56].

 For K 1 To 4.

4:1 Apply shift operation on 𝐶0 to find 𝐶1, Apply shift operation

on 𝐷0 to find 𝐷1.

4:2 𝑇1 to merge (𝐶1, 𝐷1.).

 𝑇2 Apply table PC2 on the 𝑇1, for the get The

 Key 48bit for Find 𝑇3.

 Sub key (k) 𝑇3.

 𝐶0 𝑇1[0 𝑇𝑜 27]

 𝐷0 𝑇1 [28 𝑇𝑜 56].

4:3 return Sub key (K)

5: End Algorithm.

Figure 3. Proposed sequential algorithms

636

Table 5. Generating keys for the present algorithm

Algorithm 4. Generating sub keys for the present algorithm.

Input: Input: 𝐾𝑒𝑦a(i), 𝐾𝑒𝑦b(i)
Output: list of 64-bit round keys

Steps

1: Start

2: initial parameters

 round keys = [], S-Box-Layer // Hex-decimal

 𝐾𝑒𝑦3(combine) 𝐾𝑒𝑦1(i), 𝐾𝑒𝑦2(i) (

3: For i 1 to 4 // The block size is 64 bits

 [𝑘79𝑘78𝐾77𝐾76𝐾75 … 𝑘16] <<<16

 [𝑘63𝑘62 𝐾61 …] //Raw key extraction

 𝐾𝑒𝑦3(i) [𝑘79𝑘78𝐾77𝐾76𝐾75 … 𝑘16]

 Split 𝐾𝑒𝑦3(i) into part

 𝐿1= 𝐾𝑒𝑦3(i)[1.61], 𝑅1= 𝐾𝑒𝑦3(i) [62.80]

 𝐾𝑒𝑦𝑏1= swap [𝐿1 , 𝑅1] // (<<< 19) or (>>> 61)

4: 𝑇1 = 𝐾𝑒𝑦3(i) [𝐾79𝐾78𝐾77𝐾76]
 𝑇2= Convert binary to Hex-decimal (𝑇1) //with 4 bit

 and the Worked 16 parallel.

 𝑇3= S_box [𝑇2]

 𝑇4= hex-decimal to Bin (𝑇3,4))//Convert hex-

 decimal to binary with 4 bit

5:[𝐾19𝐾18𝐾17𝐾16𝐾15] [𝐾19𝐾18𝐾17𝐾16𝐾15] ⊕ 𝑅𝑜𝑢𝑛𝑑𝑖

 𝐾𝑒𝑦3(i [𝐾19𝐾18𝐾17𝐾16𝐾15]

 6: return 𝐾𝑒𝑦3(i)

 7: End Algorithm.

Figure 4. Proposed parallel algorithms

To decrypt the proposed algorithm on the encrypted image,

the steps of the algorithm begin to be applied, reversing the

steps, starting from the last round to the first round.

Table 6. Proposed algorithms (DES-present)

Algorithm 4. Proposed algorithms

Input: block is 128 bits, 𝐾𝑒𝑦a(i), 𝐾𝑒𝑦b(i) //distribution the Block

and key on the specified number of (4,5, or 6) Core.

Output: Cipher Block is 128 bits

steps

1: initial parameter, S-Box Table, P-player for present,

Table Initial Permutation (IP), the Table Expansion

box (E), Table, Permutation, Box (p) in f-function,

Table Permutation box IP-1.

2: Apply algorithm (2).

3: For i 1 to 4

3:1 Apply algorithm (3) and Apply Algorithm

 Encryption (DES)// Apply Algorithm twice.

3:2 Block presnt to merge (left DES one ,

 left DES two) // block size 64 bit.

3:3 out put the presnt Apply algorithm (4) and

 Algorithm Encryption Present // Split block into

 two

3:4 Right one i 𝑅𝑖𝑔ℎ𝑡 𝐷𝐸𝑆1 ⊕

out put the presnt algorithm left one 32 bit.
3:5 Right two i 𝑅𝑖𝑔ℎ𝑡 𝐷𝐸𝑆2 ⊕

out put the presnt algorithm left two 32 bit .
3:6 End for i

4: Cipher1 Swap (out put the present left one 32 bit

, Right one)//Apply Table IP^ (-1).

5: Cipher2 Swap (out put the present left two 32 bit

, Right two)//Apply Table IP^ (-1).

6: Cipher Block Combine (Cipher 1, Cipher 2).

7: End Algorithm.

5. COMPARISON TEST RESULTS AND ANALYSIS

Results and analysis from comparative tests for a

cryptosystem to be considered strong, it must be able to

withstand all known types of attacks. This includes attacks

targeting only cypher text as well as differential, statistical,

and brute force attacks. Using the algorithms proposed for use

in a parallel environment, we were able to encrypt and decrypt

images quickly and securely. Python, the latest version of the

programming language Visual Studio Code, is used to write

all tests. Introduced by the processor is the Intel (R) CoreTM

i7-10750H 2.60GHz/2.59GHz CPU with 16.0GB of RAM.

Apply tests to the data set in Table 7 to find statistical,

differential, and key space tests.

Table 7. Data set image

Number Image 1 2 3

Number Image 4 5 6

5.1 The examination of statistics

The test comprises entropy, correlation, and histogram tests

for the lens image.

1. Histogram Analysis: One important statistic to consider

when evaluating the suggested system is the histogram

analysis. Figure 5 shows the histograms of the two images.

The result, the original image exhibits prominent, abrupt

increases followed by rapid decreases, while the encrypted

image displays a consistent distribution that deviates

significantly from the original image and lacks any discernible

statistical resemblance in terms of visual appearance.

637

Original image (1) Encryption image (1)

Original image (2) Encryption image (2)

Original image (3) Encryption image (3)

638

Original image (4) Encryption image (4)

Original image (5) Encryption image (5)

Original image (6) Encryption image (6)

Figure 5. Histogram analysis

639

2. Correlation coefficient analysis: Specifies the

relationship between the pixels of the original image and the

pixels of the encryption image. The analysis comprises

horizontal, diagonal, and vertical elements. The CC scale can

have both negative and positive values. By applying Eq. (3),

we obtained the Table 8, as shown in Figure 6, which is used

to evaluate the algorithm design.

Cc=
𝛴𝑖𝑚𝛴𝑗𝑛(𝐴𝐴𝑖𝑗𝑛−𝐴𝐴̅̅ ̅̅)(𝐵𝐵𝑚𝑖𝑗−𝐵𝐵̅̅ ̅̅)

√(𝛴𝑖𝑚𝛴𝑗𝑛 (𝐴𝐴𝑖𝑗𝑛−𝐴𝐴̅̅ ̅̅)2(𝛴𝑖𝑚𝛴𝑗(𝐵𝐵𝑖𝑗𝑛−B B̅)
2

)

 (3)

where, (A, B) are matrices of comparable dimensions, where

(A̅=mean (A), B̅=mean (B)).

Original image (1) Encryption image (1)

Original image (2) Encryption image (2)

Original image (3) Encryption image (3)

640

Original image (4) Encryption image (4)

Original image (5) Encryption image (5)

Original image (6) Encryption image (6)

Figure 6. Correlation coefficient analysis

The result, a value very close to zero in all directions—

horizontal, vertical, and diagonal.

The figure shows that the correlation coefficient analysis of

the encryption image is close to zero for all three coordinates,

which is an excellent result for resisting statistical attacks.

3. Entropy analysis: is a critical test to determine how

random an image is. As Table 9 shows, after applying Eq. (4),

the substitution and transposition were verified because all the

values of the encrypted image that were output were from

7.99917 to 7.998684, which are close to the color scale and

very close to the typical value of “8”.

H(m) = − ∑ P(mi)𝑙𝑜𝑔 [p(mi)]
N−1

i=0
 (4)

641

where, H (m) stands for the entropy of a message, while p (mi)

stands for the likelihood that the symbol will appear.

Table 8. Correlation coefficient analysis

Image
Horizontal

Correlation

Vertical

Correlation

Diagonal

Correlation

1 0.001684 -0.025513 0.017005

2 -0.031362 -0.009107 0.021371

3 0.004486 -0.024106 -0.044117

4 -0.010733 0.014443 -0.023371

5 0.019779 -0.008594 -0.014960

6 0.041261 0.020068 -0.018614

Table 9. Entropy analysis

Image Entropy Decryption Entropy Encryption

1 7.773088 7.998954

2 7.698067 7.998684

3 7.69907 7.99917

4 7.625165 7.998988

5 7.684684 7.998184

6 7.179296 7.999037

The tests (histogram, entropy, and correlation coefficient)

demonstrate the superior performance of the proposed

algorithm.

5.2 Difference analysis

A good encryption method should ensure that any small

update in the original image causes a noticeable difference in

the encrypted image to prevent the differential attack. This

paper uses NPCR (number of pixels change rate) and UACI to

evaluate and analyses differential attacks. The NPCR

measurement tests how one pixel change affects the entire

image. Based on the math formula below: That is, as shown in

Table 10 after apply the Eqs. (5) and (6).

NPCR=
𝛴𝑖𝑗𝐼(𝑖,𝑗)

𝑀 × 𝐻
× 100% (5)

UACI =
1

𝑀× 𝐻
 [

𝛴𝑖𝑗𝐷(𝑖,𝑗)−𝐷′(𝑖,𝑗)

255
] × 100% (6)

where, before and after a single pixel change, encrypted

images D and D’ are presented, where L denotes the maximum

supported value and T signifies the total number of pixels.

Table 10. Difference analysis

Image NPCRT UACI

1 99.4965% 22.0046%

2 99.51481% 24.7059%

3 99.4156% 19.9347%

4 99.46589% 22.9132%

5 99.6155% 29.7902%

6 99.6658% 30.909%

The result, UACI values range from 19.9347% to 30.909%,

and NPCR values range from 99.4156% to 99.6658%,

indicating a high level of sensitivity to changes in the pixels.

The results of the tests show that the system is resistant to

differential attacks.

5.3 Mean squared error (MSE) and (PSNR test) the peak

signal-to-noise ratio test

Verifying error values that differentiate encrypted and

unencrypted images The Mean Squared Error (MSE) can take

values from 0 to infinity. PSNR assess the level of excellence

in unaltered images in comparison to their encrypted

equivalents. The range of Peak Signal-to-Noise Ratio (PSNR)

is measured in decibels (dB) and extends from zero to infinity

(∞), as shown in Table 11 after apply the Eq. (7) and (8).)En(

Indicates Encryption, (De) Indicates Decryption:

MSE=
1

𝑀 ×𝑁
 𝛴i=0

𝑚−1𝛴j=0
𝑛−1[A (i, j) − B (i, j)]2 (7)

where, the encrypted and unencrypted pictures are denoted by

A and B, respectively. Pixels in an image with dimensions

m×n and coordinates (i, j).

PSNR=
10 × log10 (2𝑥𝑥 − 1)2

MSE
 (8)

where, the (X) represents the bit allocation per pixel.

Table 11. Mean squared error, the peak signal-to-noise ratio

test

Image MSE (En) PSNR (En) MSE (De) PSNR (De)

1 8945.715332 8.614653 0 ∞

2 11233.940943 7.625482 0 ∞

3

4
8212.705699 8.985941 0 ∞

4 11247.550588 7.620224 0 ∞

5 13062.049627 6.97069 0 ∞

6 12100.111196 7.30291 0 ∞

From Table 11, we notice that the MSE value is higher to

get the encryption image; the value is between 11233.940943

and 13062.049627, which indicates that the restored image is

difference from the original image, and the PNSR values are

low. The security of an encryption system improves as the

PSNR value decreases; the value between 6.97069 and

8.614653 indicates that it has better encryption quality.

(MSE) Between the original images and their decrypted

counterparts. All the results indicate are "zeros", suggesting

that the proposed system successfully decrypts the images

without any errors.

To determine the similarity between explicit images and

their corresponding decrypted images. The results for all the

samples indicate a value of positive infinity, as there is no

small error observed between them. The fact that equation 10

calculates the mean squared error (MSE) to be 0 supports this.

5.4 Analysis of key spaces

Testing is needed because the interceptor will use math and

computers to find the key. Since everyone knows the

algorithms, quickly generating the key breaks encryption. By

complicating key finding, encryption is unbreakable. The

proposed system has two symmetric keys and five parameters

located 14 places after the comma of a 2D matrix.

Key Space= Possible ValuesNumber of Variables.

Key Space= (1014) 5,

Key Space= 1070.

642

The key space for five variables variables (c, d, e, f, and g),

each with a total of 1014 potential values, is equal to 1070. This

number is extremely large, indicating a wide range of possible

keys. The number of bits required to represent log2 (1070) ≈
2232.4 .4 Due to its considerable length, it is impossible to

employ brute force to crack this key.

5.5 Randomness NIST tests

After passing all 15 NIST tests, the proposed algorithm's

generated sequence displayed a high level of randomness.

Table 12 displays the results of each of the 15 statistical tests

conducted by the National Institute of Standards and

Technology (NIST). it has been determined that the sequence

ratio is randomly distributed or independent of the significance

value (α), with a default value of 0.01.

5.6 Performance measures for parallel algorithms

The degree to which a computational task or system makes

use of multiple processing units or cores to accomplish tasks

simultaneously is known as "parallelism," or parallel

computing degree. The number of processors (speedup) equals

the amount of time needed for the parallel proposed algorithm

to run. Divided by the amount of time needed for the parallel

algorithm to run. Speedup SN.P=TSA/TPA/TPA. The cost of the

algorithm multiplied by the quantity of processors (P)

determines how long it will take to execute a parallel proposed

algorithm. Cost CP=P×TPA. The percentage of parallel runtime

that the parallel system performs well is known as the measure

of efficiency or performance E=TPA/SN.P. Measure parallel

overheads; T>0 in real life determines the parallel load "T."

T=P×TPA-TSA. Processors will communicate and synchronize

with other processors until the parallel algorithm runs. Refers

to time in parallel. TPA refers to time in parallel. TSA refers to

time in sequence. As the Tables 13, 14 and 15.

Table 12. Randomness NIST tests

Type of Test P-Value Conclusion

Frequency (Monobit) Test 0.3893007386 Random

Frequency Test within a Block 0.0800080819 Random

Test for the Longest Run of Ones 0.5719362875 Random

Runs Test 0.7069189407 Random

Approximate Entropy Test 0.5595070741 Random

Discrete Fourier Transform (Spectral) 0.4117700649 Random

Overlapping Template Matching Test 0.4385673019 Random

Non-overlapping Template Matching 0.4214529724 Random

linear Complexity Test 0.2519033436 Random

Serial Test 0.8704929752 Random

Cumulative Sums Test (Backward) 0.4581922633 Random

Binary Matrix Rank Test 0.3286521908 Random

Cumulative Sums Test (Forward) 0.5115883838 Random

Random Excursions Test (+1) 0.2800034417 Random

Random Excursions Variant 0.0934478221 Random

The sequence is considered random because the (P) value is

greater than 0.01, which is the significance limit.

Execution time of the proposed algorithm the parallel

method on six cores takes much less time than the sequential

method. From Table 13, 14, and 15. The result is that the

greater the number of cores needed to run the proposed

algorithm, the greater the speed, efficiency, and overhead for

executing operations simultaneously and achieving optimal

performance while consuming fewer resources. Performance

comparisons with typical encryption algorithms [9] Our

parallelized DES and AES algorithms outperform sequential

processing techniques by almost 40 and 72 times, respectively.

Table 13. 4Core for (DES-present)

Image 1 2 3 4 5 6

𝑇𝑃𝐴 5.158788204 5.068117142 5.122981787 5.051019669 4.984307528 5.067356586

𝑇𝑆𝐴 14.29676986 14.23963523 14.60504103 14.49023342 14.55853653 14.43378544

Speedup Up 2.771342667 2.80964998 2.850886775 2.868773905 2.920874454 2.848385582

Efficiency 0.692835667 0.806858043 0.712721694 0.717193476 0.730218614 0.712096396

Cost 20.63515282 17.64825344 20.49192715 20.20407868 19.93723011 20.26942634

Overhead 6.338382959 17.64825344 20.49192715 5.713845255 5.378693582 20.26942634
The time to execute the algorithm proposed in Core 4 is less than the time to execute the algorithm sequentially.

Table 14. 5Core for (DES-present)

Image 1 2 3 4 5 6

𝑇𝑃𝐴 4.449367285 4.41206336 4.434164762 4.516383648 4.49899292 4.277481556

𝑇𝑆𝐴 14.29676986 14.23963523 14.60504103 14.49023342 14.55853653 14.43378544

Speed up

Up
3.213214136 3.227432171 3.293752445 3.208370801 3.235954532 3.374365324

Efficiency 0.642642827 0.662201741 0.658750489 0.64167416 0.647190906 0.674873065

Cost

22.24683643 21.50346995 22.17082381 22.58191824 22.4949646 21.38740778

Overhead 7.950066568 21.50346995 22.17082381 8.091684819 7.93642807 21.38740778
The time to execute the algorithm proposed in Core 5 is less than the time to execute the algorithm sequentially.

Table 15. 6Core for (DES-present)

Image 1 2 3 4 5 6

𝑇𝑃𝐴 4.111061573 4.300693989 4.111302376 4.412790298 4.049250126 4.056567192

𝑇𝑆𝐴 14.29676986 14.23963523 14.60504103 14.49023342 14.55853653 14.43378544

Speed Up 3.477634573 3.311008704 3.552412275 3.283689558 3.595366074 3.558128032

Efficiency 0.579605762 0.468274997 0.592068713 0.547281593 0.599227679 0.593021339

Cost 24.66636944 30.40870285 24.66781426 26.47674179 24.29550076 24.33940315

Overhead 10.36959958 30.40870285 24.66781426 11.98650837 9.736964226 24.33940315

643

Table 16. Time decryption for (DES-present)

Image 1 2 3 4 5 6

𝑇𝑃𝐴 (4 core) 4.858917236 4.59931469 5.030154228 4.357462645 4.407291174 4.40695858

𝑇𝑃𝐴 (5 core) 3.903854847 3.780691385 3.876887083 3.864917755 3.851115465 3.821103096

𝑇𝑃𝐴(6 core) 3.667105436 3.40021944 3.438830376 3.659237385 3.547070742 3.539570332

𝑇𝑆𝐴(sequence) 14.44032121 14.35260201 14.61880398 14.40747929 14.5317452 14.42234516

5.7 Time decryption

The decryption time of the algorithm refers to the time it

takes for authorized people to use the key to convert the

encrypted image to the original image using the proposed

decryption algorithm. As shown in Table 16, we conclude that

the decryption time in a parallel environment is less than the

decryption time for the sequential algorithm.

5.8 Time and space complexity of data structures and

algorithms

Effective problem-solving requires understanding the time

and space complexities of data structures and algorithms.

Performance evaluation, scalability, optimization, and

resource planning require data structure, algorithm time, and

space complexity analysis. Analyzing these complexities

helps us choose algorithms, optimize, and plan resources.

Time complexity is an algorithm's runtime as a function of

input size. It shows how algorithm runtime increases with

input size. Time complexity is usually expressed in Big O

notation, which limits algorithm growth. The proposed

algorithm is O (n2/m), where m is the number of cores. Space

complexity is the amount of memory an algorithm needs based

on the size of its input. It shows how the algorithm's memory

usage increases with input size. O(n2/m) space complexity for

the proposed algorithm. While Memory usage for the

algorithm as the Table 17.

Table 17. Memory for (DES-present)

Image 1 3 2 6 5 4

Memory 45.5 46.9 46.2 46.8 46.4 46.5

6. COMPARATIVE RESULTS

The suggested system outperforms the sequential hybrid

algorithm that combines DES and Present in terms of speed

thanks to its utilization of parallel processing. Because of this,

it is a superior option for uses where the speed of encryption

and decryption is paramount. In addition, it has been

confirmed that the environment of rapid parallel processing

does not introduce any new security vulnerabilities.

Comparisons with the study of Barhoush et al. [10] the rate

of encryption for a changeable quantity of data units 256

represents 4 K units (256 bits). The DES algorithm takes 41

time milliseconds, DES2 (33) time milliseconds, and Parallel

DES (11) time milliseconds. Furthermore, the proposed

algorithm has a higher speed compared to the original DES

algorithm and the original present algorithm. As in Tables 18,

19.

The encryption and decryption time for the DES algorithm

takes between 23.3444781 and 24.99960899. It needs more

time compared to the proposed algorithm.

The encryption and decryption time for the presnt algorithm

takes between 9.39930510520 and 9.85665106773.

Table 18. Encryption/ decryption for original DES algorithm

Image Encryption Decryption

1 24.3756251335 24.191036939

2 25.3167097568 23.802267552

3 24.9996089935 24.324954986

4 24.2519631385 23.344478130

5 24.1495168209 23.813992738

6 24.6943865299 24.667293977

Table 19. Encryption / decryption for original present

Image Encryption Decryption

1 9.39930510520935 9.326847553253174

2 9.364143133163452 9.336862897872925

3 9.806873559951782 9.423346996307373

4 9.856651067733765 9.708191871643066

5 9.644702911376953 9.303942918777466

6 9.678985118865967 9.528454542160034

7. CONCLUSIONS

This paper demonstrates its efficacy in ensuring more

secure, fast encryption and decryption color images using a

parallel environment for different cores. The algorithm uses a

two-dimensional chaotic system for key generation dynamism,

unpredictability, and randomness. The key space(2232.4) is so

big and passes all of NIST's tests that brute force can't be used

to break it. The image quality is evaluated using the following

standards: The NPCR values ranged from 99.4156% to

99.6658%. These values indicate a large change in the number

of pixels that occurs between the original image and the

encrypted image caused by the proposed encryption algorithm.

A UACI value below 30.909% it indicates that the average

pixel density is low between the original image and the

encrypted image. All test values result Correlation coefficient

analysis Close to zero value for all correlations; for example,

image number 2: horizontal: -0.031362, vertical: -0.009107,

diagonal: 0.021371. Encryption works well when the

correlation coefficient is small, close to zero. Our encryption

algorithm exhibits a significant degree of data randomness and

unpredictability, which is a desirable characteristic of

encryption. The increase in information entropy from the

original to the encrypted image from 7.773088 to 7.998954

serves as evidence for this. The histogram of the encrypted

image appears at one frequency, while the original image

shows highs and lows. This is evidence of the complete

difference between the original image and the encrypted image.

The MES has high values between 11233.940943 and

13062.049627, which means the restored image is different

from the original, and the PNSR has low values between

6.97069 and 8.614653, indicating encryption color image

quality. With respect to the execution time, the result is that

the encryption and decryption times of the proposed algorithm

decrease with the increase in the number of cores, compared

to the decryption and encryption times of the sequential

algorithm (DES-Present), the original DES algorithm, and the

644

Present algorithm. The findings demonstrate the efficacy and

feasibility of our encryption algorithm for real-world

implementations. Essential for the purpose of insurance

correspondence. The algorithm's encryption and decryption

times are sufficiently rapid, thereby making it suitable for

situations that require processing in real time or very close to

real time.

ACKNOWLEDGMENT

Al Mustansiriyah University's computer science department

and college of education provided support for this research.

REFERENCES

[1] Mehdi, S.A. (2021). Image encryption algorithm based

on a novel 4D chaotic system. International Journal of

Information Security and Privacy (IJISP), 15(4): 118-131.

https://doi.org/10.4018/IJISP.2021100107

[2] Mehdi, S.A., Kadhim, A.A. (2019). Image encryption

algorithm based on a new five dimensional Hyperchaotic

system and Sudoku matrix. In 2019 International

Engineering Conference (IEC), Erbil, Iraq, pp. 188-193.

https://doi.org/10.1109/IEC47844.2019.8950560

[3] Mansour, I.A., Mehdi, S.A., Kuffi, E.A. (2021). On the

complex SEE change and systems of ordinary

differential equations. International Journal of Nonlinear

Analysis and Applications, 12(2): 1477-1483.

https://doi.org/10.22075/ijnaa.2021.5267

[4] Jebur, S.A., Hussein, K.A., Hoomod, H.K., Alzubaidi, L.,

Santamaría, J. (2022). Review on deep learning

approaches for anomaly event detection in video

surveillance. Electronics, 12(1): 29.

https://doi.org/10.3390/electronics12010029

[5] Jasim, O.A., Hussein, K.A. (2021). A hyper-chaotic

system and adaptive substitution box (S-Box) for image

encryption. In 2021 International Conference on

Advanced Computer Applications (ACA), Maysan, Iraq,

pp. 144-149.

https://doi.org/10.1109/ACA52198.2021.9626793

[6] Fernando, E., Agustin, D., Irsan, M., Murad, D.F.,

Rohayani, H., Sujana, D. (2019). Performance

comparison of symmetries encryption algorithm AES

and DES with raspberry pi. In 2019 International

Conference on Sustainable Information Engineering and

Technology (SIET), Lombok, Indonesia, pp. 353-357.

https://doi.org/10.1109/SIET48054.2019.8986122

[7] Wu, Y.H., Dai, X.Q. (2020). Encryption of accounting

data using DES algorithm in computing environment.

Journal of Intelligent & Fuzzy Systems, 39(4): 5085-

5095. https://doi.org/10.3233/JIFS-179994

[8] Laia, O., Zamzami, E.M., Sutarman. (2021). Analysis of

combination algorithm Data Encryption Standard (DES)

and Blum-Blum-Shub (BBS). Journal of Physics:

Conference Series, 1898: 012017.

https://doi.org/10.1088/1742-6596/1898/1/012017

[9] Xing, B., Wang, D.D., Yang, Y.Q., Wei, ZQ., Wu, J.J.,

He, C.H. (2021). Accelerating DES and AES algorithms

for a heterogeneous many-core processor. International

Journal of Parallel Programming, 49: 463-486.

https://doi.org/10.1007/s10766-021-00692-4

[10] Barhoush, M., Abed-Alguni, B., Hammad, R., Al-Fawa,

M., Hassan, R.N. (2022). DES22: DES-based algorithm

with improved security. Jordanian Journal of Computers

and Information Technology, 8(1): 18-32.

https://doi.org/10.5455/jjcit.71-1632868199

[11] Mihalkovich, A., Levinskas, M., Makauskas, P. (2022).

MPF based symmetric cipher performance comparison to

AES and TDES. Mathematical Models in Engineering,

8(2): 15-25. https://doi.org/10.21595/mme.2022.22517

[12] Yunus, M., Sakkinah, I.S., Rahmawati, U.E., Deharja, A.,

Santi, M.W. (2023). File security design in electronic

health record (EHR) system with triple DES algorithm

(3DES) at Jember family health home clinic.

International Journal of Health and Information System,

1(1): 1-8. https://doi.org/10.47134/ijhis.v1i1.2

[13] Alabdulrazzaq, H., Alenezi, M.N. (2022). Performance

evaluation of cryptographic algorithms: DES, 3DES,

Blowfish, Twofish, and Threefish. International Journal

of Communication Networks and Information Security,

14(1): 51-61. https://doi.org/10.17762/ijcnis.v14i1.5262

[14] Akbar, M., Ahmad, I., Regula, T. (2021). Study and

improved data storage in cloud computing using

cryptography. International Research Journal on

Advanced Science Hub, 3(2S): 94-99.

https://doi.org/10.47392/irjash.2021.046

[15] Chowdhury, D., Dey, A., Garai, R., Adhikary, S.,

Dwivedi, A.D., Ghosh, U., Alnumay, W.S. (2023).

DeCrypt: A 3DES inspired optimised cryptographic

algorithm. Journal of Ambient Intelligence and

Humanized Computing, 14(5): 4745-4755.

https://doi.org/10.1007/s12652-022-04379-7

[16] Manohar, H. (2022). Design of distributed database

system based on improved DES algorithm. Distributed

Processing System, 3(4): 19-27.

https://doi.org/10.38007/DPS.2022.030403

[17] Soe, T., Mon, S.S., Thu, K.A. (2019). Performance

analysis of Data Encryption Standard (DES).

International Journal of Trend in Scientific Research and

Development, 3(5): 1439-1443.

https://doi.org/10.31142/ijtsrd26650

[18] Hoomod, H.K., Naif, J.R., Ahmed, I.S. (2020). A new

intelligent hybrid encryption algorithm for IoT data

based on modified PRESENT-Speck and novel 5D

chaotic system. Periodicals of Engineering and Natural

Sciences, 8(4): 2333-2345.

https://doi.org/10.21533/pen.v8i4.1738

[19] Katuk, N., Chiadighikaobi, I.R. (2022). An enhanced

block pre-processing of PRESENT algorithm for

fingerprint template encryption in the internet of things

environment. International Journal of Communication

Networks and Information Security (IJCNIS), 13(3).

https://doi.org/10.17762/ijcnis.v13i3.5101

[20] Lam, T.N., Le, D.H., Cao, T.B.T. (2022).

Implementation of lightweight cryptography core

PRESENT and DM-PRESENT on FPGA. In 2022

International Conference on Advanced Technologies for

Communications (ATC), Ha Noi, Vietnam, pp. 104-109.

https://doi.org/10.1109/ATC55345.2022.9942995

[21] Kubba, Z.M.J., Hoomod, H.K. (2019). A hybrid

modified lightweight algorithm combined of two

cryptography algorithms PRESENT and Salsa20 using

chaotic system. In 2019 First International Conference of

Computer and Applied Sciences (CAS), Baghdad, Iraq,

pp. 199-203.

https://doi.org/10.1109/CAS47993.2019.9075488

645

http://doi.org/10.4018/IJISP.2021100107
http://dx.doi.org/10.3390/electronics12010029
http://dx.doi.org/10.1109/ACA52198.2021.9626793
https://doi.org/10.1109/SIET48054.2019.8986122
http://dx.doi.org/10.3233/JIFS-179994
http://dx.doi.org/10.1088/1742-6596/1898/1/012017
http://dx.doi.org/10.5455/jjcit.71-1632868199
https://doi.org/10.21595/mme.2022.22517
https://doi.org/10.17762/ijcnis.v14i1.5262
http://dx.doi.org/10.47392/irjash.2021.046
https://doi.org/10.17762/ijcnis.v13i3.5101
https://doi.org/10.1109/ATC55345.2022.9942995

[22] Chen, H. (2021). An enhanced encryption algorithm with

key update scheme for Internet of Things. Journal of

Physics: Conference Series, 1757: 012144.

https://doi.org/10.1088/1742-6596/1757/1/012144

[23] Mahmood, S.A., Hussein, K.A. (2019). A parallel

programming for robust chaotic map generation based on

two and dimensional equation system. Journal of

Engineering and Applied Sciences, 14(11): 3741-3745.

https://doi.org/10.36478/jeasci.2019.3741.3745

[24] Mahmood, S.A., Hussein, K.A., Jurn, Y.N., Albahrani,

E.A. (2019). Parallelizable cipher of color image based

on two-dimensional chaotic system. Indonesian Journal

of Electrical Engineering and Computer Science, 18(1):

101-111. http://doi.org/10.11591/ijeecs.v18.i1.pp101-

111

[25] Hussein, K.A., Mehdi, S.A., Hussein, S.A. (2019). Image

Encryption based on parallel algorithm via zigzag

Manner with a new Chaotic system. Journal of Southwest

Jiaotong University, 54(4).

https://doi.org/10.35741/issn.0258-2724.54.4.29

[26] Rashid, A.A., Hussein, K.A. (2023). A lightweight image

encryption algorithm based on elliptic curves and a 5D

Logistic Map. Iraqi Journal of Science, 64(11): 5985-

6000. https://doi.org/10.24996/ijs.2023.64.11.41

646

http://dx.doi.org/10.36478/jeasci.2019.3741.3745
http://doi.org/10.11591/ijeecs.v18.i1.pp101-111
http://doi.org/10.11591/ijeecs.v18.i1.pp101-111
https://doi.org/10.35741/issn.0258-2724.54.4.29

