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 Mobile smartphone operating systems have garnered widespread popularity due to their 

open-source nature and high performance. However, the convenience of these systems 

has also led to a rise in malware distribution. Traditional signature-based detection 

methods often fail to identify unknown threats, prompting the need for more effective 

solutions. In this study, we propose an advanced machine learning-based model for 

detecting malware on smartphones. Our model leverages dynamic and static analysis 

techniques to select and infer features, followed by a novel feature extraction method 

using sampling and Principal Component Analysis (PCA) to reduce dimensionality 

without adversely impacting the accuracy. Experimental results demonstrate the 

effectiveness of our approach in significantly enhancing malware detection accuracy and 

efficiency on smartphone operating systems. By analyzing the dynamic behavior of 

applications and incorporating innovative detection methods, our research contributes to 

a more robust and proactive approach to smartphone security. Through rigorous 

evaluation using real-world and synthetic datasets, we validate the efficacy of our model 

in accurately identifying malware instances and guiding users towards safe application 

downloads. Overall, our study provides a promising avenue for mitigating the escalating 

threat of malware on mobile devices. 
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1. INTRODUCTION 

 

By the end of the decade, an array of technology-enabled 

cognition support tools emerged, transforming both manually 

based intelligence dispatching activities and routine 

workflows in several industries, organizations and 

government agencies [1]. This shift has been facilitated by the 

innovations that have had a far-reaching favorable impact on 

the acceptance of mobile technology at the global level. Based 

on UN report, it is expected that the percentage of people who 

carry the smartphones will reach 82% in 2022 [2].  
Despite the fact that mobile technology has enhanced digital 

solutions for many workloads, it has also made consumers' 

data more vulnerable. Due to the lack of oversight in the 

Google Play Store, app developers are able to post Android 

programs with little to no filtering, increasing the likelihood of 

harmful apps being posted and endangering users' personal 

information and data [3]. Economic losses are another 

consequence of malware assaults on gadgets. The many 

hazards associated with mobile technology are not going 

unnoticed. Android is both the most popular and most 

susceptible mobile operating system [4]. Figure 1 shows that 

up to July 2023, Android OS accounted for more than 71.9% 

of the worldwide market in the mobile industry. Next on the 

list of mobile operating systems is iOS, which has around 

27.3% of the worldwide market share as shown in Figure 2. 

Android OS smartphones are widely used, making them a 

potential target for malware attacks. Another reason Android 

OS is vulnerable is because it is open-source [5, 6]. In 2022, 

196,476 banking Trojans and 10,543 ransomware Trojans 

were anticipated to have been identified, according to the 

Kaspersky research [7]. Trojan mobile apps infiltrate the 

operating system by masquerading as genuine programs, while 

in reality, they are counterfeit. Banking Trojans allow 

customers to reveal their account information using phony 

banking applications, which is a problem since most 

consumers now utilize mobile Internet banking. In addition, 

users' health information and sensitive personal details are also 

disclosed. Numerous additional strategies, including 

blockchain technology and edge computing approaches, are 

now being used to safeguard such data [8]. Professionals in 

malware have compromised mobile devices and turned them 

into bots. Distributed denial-of-service (DDoS) assaults and 

spam emails with harmful links are both sent by these bots. 

The development of this malicious software employs 

sophisticated techniques that make these assaults unavoidable 

[9]. These botnets seriously jeopardize the security of Android 

OS. Unfortunately, the Security Institute [10] reported that 

Android packages are a significant vector for malware attacks. 

Therefore, signature-based methods of detecting malware 

and malicious installation packages utilizing attribute 

information may be efficiently used to improve Android 
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mobile security. The malware industry is likely teeming with 

specialists who are always thinking of new ways to conceal 

their assaults and steal sensitive user data. Neutralizing such 

novel and intricate approaches is, however, getting more 

difficult [11]. There are a lot of methods that have been 

developed to identify malicious activity in Android 

applications. These methods detect malware assaults and use 

feature interaction to show which features are important [12]. 

 

 
 

Figure 1. World smartphone smartphone usage between 

2014-2029 

 

 
 

Figure 2. Statistics for the share of mobile operating systems 

from July 2022 to July 2023 [5] 

 

For malware attack detection, the Owl binary optimization 

algorithm is used to select features from the Drebin dataset 

[13]. Using Android malware detection greatly increases 

security against any potential attack [14]. Furthermore, in 

recent years, many deep learning-based methods have been 

proposed to detect malware. For example, S.C. Tan et al. used 

back propagation (BP) and particle swarm optimization (PSO) 

to find the best ensemble classifier for deep learning. The 

ultimate objective of employing deep learning is to choose the 

most ideal attributes to improve the accuracy of malware 

detection systems, while simultaneously aiming to minimize 

the computational costs of computers. Detecting malware on 

mobile phones with high accuracy and ease of use is the goal 

of this research paper, which combines parallel machine 

learning classifiers and supervised algorithms. Also 

incorporated into the framework was optimal feature selection.  

Modern machine learning networks use correlation scores 

to choose features, so you do not have to do any feature 

computations by hand before putting a deep learning classifier 

to work. 

The contribution of the paper is evident in the following 

aspects: 

A feature selection mechanism based on the correlation 

score is embedded in the machine learning network instead of 

performing a manual calculation of features before applying a 

deep learning classifier, which contributed to reducing the 

computational burden. 

Without incurring an additional processing time 

requirement, the accuracy of malware detection was enhanced. 

Offers a cost-effective approach to detecting malicious or 

altered programs in mobile device operating systems. provides 

an alternative to malware detection of smartphone operating 

systems for malicious or recompiled applications at very low 

costs. 

 

 

2. LITERATURE REVIEW 
 

Researchers in malware detection analysis techniques are 

still constrained between two practical approaches. Strategies 

based on Android malware detection analysis are usually 

either static, dynamic, or hybrid. In this section, we review 

some analysis methods and briefly summarize their used 

properties. 

Alabrah [13] presented a cutting-edge automated technique 

for detecting Android malware, based on artificial neural 

networks (ANN). To test this innovative method, two well-

known datasets were utilized: CICInvestAndMal2019 and 

Drebin/AMD. These datasets underwent preprocessing to 

convert their static features into binary values, indicating the 

status of certain app permissions (enabled or disabled). The 

modified feature sets were fed into the ANN classifier for two 

crucial experiments. In the first experiment, a basic input layer 

was used alongside a five-fold cross-validation approach. For 

the second experiment, a novel feature selection layer was 

introduced in the ANN classifier, focusing on features 

correlated with benign or malware apps. The outcomes of 

Alabrah's ANN-based method were not only substantial but 

also showed enhancements in performance and resilience. 

Tarwireyi et al. [14] introduced BarkDroid, a novel Android 

malware detection technique that uses the low-level Bark 

Frequency Cepstral Coefficients audio features to detect 

malware. The initial results obtained show that Bark 

Frequency Cepstral Coefficients have high discriminative 

capabilities to achieve accurate predictions. 

In the study of Fan et al. [15], a method called free graphing 

was studied, in which sub-frequent graphs represent typical 

patterns from malicious systems that merge with the same 

package. They're also a template for FalDroid, which is a (free) 

chart-based detection system. Studies across multiple trials 

have shown that FalDroid can classify up to 96.3% of 

malicious system samples into their own divisions in about 6.2 

seconds per app. 

Fatima et al. [16] presented another model that works on a 

server-hosting basis to detect malicious systems. Through this 

approach, material costs can be reduced and resource 

constraints of more than 98% can be achieved, but the model 

needs high server-level specifications and features for 

immediate response time. In addition, this model did not 

discuss the information security involved in the process. 

Cai and Jenkins [17] proposed a unique Android malware 

detection approach that, once tested on different categories of 

data, can effectively continue to detect new malware without 

retesting. Droid-evolver is a fully automated (without human 

intervention) system for detecting malicious apps for 

smartphone operating systems, automatically updating itself. 

Fang et al. [18] used the feature fusion method and directly 

call the library function to extract the permissions and API 
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features of the APK file, then decompile the APK file to obtain 

the opcode features and merge the three features with multiple 

features to generate a feature vector. Finally, it uses a multi-

model neural network HYDRA to learn fusion feature vector, 

so that it can identify and detect malware. The work also 

compared it with other single-feature machine learning 

algorithms to verify its effect. Experimental results show that 

the accuracy of the multi-model neural network detection 

method based on feature fusion reaches 98.92%, which is 

better than other single-model feature methods. 

The composite method has been discussed in the study of 

Surendran et al. [19]. Through a script to detect malicious 

systems using the Bayesian Tree (TAN) model, which is based 

on dynamic and static features such as permissions and system 

calls, it detects the harmful model by combining the results of 

these two features taken from the segmentations. Moreover, 

the text shows 95%, but it does not show the smartphone OS 

version during the dynamic analysis. However, although the 

hybrid analysis method has been shown to be more complex 

and successful in the case of dynamic and static analysis, in 

the end, feature selection remains the key to the detection ratio. 

The method used in the study of Al Ali et al. [20] was used 

to reach a detection ratio of 96. The compared the 

characteristics of dynamic analysis using integration, structure 

dimensions, and connectivity between components. They 

concluded that the specifications extracted using the hull 

dimensions were more significant than the other two. 

 

 

3. PRINCIPAL COMPONENT ANALYSIS (PCA) 

 

Principal component analysis (PCA) is a multivariate 

technique that analyzes a data table in which observations are 

described by several inter-correlated quantitative dependent 

variables. Its goal is to extract the important information from 

the statistical data to represent it as a set of new orthogonal 

variables called principal components, and to display the 

pattern of similarity between the observations and of the 

variables as points in spot maps [21, 22]. 

One of the most important features of PCA are: 

Principal Components Analysis (PCA) aims to maximize 

the variance in the data by creating new axes called principal 

components. By selecting dimensions that capture most of the 

data's variance, PCA retains important information while 

reducing dimensionality, which is crucial in malware detection 

to maintain feature distinctiveness for accurate classification. 

PCA ensures that the new axes are orthogonal, meaning each 

component captures a unique aspect of the data's variability, 

resulting in a more concise representation of the original 

features. Unlike other dimensionality reduction methods, PCA 

offers consistency and minimizes redundancy or information 

loss. While PCA assumes linear correlations among variables, 

which may not always hold true, it is generally effective in 

capturing the underlying data structure without significant loss. 

Its computational efficiency and ease of use make PCA a 

preferred choice for handling large datasets in malware 

detection studies compared to methods like t-SNE or Isomap. 

PCA delivers a coherent interpretation of the condensed 

feature space via principal components, which represent linear 

combinations of the original features. This interpretive 

capability aids in analyzing feature significance and enhances 

comprehension of the intrinsic data structure. 

 
 

4. DYNAMIC AND STATIC ANALYSES 

 

To identify malware, almost absolute majority of static 

statistical methods and dynamical approaches are applied [23, 

24]. Two detection approaches are available to the user with 

static analysis: heuristic analysis, and signature-based 

detection technique There are two different techniques in 

antivirus software, which are very arguable among 

programmers. As the signatures can only look for the patterns 

of the know malware, they are no longer the ultimate way to 

achieve the entire security. What is a contrast between the both 

scenarios is in place. In the first scanner, it identifies risks 

according to its specific purpose which is to spy malicious files 

that are programs and deliver warnings when they are noticed. 

Through the study of code’s traits and/or the way how the 

form behaves. Users may consider code analysis as an 

applicable option. Code structure examination involves 

finding malicious code patterns by looking at the syntax of the 

code as well as picking out how it is arranged. Alternatively, 

string analysis entails activities such source code inspection 

even for signs of malicious intent such as IP addresses, 

encryption keys, or hardcoded URLs. During data analysis, 

properties of files, like the size, creation date, and digital 

signature have to be observed to find alterations that are 

unlawful or might look like certain type of damage. An 

additional method, that completes the analysis of the execution 

code can find malicious and inappropriate behavior, like 

including concealed functions and code obfuscation. 

While sandboxing analysis means executing the binary in a 

simulated environment for the purpose of seeing the trait 

behaviors, code interactions with the system, and detection of 

any network traffic that’s sniffy or suspicious activity. 

The most prevalent dynamic analysis technique, similar to 

static analysis, encompasses [25, 26]: 

Runtime behavior appraisal is a process of checking the 

activity of code or files to detect code(s) or files(s) that have 

questionable or true malicious behaviors. 

This includes, for instance, the unlawful revamping of the 

system, the modifially of the file system or the monutring of 

the network. API monitoring is a method of observation that 

focuses on how the codes call the "Application Programming 

Interfaces" (APIs) in order to detect any suspicious or severe 

calls that are likely to be attempts to break in and cause damage. 

Network traffic analysis is equivalent to taking a document 

and reviewing the network traffic that may be related to the 

operation of the code or the file itself. The targeted objective 

is to trace and flag any transaction with confirmed fraudulent 

websites, abnormal data transportation, or abnormally high 

network activity. In contrast to static code analysis modality 

which deals with looking closely at the written code for any 

statistic malicious operations, dynamic code analysis extends 

the objective to include thorough processes to point out 

suspicious and hazardous experiences while the code is 

running. System call monitoring implies monitoring system 

calls of applications, and files made to the operating system in 

order to stipulate malicious actions followed by the abnormal 

or illegal system call. Sandboxing is a way that programs or 

files are run in a virtual environment (sandbox) to observe its 

reactions and maintain it separated from other entities, thereby 

spoiling any possible harm in the main system. 

The emulator and virtual machines reproduce runtime 

environment of the target system in which the code or file is 

executed. By this approach the analysts can see the behavior 

of the code and its interactions with other applications / 
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components without affecting the host system. Implementing 

these tools along allows to identify and categorize malicious 

and plays an important role in the security of systems and 

networks. 

 

 

5. PROBLEM FORMULATION 

 

In the protection phase, developers provide a trained model 

for users to detect malware where the software is able to 

independently reach a decision based on system predictions as 

shown in Figure 3. Errors can lead to great risks for the user - 

such as removing the phone's operating system. It is necessary 

for the developer to choose a model family correctly. The 

developer should use a robust affirmative training procedure 

to achieve the ideal model with a high detection rate and 

effective positive rate. 

User machines that apply machine learning models make 

decisions on their own. The quality of the machine learning 

model affects the functioning of the user's system. For this 

reason, machine learning-based malware detection has 

specific characteristics. 

 

 
 

Figure 3. Detection algorithm lifecycle using machine 

learning [27] 

 

Sample selection is based on the Zone-Alarm suite of 

applications (for security applications). Originally, a batch of 

270 good apps and 270 others with malicious behavior was 

made to try to cover up a certain randomness. 

The collection of cute apps has been chosen to try to be 

diverse and reflect the different types of apps on the Play Store 

app. It is also proportional to the number of samples present in 

each type of application [28]. The following aspects were 

taken into account when collecting mock samples: 

a. Similar and different sized apps with the same name 

and malware variants. 

b. Different classifications according to the behavior of 

those with the greatest impact: SMS Trojans, banks, root 

extortionists, extortionists and criminals, adware and 

malicious tools. 

C. Different transactions within one malware package and 

more than one package within a classification by pattern. 

For the analysis, 6227 samples were selected from the same 

repository, of which 4105 were infected and 2122 benign. In 

addition, for the set of samples with detrimental behavior, at 

least one variant from each bundle was detected in the system. 

Drebin contains 7,220 samples of infected software owned by 

319 malware packages. For the detection of recombinant 

infected programs, 1912 samples of infected programs were 

selected from the top 4 packages with the number of samples 

in each package (Table 1) [29]. In addition, the specific 

software has been changed to have multiple features such as 

permissions and package names. Surprisingly, many 

duplicates were found among the package names of 

applications after analysis. It was concluded that about 68.19% 

of the applications in the dataset share a number of repeated 

package names, and therefore, the applications that share the 

same package names were sorted. 

The orderly compilation of smartphone operating system 

applications can make a positive or negative change in the 

application signature. Because of this, all applications that 

share the same package names continue to have different hash 

values, and therefore, it was necessary to create a more robust 

signature technology. The primary goal in this part of the study 

is to update an efficient signature mechanism so that about 

95% of the samples with package names have identical 

signatures. Then the hash of the class.dex file is developed for 

all the open-source code obtained from the application, instead 

of using the hash value calculation method [30]. 

A detailed report of applications shared in family names 

shows that 90% of them use the same source code with minor 

changes. Hash algorithms, such as SHA-115 and MD-516, 

load from a file of random size and a fixed-length 

cryptographic hash as a result. Computing a SHA-1 or MD-5 

hash for two identical files will most of the time yield the same 

result. Antivirus software stores up-to-date databases of MD-

5 and SHA-1 hashes of malware. In addition, a small 

modification to the infected system causes a very large change 

in the SHA-1 or MD-5 hashing process. 

 

Table 1. Malware samples in the Drebin dataset from the top 

4 packages 

 
Malware Packet Samples 

Kmin 147 

FakeDoc 132 

FakeInstaller 821 

OpFake 363 

 

Therefore, a new, more efficient hashing technique called 

SSDeep hash was used, instead of calculating the source codes 

of applications that share the same package names by SHA-1 

or MD-5 algorithms. SSDeep is based on context driven 

segmentation (CTPH) technology known as fuzzy 

segmentation. CTPH is a new technology that improves the 

effectiveness of similar file detection. Because of the fuzzy 

hashes of two highly identical files, i.e. the original file and a 

file with some minor changes, SSDeep hashes can give the 

degree of similarity between two hashes. If there are any minor 

degree changes in the cloned software and malware, a 

similarity score can be obtained by comparing it to the 

malware which is the ability to compare the similarity between 

two algorithms [31]. 

Algorithm 1: Detect malware repackaged using Fuzzy hash 

Input: FH = {h1, h2, h3…….hn} and APK 

Output: Similarity-Score 

1: hash           SSDeepHash (APK) 

2: for all i € FH do 

3:       Similarity             SSDeepSim (i, hash) 

4:       if Similarity > threshold then 

5:          Return Similarity 

6:       end if 

7:    end for 
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8:    Return 0 

Algorithm 1 introduces a new approach based on fuzzy 

hashing to detect repackaged malware. We assume that F is 

the set of the top 4 bundles of the Drebin data set. We do the 

reverse process of designing all applications in F to choose a 

bunch of distinct package names such as DPN = {Pn1, Pn2, 

Pn3, Pnn}. In addition, one application model is randomized 

for each package name in the DPN, after that, we do a 

mathematical operation to calculate the fuzzy hash using 

SSDeep and put it into the FH matrix. In the end, a fuzzy hash 

package of FH and an APK of F are obtained as input in 

Algorithm 1, while the similarity ratio is chosen as the final 

result. 

First: Get the fuzzy hash value of the parent code of the 

given APK (step 1). 

Second: We compare the algorithm of the APK file with the 

whole algorithm in FH with the help of SSDeep hash 

comparison tool (step 3). 

Third: If there is a similarity ratio greater than the threshold 

value at any point, the APK file will be marked as a recompiled 

infected program, and the similarity score will be returned 

again. (Step 4-6). 

Fourth: The value of zero is returned to the algorithm if 

there is no similarity ratio higher than the minimum hash in 

FH. A similarity ratio of 85% was set for the standard cut-off 

for the trials [32].  

As mentioned earlier, the technologies for detecting 

malicious APK files are divided into dynamic and static 

features. Dynamic analysis works with the pattern of the 

running time of the programs at the time of their execution 

compared to several specific experiments. Although the hard 

side of the analysis is done at a non-running stage (as opposed 

to) in terms of verifying the source code, analyzing metadata 

and additional data about vulnerabilities. Dynamic analysis is 

an accurate detection method because it involves detailed 

analysis of applications, so it requires a high amount of money. 

After executing the APK files, the analysis is performed [33, 

34]. 

Static analysis consists of a very large set of techniques and 

methods that aim to learn about the patterns and behavior of 

the system runtime before implementing it. The main goal of 

increasing security is to separate applications that will be 

recompiled from malware before execution and installation 

processes [35]. 

 

 

6. METHODOLOGY 

 

In this section, we discuss our approach to developing a 

malware detection model based on the analysis of effective 

and early system calls coupled with evaluation by an 

application. 

The model proposed in the study of Zhu et al. [33]. 

Detection percentage with reduced passes based on enhancing 

validity features. As we conclude from the Per-DRaML 

detection system based on the proposed scheme using 

permissions from the applications themselves and their 

applications, Per-DRaML targets a set of specific permissions 

enhanced in improving the percentage of detection of 

dangerous programs, rather than analyzing all required 

permissions. Random Forest algorithms, Support Vector 

Machine (SVM) and Rotation Forest classifiers were used for 

classification. Based on the perceived effect on the detection 

effectiveness of systems and malware, we will select a set of 

powers. We will discuss some important issues in this paper: 

1. Packets of benign and malignant specimens. 

2. Build/define the feature set. 

3. Key Features (dataset) Inference, Filter and Finalize. 

4. Classification of Android malware using moderated 

eLearning algorithms. 

 

6.1 Packets of benign and malignant specimens  

 

A set of Android applications has been selected from two 

different groups of android families, benign and malicious. 

Virus-Share (about 7,000) malicious apps have been 

aggregated into an Android malware database 

(http://virusshare.com/, December 25, 2022). Virus-Share's 

database identifies application packages from different 

malware packages at different dates and is available to all as 

archived and compressed files. These files can be obtained 

using any torrent's user. A bunch of benign apps (about 7000) 

were also selected from the official app site (Google Play and 

Apple Store) using the Python language implementation. 

Innocent APKs are selected from different Play Store app 

ratings to increase diversity in the dataset. The total APK files 

are 14,000 samples, each classification has 7,000 samples. 

Training data is used to evaluate the effectiveness of the 

current model, while samples are used to perform validations. 

 

6.2 Build/define the feature set 

 

In the first stage, classifier schemas are built and classified 

in the selection of key permissions based on the data set. The 

permissions and features required by the app are obtained in 

the form of an app package such as: APK and Manifest.xml 

files. To obtain the required validity, the Andro-guard 

algorithm is adopted to unpack 14,000 application samples for 

the required data bundle. Different classifications of 

permissions used to create the feature set package, such as 

small application sizes and permission ratio, have been 

selected to perform consistent analysis and understanding of 

the style of each application from the selected packages [34]. 

 

6.3 Key Features (dataset) inference, filter and finalize 

 

This pane shows the most important permissions that can be 

used to separate apps from benign and malicious apps. Google 

Systems and Zhu et al. [33] were able to extract the list of 

dangerous permissions. To identify the main permissions 

important for malware detection, several permissions, as 

shown in Table 2, were presented as illustrative samples. It is 

noted from the table that Zhu et al. Google permissions are 

integrated to be evaluated while using an exclusive feature 

called Permission Ratio [35, 36]. 

Figure 4 shows the proposed Per-DRaML model, which 

demonstrates filtering of APKs parameter specification for a 

dataset and packages, de-compilation and refactoring. 

 

6.3.1 Enhanced permissions package 

First the permissions that have a weak impact on detection 

are obtained to determine the minimum value of the number 

of permissions required. To this end, we used a dataset from 

Google's permissions list (from Table 2) documenting the 

functionality and importance of the feature. Feature 

significance is the metric that leads to the creation of simpler, 

more efficient prediction recipes using less data. When the 

feature significance of the Random Forest model is used, some 
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significant powers are shown (Table 2). We set a threshold 

standard of 0.7 to choose the feature that has the most impact 

by avoiding permissions that have a significance of less than 

0.7. Where the most important validity models were identified, 

based on a set of different feature set samples. As shown in 

Table 3. 

 

Table 2. Permissions risky feature and its significance by 

Google - G and Zhu et al. - R with exceptional standards 

 
S. No. Features Importance % Source 

1 READ_PHONE_STATE 0.42674 G 

2 Permission rate 0.30376 R 

3 
WRITE_EXTERNAL_S

TORAGE 
0.07948 G + R 

4 

ACCESS_ 

APPROXIMATE 

_LOCATION 

0.06323 G 

5 RECORD_AUDIO 0.02923 G 

6 
READ_EXTERNAL_ST

ORAGE 
0.02588 G 

7 CAMERA 0.02024 G 

8 RECEIVE_SMS 0.02019 G + R 

9 READ_SMS 0.00843 G 

10 READ_ADDRESS 0.00650 G 

11 WRITE_CALL_LOG 0.00079 G 

12 
UPDATE_DEVICE_ST

ATS 
0.00016 G + R 

13 
READ_HISTORY_BOO

KMARKS 
0.00003 G + R 

14 
WRITE_HISTORY_BO

OKMARKS 
0.00000 G + R 

 

 
 

Figure 4. Diagram of specification generation, dataset 

generation, and filtering for malicious and benign APKs 

 

Table 3. Proposed models of the features of the specified 

parameters 

 
Type No. Name 

Permissions 

1 
Android. Permission. 

WRITE_EXTERNAL_STORAGE 

2 
Android. Permission. 

READ_PHONE_STATE 

3 
Android. Permission. ACCESS_ 

APPROXIMATE _LOCATION 

Standards 
1 Small Size 
2 percentage validity 

6.3.2 Designed dataset 

Permission packets are converted into a binary dataset so 

that '1' is the program granting validity, and '0' denotes no 

validity. Permission models selected from a few benign and 

malicious applications, represented binary, are combined to 

design a single comprehensive dataset for analysis. 

 

6.4 Classification of android malware using 

moderated machine learning algorithms 

 

Supervised machine learning assessments were used in this 

part, which can detect dangerous programs with the least 

amount of positive error value. The general plan of the current 

model is divided into two categories; The first consists of a 

standard in which supervised trainees are trained and validated 

using datasets with different machine learning algorithms, and 

the second category is validity feature inference. As mentioned 

earlier, the data set used consists of 14,000 samples consisting 

of 7,000 samples of each type. A similar training method and 

testing algorithm was applied in experiments as Zhu et al. [33, 

35]. 

 

 

7. PERFORMANCE EVALUATION 

 

Standard evaluation criteria are described: accuracy, 

sensitivity and Receiver Operating Characteristic (ROC) curve. 

Where we review later the formulas and their definitions [36]. 

Confusion matrix consisting of four criteria are: true 

positive (TP), true negative (TN), false positive (FP), and false 

negative (FN). 

To analyze the results of the model framework used, we 

used the following criteria: 

1) Accuracy: This is the percentage of correctly selected 

APKs. 

 

Accuracy =
𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + TP + 𝑇𝑁
 (1) 

 

2) Precision: is the number of correctly predicted phishing 

APKs. 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

3) Recall: is the collection of phishing APKs that have been 

segmented and validated. 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

4) F scale: is the weighted harmonic average of test 

accuracy and recall. At value 1 it will be positive and at value 

0 it will be negative. 

  

F1 =
2 ×  Precision ×  Recall

Precision + Recall
 (4) 

 

We trained our model using 4 phases, and reported the 

results for each phase as shown in Table 4. 

The standard of performance of malware detection systems 

can be increased either by improving certain powers and 

features or by improving data collection. Where the high 

performance is to choose important permissions of the 
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proposed method, they are influential figures considered in the 

literature. The application needs to obtain the permission of 

the user to perform the necessary activities. The proposed 

model aims to evaluate performance in the careful selection of 

data set samples. Additionally, this model was trained and 

validated on a large dataset, around 14,000 APK files were 

used as samples, obtained from places as diverse as virus 

sharing and application web sites. It has recently been 

observed that the current model achieves a similar detection 

ratio in the Rotation Forest and SVM algorithms using the 

given current powers, when compared to the results obtained 

from standard methods as shown in Table 3. To achieve high 

detection accuracy can Classifiers help reduce the number of 

batches being reserved, furthermore, reduce computational 

overhead, and can become a cost-effective solution for 

malware detection [33]. 

 

Table 4. The results of the training phase over several time 

stages 

 
Stage Time Accuracy Loss 

1 189s 0.8442 0.3562 

2 188s 0.8889 0.2709 

3 186s 0.9012 0.2415 

4 184s 0.9151 0.2104 

 

Figure 2 shows the percentage of malware data packets that 

fall within the classifications shown. 

 

 
 

Figure 5. Percentage ratings of malware samples 

 

The Figure 5 shows that 90% of the malware samples were 

effectively identified as malware (6,132/ 6,648) in the fourth 

type (9≤score≤10), and the malicious type almost reached 1% 

with the use of 52 samples belongs to this type. Regarding the 

latter two types, only 1% of the samples were rated as almost 

reliable (52/6075) and another 1% as almost reliable (67/630). 

582 files, i.e. 7% of the data packets (391/5,560) were not 

parsed. 1210 files of type IV (malware type, 9≤score≤10) were 

given a score equal to 10, which is the highest end of the 

malware classification according to the Andrubis study [32]. 

 

 

8. CONCLUSIONS 

 

While mobile malware continues to pose a persistent threat 

to Android users, the increasing integration of smartphones 

into our daily lives underscores the critical need for robust 

security measures. Therefore, the development of novel and 

effective malware detection technologies should be prioritized. 

In this study, we evaluated various metrics and criteria, 

including malware detection rates, resource utilization, 

machine learning schemes, and extracted models for analysis, 

to assess the efficacy of malware detection technologies. We 

compared and analyzed techniques and models from previous 

research, considering factors such as unknown malware 

detection, which was not part of the training set. 

Our approach involved a multilevel model, where we 

initially identified and inferred significant features from a 

dataset comprising 14,000 application samples. We utilized 

various machine learning frameworks to classify applications 

as benign or harmful. Through a series of experiments, our 

proposed model demonstrated significant enhancements in 

predictive features and the identification of harmful 

applications. 

Moreover, our model offers a cost-effective alternative for 

detecting malware in smartphone operating systems, 

particularly malicious or recompiled applications. However, it 

is essential to acknowledge the limitations of our research, 

such as the need for further investigation into addressing 

unknown malware detection and refining the feature selection 

process. 
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