

Enhanced Malware Detection for Mobile Operating Systems Using Machine Learning and

Dynamic Analysis

Faris Mutar Mahdi Aledam1* , Bilal Majeed Abdulridha Al-Latteef2

1 Faculty of Administration and Economics, Al-Muthana University, Samawah 66001, Iraq
2 The General Directorate of Qadisiyah Education, Computer System and Networks, Diwaniyah 58006, Iraq

Corresponding Author Email: Faris.mutar@mu.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140218

ABSTRACT

Received: 6 February 2024

Revised: 3 April 2024

Accepted: 11 April 2024

Available online: 26 April 2024

 Mobile smartphone operating systems have garnered widespread popularity due to their

open-source nature and high performance. However, the convenience of these systems

has also led to a rise in malware distribution. Traditional signature-based detection

methods often fail to identify unknown threats, prompting the need for more effective

solutions. In this study, we propose an advanced machine learning-based model for

detecting malware on smartphones. Our model leverages dynamic and static analysis

techniques to select and infer features, followed by a novel feature extraction method

using sampling and Principal Component Analysis (PCA) to reduce dimensionality

without adversely impacting the accuracy. Experimental results demonstrate the

effectiveness of our approach in significantly enhancing malware detection accuracy and

efficiency on smartphone operating systems. By analyzing the dynamic behavior of

applications and incorporating innovative detection methods, our research contributes to

a more robust and proactive approach to smartphone security. Through rigorous

evaluation using real-world and synthetic datasets, we validate the efficacy of our model

in accurately identifying malware instances and guiding users towards safe application

downloads. Overall, our study provides a promising avenue for mitigating the escalating

threat of malware on mobile devices.

Keywords:

mobile smartphone, machine learning,

principal component analysis (PCA),

malware, android, iOS

1. INTRODUCTION

By the end of the decade, an array of technology-enabled

cognition support tools emerged, transforming both manually

based intelligence dispatching activities and routine

workflows in several industries, organizations and

government agencies [1]. This shift has been facilitated by the

innovations that have had a far-reaching favorable impact on

the acceptance of mobile technology at the global level. Based

on UN report, it is expected that the percentage of people who

carry the smartphones will reach 82% in 2022 [2].
Despite the fact that mobile technology has enhanced digital

solutions for many workloads, it has also made consumers'

data more vulnerable. Due to the lack of oversight in the

Google Play Store, app developers are able to post Android

programs with little to no filtering, increasing the likelihood of

harmful apps being posted and endangering users' personal

information and data [3]. Economic losses are another

consequence of malware assaults on gadgets. The many

hazards associated with mobile technology are not going

unnoticed. Android is both the most popular and most

susceptible mobile operating system [4]. Figure 1 shows that

up to July 2023, Android OS accounted for more than 71.9%

of the worldwide market in the mobile industry. Next on the

list of mobile operating systems is iOS, which has around

27.3% of the worldwide market share as shown in Figure 2.

Android OS smartphones are widely used, making them a

potential target for malware attacks. Another reason Android

OS is vulnerable is because it is open-source [5, 6]. In 2022,

196,476 banking Trojans and 10,543 ransomware Trojans

were anticipated to have been identified, according to the

Kaspersky research [7]. Trojan mobile apps infiltrate the

operating system by masquerading as genuine programs, while

in reality, they are counterfeit. Banking Trojans allow

customers to reveal their account information using phony

banking applications, which is a problem since most

consumers now utilize mobile Internet banking. In addition,

users' health information and sensitive personal details are also

disclosed. Numerous additional strategies, including

blockchain technology and edge computing approaches, are

now being used to safeguard such data [8]. Professionals in

malware have compromised mobile devices and turned them

into bots. Distributed denial-of-service (DDoS) assaults and

spam emails with harmful links are both sent by these bots.

The development of this malicious software employs

sophisticated techniques that make these assaults unavoidable

[9]. These botnets seriously jeopardize the security of Android

OS. Unfortunately, the Security Institute [10] reported that

Android packages are a significant vector for malware attacks.

Therefore, signature-based methods of detecting malware

and malicious installation packages utilizing attribute

information may be efficiently used to improve Android

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 513-521

Journal homepage: http://iieta.org/journals/ijsse

513

https://orcid.org/0009-0001-2853-6347
https://orcid.org/0009-0006-2718-0752
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140218&domain=pdf

mobile security. The malware industry is likely teeming with

specialists who are always thinking of new ways to conceal

their assaults and steal sensitive user data. Neutralizing such

novel and intricate approaches is, however, getting more

difficult [11]. There are a lot of methods that have been

developed to identify malicious activity in Android

applications. These methods detect malware assaults and use

feature interaction to show which features are important [12].

Figure 1. World smartphone smartphone usage between

2014-2029

Figure 2. Statistics for the share of mobile operating systems

from July 2022 to July 2023 [5]

For malware attack detection, the Owl binary optimization

algorithm is used to select features from the Drebin dataset

[13]. Using Android malware detection greatly increases

security against any potential attack [14]. Furthermore, in

recent years, many deep learning-based methods have been

proposed to detect malware. For example, S.C. Tan et al. used

back propagation (BP) and particle swarm optimization (PSO)

to find the best ensemble classifier for deep learning. The

ultimate objective of employing deep learning is to choose the

most ideal attributes to improve the accuracy of malware

detection systems, while simultaneously aiming to minimize

the computational costs of computers. Detecting malware on

mobile phones with high accuracy and ease of use is the goal

of this research paper, which combines parallel machine

learning classifiers and supervised algorithms. Also

incorporated into the framework was optimal feature selection.

Modern machine learning networks use correlation scores

to choose features, so you do not have to do any feature

computations by hand before putting a deep learning classifier

to work.

The contribution of the paper is evident in the following

aspects:

A feature selection mechanism based on the correlation

score is embedded in the machine learning network instead of

performing a manual calculation of features before applying a

deep learning classifier, which contributed to reducing the

computational burden.

Without incurring an additional processing time

requirement, the accuracy of malware detection was enhanced.

Offers a cost-effective approach to detecting malicious or

altered programs in mobile device operating systems. provides

an alternative to malware detection of smartphone operating

systems for malicious or recompiled applications at very low

costs.

2. LITERATURE REVIEW

Researchers in malware detection analysis techniques are

still constrained between two practical approaches. Strategies

based on Android malware detection analysis are usually

either static, dynamic, or hybrid. In this section, we review

some analysis methods and briefly summarize their used

properties.

Alabrah [13] presented a cutting-edge automated technique

for detecting Android malware, based on artificial neural

networks (ANN). To test this innovative method, two well-

known datasets were utilized: CICInvestAndMal2019 and

Drebin/AMD. These datasets underwent preprocessing to

convert their static features into binary values, indicating the

status of certain app permissions (enabled or disabled). The

modified feature sets were fed into the ANN classifier for two

crucial experiments. In the first experiment, a basic input layer

was used alongside a five-fold cross-validation approach. For

the second experiment, a novel feature selection layer was

introduced in the ANN classifier, focusing on features

correlated with benign or malware apps. The outcomes of

Alabrah's ANN-based method were not only substantial but

also showed enhancements in performance and resilience.

Tarwireyi et al. [14] introduced BarkDroid, a novel Android

malware detection technique that uses the low-level Bark

Frequency Cepstral Coefficients audio features to detect

malware. The initial results obtained show that Bark

Frequency Cepstral Coefficients have high discriminative

capabilities to achieve accurate predictions.

In the study of Fan et al. [15], a method called free graphing

was studied, in which sub-frequent graphs represent typical

patterns from malicious systems that merge with the same

package. They're also a template for FalDroid, which is a (free)

chart-based detection system. Studies across multiple trials

have shown that FalDroid can classify up to 96.3% of

malicious system samples into their own divisions in about 6.2

seconds per app.

Fatima et al. [16] presented another model that works on a

server-hosting basis to detect malicious systems. Through this

approach, material costs can be reduced and resource

constraints of more than 98% can be achieved, but the model

needs high server-level specifications and features for

immediate response time. In addition, this model did not

discuss the information security involved in the process.

Cai and Jenkins [17] proposed a unique Android malware

detection approach that, once tested on different categories of

data, can effectively continue to detect new malware without

retesting. Droid-evolver is a fully automated (without human

intervention) system for detecting malicious apps for

smartphone operating systems, automatically updating itself.

Fang et al. [18] used the feature fusion method and directly

call the library function to extract the permissions and API

514

features of the APK file, then decompile the APK file to obtain

the opcode features and merge the three features with multiple

features to generate a feature vector. Finally, it uses a multi-

model neural network HYDRA to learn fusion feature vector,

so that it can identify and detect malware. The work also

compared it with other single-feature machine learning

algorithms to verify its effect. Experimental results show that

the accuracy of the multi-model neural network detection

method based on feature fusion reaches 98.92%, which is

better than other single-model feature methods.

The composite method has been discussed in the study of

Surendran et al. [19]. Through a script to detect malicious

systems using the Bayesian Tree (TAN) model, which is based

on dynamic and static features such as permissions and system

calls, it detects the harmful model by combining the results of

these two features taken from the segmentations. Moreover,

the text shows 95%, but it does not show the smartphone OS

version during the dynamic analysis. However, although the

hybrid analysis method has been shown to be more complex

and successful in the case of dynamic and static analysis, in

the end, feature selection remains the key to the detection ratio.

The method used in the study of Al Ali et al. [20] was used

to reach a detection ratio of 96. The compared the

characteristics of dynamic analysis using integration, structure

dimensions, and connectivity between components. They

concluded that the specifications extracted using the hull

dimensions were more significant than the other two.

3. PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal component analysis (PCA) is a multivariate

technique that analyzes a data table in which observations are

described by several inter-correlated quantitative dependent

variables. Its goal is to extract the important information from

the statistical data to represent it as a set of new orthogonal

variables called principal components, and to display the

pattern of similarity between the observations and of the

variables as points in spot maps [21, 22].

One of the most important features of PCA are:

Principal Components Analysis (PCA) aims to maximize

the variance in the data by creating new axes called principal

components. By selecting dimensions that capture most of the

data's variance, PCA retains important information while

reducing dimensionality, which is crucial in malware detection

to maintain feature distinctiveness for accurate classification.

PCA ensures that the new axes are orthogonal, meaning each

component captures a unique aspect of the data's variability,

resulting in a more concise representation of the original

features. Unlike other dimensionality reduction methods, PCA

offers consistency and minimizes redundancy or information

loss. While PCA assumes linear correlations among variables,

which may not always hold true, it is generally effective in

capturing the underlying data structure without significant loss.

Its computational efficiency and ease of use make PCA a

preferred choice for handling large datasets in malware

detection studies compared to methods like t-SNE or Isomap.

PCA delivers a coherent interpretation of the condensed

feature space via principal components, which represent linear

combinations of the original features. This interpretive

capability aids in analyzing feature significance and enhances

comprehension of the intrinsic data structure.

4. DYNAMIC AND STATIC ANALYSES

To identify malware, almost absolute majority of static

statistical methods and dynamical approaches are applied [23,

24]. Two detection approaches are available to the user with

static analysis: heuristic analysis, and signature-based

detection technique There are two different techniques in

antivirus software, which are very arguable among

programmers. As the signatures can only look for the patterns

of the know malware, they are no longer the ultimate way to

achieve the entire security. What is a contrast between the both

scenarios is in place. In the first scanner, it identifies risks

according to its specific purpose which is to spy malicious files

that are programs and deliver warnings when they are noticed.

Through the study of code’s traits and/or the way how the

form behaves. Users may consider code analysis as an

applicable option. Code structure examination involves

finding malicious code patterns by looking at the syntax of the

code as well as picking out how it is arranged. Alternatively,

string analysis entails activities such source code inspection

even for signs of malicious intent such as IP addresses,

encryption keys, or hardcoded URLs. During data analysis,

properties of files, like the size, creation date, and digital

signature have to be observed to find alterations that are

unlawful or might look like certain type of damage. An

additional method, that completes the analysis of the execution

code can find malicious and inappropriate behavior, like

including concealed functions and code obfuscation.

While sandboxing analysis means executing the binary in a

simulated environment for the purpose of seeing the trait

behaviors, code interactions with the system, and detection of

any network traffic that’s sniffy or suspicious activity.

The most prevalent dynamic analysis technique, similar to

static analysis, encompasses [25, 26]:

Runtime behavior appraisal is a process of checking the

activity of code or files to detect code(s) or files(s) that have

questionable or true malicious behaviors.

This includes, for instance, the unlawful revamping of the

system, the modifially of the file system or the monutring of

the network. API monitoring is a method of observation that

focuses on how the codes call the "Application Programming

Interfaces" (APIs) in order to detect any suspicious or severe

calls that are likely to be attempts to break in and cause damage.

Network traffic analysis is equivalent to taking a document

and reviewing the network traffic that may be related to the

operation of the code or the file itself. The targeted objective

is to trace and flag any transaction with confirmed fraudulent

websites, abnormal data transportation, or abnormally high

network activity. In contrast to static code analysis modality

which deals with looking closely at the written code for any

statistic malicious operations, dynamic code analysis extends

the objective to include thorough processes to point out

suspicious and hazardous experiences while the code is

running. System call monitoring implies monitoring system

calls of applications, and files made to the operating system in

order to stipulate malicious actions followed by the abnormal

or illegal system call. Sandboxing is a way that programs or

files are run in a virtual environment (sandbox) to observe its

reactions and maintain it separated from other entities, thereby

spoiling any possible harm in the main system.

The emulator and virtual machines reproduce runtime

environment of the target system in which the code or file is

executed. By this approach the analysts can see the behavior

of the code and its interactions with other applications /

515

components without affecting the host system. Implementing

these tools along allows to identify and categorize malicious

and plays an important role in the security of systems and

networks.

5. PROBLEM FORMULATION

In the protection phase, developers provide a trained model

for users to detect malware where the software is able to

independently reach a decision based on system predictions as

shown in Figure 3. Errors can lead to great risks for the user -

such as removing the phone's operating system. It is necessary

for the developer to choose a model family correctly. The

developer should use a robust affirmative training procedure

to achieve the ideal model with a high detection rate and

effective positive rate.

User machines that apply machine learning models make

decisions on their own. The quality of the machine learning

model affects the functioning of the user's system. For this

reason, machine learning-based malware detection has

specific characteristics.

Figure 3. Detection algorithm lifecycle using machine

learning [27]

Sample selection is based on the Zone-Alarm suite of

applications (for security applications). Originally, a batch of

270 good apps and 270 others with malicious behavior was

made to try to cover up a certain randomness.

The collection of cute apps has been chosen to try to be

diverse and reflect the different types of apps on the Play Store

app. It is also proportional to the number of samples present in

each type of application [28]. The following aspects were

taken into account when collecting mock samples:

a. Similar and different sized apps with the same name

and malware variants.

b. Different classifications according to the behavior of

those with the greatest impact: SMS Trojans, banks, root

extortionists, extortionists and criminals, adware and

malicious tools.

C. Different transactions within one malware package and

more than one package within a classification by pattern.

For the analysis, 6227 samples were selected from the same

repository, of which 4105 were infected and 2122 benign. In

addition, for the set of samples with detrimental behavior, at

least one variant from each bundle was detected in the system.

Drebin contains 7,220 samples of infected software owned by

319 malware packages. For the detection of recombinant

infected programs, 1912 samples of infected programs were

selected from the top 4 packages with the number of samples

in each package (Table 1) [29]. In addition, the specific

software has been changed to have multiple features such as

permissions and package names. Surprisingly, many

duplicates were found among the package names of

applications after analysis. It was concluded that about 68.19%

of the applications in the dataset share a number of repeated

package names, and therefore, the applications that share the

same package names were sorted.

The orderly compilation of smartphone operating system

applications can make a positive or negative change in the

application signature. Because of this, all applications that

share the same package names continue to have different hash

values, and therefore, it was necessary to create a more robust

signature technology. The primary goal in this part of the study

is to update an efficient signature mechanism so that about

95% of the samples with package names have identical

signatures. Then the hash of the class.dex file is developed for

all the open-source code obtained from the application, instead

of using the hash value calculation method [30].

A detailed report of applications shared in family names

shows that 90% of them use the same source code with minor

changes. Hash algorithms, such as SHA-115 and MD-516,

load from a file of random size and a fixed-length

cryptographic hash as a result. Computing a SHA-1 or MD-5

hash for two identical files will most of the time yield the same

result. Antivirus software stores up-to-date databases of MD-

5 and SHA-1 hashes of malware. In addition, a small

modification to the infected system causes a very large change

in the SHA-1 or MD-5 hashing process.

Table 1. Malware samples in the Drebin dataset from the top

4 packages

Malware Packet Samples

Kmin 147

FakeDoc 132

FakeInstaller 821

OpFake 363

Therefore, a new, more efficient hashing technique called

SSDeep hash was used, instead of calculating the source codes

of applications that share the same package names by SHA-1

or MD-5 algorithms. SSDeep is based on context driven

segmentation (CTPH) technology known as fuzzy

segmentation. CTPH is a new technology that improves the

effectiveness of similar file detection. Because of the fuzzy

hashes of two highly identical files, i.e. the original file and a

file with some minor changes, SSDeep hashes can give the

degree of similarity between two hashes. If there are any minor

degree changes in the cloned software and malware, a

similarity score can be obtained by comparing it to the

malware which is the ability to compare the similarity between

two algorithms [31].

Algorithm 1: Detect malware repackaged using Fuzzy hash

Input: FH = {h1, h2, h3…….hn} and APK

Output: Similarity-Score

1: hash SSDeepHash (APK)

2: for all i € FH do

3: Similarity SSDeepSim (i, hash)

4: if Similarity > threshold then

5: Return Similarity

6: end if

7: end for

516

8: Return 0

Algorithm 1 introduces a new approach based on fuzzy

hashing to detect repackaged malware. We assume that F is

the set of the top 4 bundles of the Drebin data set. We do the

reverse process of designing all applications in F to choose a

bunch of distinct package names such as DPN = {Pn1, Pn2,

Pn3, Pnn}. In addition, one application model is randomized

for each package name in the DPN, after that, we do a

mathematical operation to calculate the fuzzy hash using

SSDeep and put it into the FH matrix. In the end, a fuzzy hash

package of FH and an APK of F are obtained as input in

Algorithm 1, while the similarity ratio is chosen as the final

result.

First: Get the fuzzy hash value of the parent code of the

given APK (step 1).

Second: We compare the algorithm of the APK file with the

whole algorithm in FH with the help of SSDeep hash

comparison tool (step 3).

Third: If there is a similarity ratio greater than the threshold

value at any point, the APK file will be marked as a recompiled

infected program, and the similarity score will be returned

again. (Step 4-6).

Fourth: The value of zero is returned to the algorithm if

there is no similarity ratio higher than the minimum hash in

FH. A similarity ratio of 85% was set for the standard cut-off

for the trials [32].

As mentioned earlier, the technologies for detecting

malicious APK files are divided into dynamic and static

features. Dynamic analysis works with the pattern of the

running time of the programs at the time of their execution

compared to several specific experiments. Although the hard

side of the analysis is done at a non-running stage (as opposed

to) in terms of verifying the source code, analyzing metadata

and additional data about vulnerabilities. Dynamic analysis is

an accurate detection method because it involves detailed

analysis of applications, so it requires a high amount of money.

After executing the APK files, the analysis is performed [33,

34].

Static analysis consists of a very large set of techniques and

methods that aim to learn about the patterns and behavior of

the system runtime before implementing it. The main goal of

increasing security is to separate applications that will be

recompiled from malware before execution and installation

processes [35].

6. METHODOLOGY

In this section, we discuss our approach to developing a

malware detection model based on the analysis of effective

and early system calls coupled with evaluation by an

application.

The model proposed in the study of Zhu et al. [33].

Detection percentage with reduced passes based on enhancing

validity features. As we conclude from the Per-DRaML

detection system based on the proposed scheme using

permissions from the applications themselves and their

applications, Per-DRaML targets a set of specific permissions

enhanced in improving the percentage of detection of

dangerous programs, rather than analyzing all required

permissions. Random Forest algorithms, Support Vector

Machine (SVM) and Rotation Forest classifiers were used for

classification. Based on the perceived effect on the detection

effectiveness of systems and malware, we will select a set of

powers. We will discuss some important issues in this paper:

1. Packets of benign and malignant specimens.

2. Build/define the feature set.

3. Key Features (dataset) Inference, Filter and Finalize.

4. Classification of Android malware using moderated

eLearning algorithms.

6.1 Packets of benign and malignant specimens

A set of Android applications has been selected from two

different groups of android families, benign and malicious.

Virus-Share (about 7,000) malicious apps have been

aggregated into an Android malware database

(http://virusshare.com/, December 25, 2022). Virus-Share's

database identifies application packages from different

malware packages at different dates and is available to all as

archived and compressed files. These files can be obtained

using any torrent's user. A bunch of benign apps (about 7000)

were also selected from the official app site (Google Play and

Apple Store) using the Python language implementation.

Innocent APKs are selected from different Play Store app

ratings to increase diversity in the dataset. The total APK files

are 14,000 samples, each classification has 7,000 samples.

Training data is used to evaluate the effectiveness of the

current model, while samples are used to perform validations.

6.2 Build/define the feature set

In the first stage, classifier schemas are built and classified

in the selection of key permissions based on the data set. The

permissions and features required by the app are obtained in

the form of an app package such as: APK and Manifest.xml

files. To obtain the required validity, the Andro-guard

algorithm is adopted to unpack 14,000 application samples for

the required data bundle. Different classifications of

permissions used to create the feature set package, such as

small application sizes and permission ratio, have been

selected to perform consistent analysis and understanding of

the style of each application from the selected packages [34].

6.3 Key Features (dataset) inference, filter and finalize

This pane shows the most important permissions that can be

used to separate apps from benign and malicious apps. Google

Systems and Zhu et al. [33] were able to extract the list of

dangerous permissions. To identify the main permissions

important for malware detection, several permissions, as

shown in Table 2, were presented as illustrative samples. It is

noted from the table that Zhu et al. Google permissions are

integrated to be evaluated while using an exclusive feature

called Permission Ratio [35, 36].

Figure 4 shows the proposed Per-DRaML model, which

demonstrates filtering of APKs parameter specification for a

dataset and packages, de-compilation and refactoring.

6.3.1 Enhanced permissions package

First the permissions that have a weak impact on detection

are obtained to determine the minimum value of the number

of permissions required. To this end, we used a dataset from

Google's permissions list (from Table 2) documenting the

functionality and importance of the feature. Feature

significance is the metric that leads to the creation of simpler,

more efficient prediction recipes using less data. When the

feature significance of the Random Forest model is used, some

517

significant powers are shown (Table 2). We set a threshold

standard of 0.7 to choose the feature that has the most impact

by avoiding permissions that have a significance of less than

0.7. Where the most important validity models were identified,

based on a set of different feature set samples. As shown in

Table 3.

Table 2. Permissions risky feature and its significance by

Google - G and Zhu et al. - R with exceptional standards

S. No. Features Importance % Source

1 READ_PHONE_STATE 0.42674 G

2 Permission rate 0.30376 R

3
WRITE_EXTERNAL_S

TORAGE
0.07948 G + R

4

ACCESS_

APPROXIMATE

_LOCATION

0.06323 G

5 RECORD_AUDIO 0.02923 G

6
READ_EXTERNAL_ST

ORAGE
0.02588 G

7 CAMERA 0.02024 G

8 RECEIVE_SMS 0.02019 G + R

9 READ_SMS 0.00843 G

10 READ_ADDRESS 0.00650 G

11 WRITE_CALL_LOG 0.00079 G

12
UPDATE_DEVICE_ST

ATS
0.00016 G + R

13
READ_HISTORY_BOO

KMARKS
0.00003 G + R

14
WRITE_HISTORY_BO

OKMARKS
0.00000 G + R

Figure 4. Diagram of specification generation, dataset

generation, and filtering for malicious and benign APKs

Table 3. Proposed models of the features of the specified

parameters

Type No. Name

Permissions

1
Android. Permission.

WRITE_EXTERNAL_STORAGE

2
Android. Permission.

READ_PHONE_STATE

3
Android. Permission. ACCESS_

APPROXIMATE _LOCATION

Standards
1 Small Size
2 percentage validity

6.3.2 Designed dataset

Permission packets are converted into a binary dataset so

that '1' is the program granting validity, and '0' denotes no

validity. Permission models selected from a few benign and

malicious applications, represented binary, are combined to

design a single comprehensive dataset for analysis.

6.4 Classification of android malware using

moderated machine learning algorithms

Supervised machine learning assessments were used in this

part, which can detect dangerous programs with the least

amount of positive error value. The general plan of the current

model is divided into two categories; The first consists of a

standard in which supervised trainees are trained and validated

using datasets with different machine learning algorithms, and

the second category is validity feature inference. As mentioned

earlier, the data set used consists of 14,000 samples consisting

of 7,000 samples of each type. A similar training method and

testing algorithm was applied in experiments as Zhu et al. [33,

35].

7. PERFORMANCE EVALUATION

Standard evaluation criteria are described: accuracy,

sensitivity and Receiver Operating Characteristic (ROC) curve.

Where we review later the formulas and their definitions [36].

Confusion matrix consisting of four criteria are: true

positive (TP), true negative (TN), false positive (FP), and false

negative (FN).

To analyze the results of the model framework used, we

used the following criteria:

1) Accuracy: This is the percentage of correctly selected

APKs.

Accuracy =
𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + TP + 𝑇𝑁
 (1)

2) Precision: is the number of correctly predicted phishing

APKs.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

3) Recall: is the collection of phishing APKs that have been

segmented and validated.

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

4) F scale: is the weighted harmonic average of test

accuracy and recall. At value 1 it will be positive and at value

0 it will be negative.

F1 =
2 × Precision × Recall

Precision + Recall
 (4)

We trained our model using 4 phases, and reported the

results for each phase as shown in Table 4.

The standard of performance of malware detection systems

can be increased either by improving certain powers and

features or by improving data collection. Where the high

performance is to choose important permissions of the

518

proposed method, they are influential figures considered in the

literature. The application needs to obtain the permission of

the user to perform the necessary activities. The proposed

model aims to evaluate performance in the careful selection of

data set samples. Additionally, this model was trained and

validated on a large dataset, around 14,000 APK files were

used as samples, obtained from places as diverse as virus

sharing and application web sites. It has recently been

observed that the current model achieves a similar detection

ratio in the Rotation Forest and SVM algorithms using the

given current powers, when compared to the results obtained

from standard methods as shown in Table 3. To achieve high

detection accuracy can Classifiers help reduce the number of

batches being reserved, furthermore, reduce computational

overhead, and can become a cost-effective solution for

malware detection [33].

Table 4. The results of the training phase over several time

stages

Stage Time Accuracy Loss

1 189s 0.8442 0.3562

2 188s 0.8889 0.2709

3 186s 0.9012 0.2415

4 184s 0.9151 0.2104

Figure 2 shows the percentage of malware data packets that

fall within the classifications shown.

Figure 5. Percentage ratings of malware samples

The Figure 5 shows that 90% of the malware samples were

effectively identified as malware (6,132/ 6,648) in the fourth

type (9≤score≤10), and the malicious type almost reached 1%

with the use of 52 samples belongs to this type. Regarding the

latter two types, only 1% of the samples were rated as almost

reliable (52/6075) and another 1% as almost reliable (67/630).

582 files, i.e. 7% of the data packets (391/5,560) were not

parsed. 1210 files of type IV (malware type, 9≤score≤10) were

given a score equal to 10, which is the highest end of the

malware classification according to the Andrubis study [32].

8. CONCLUSIONS

While mobile malware continues to pose a persistent threat

to Android users, the increasing integration of smartphones

into our daily lives underscores the critical need for robust

security measures. Therefore, the development of novel and

effective malware detection technologies should be prioritized.

In this study, we evaluated various metrics and criteria,

including malware detection rates, resource utilization,

machine learning schemes, and extracted models for analysis,

to assess the efficacy of malware detection technologies. We

compared and analyzed techniques and models from previous

research, considering factors such as unknown malware

detection, which was not part of the training set.

Our approach involved a multilevel model, where we

initially identified and inferred significant features from a

dataset comprising 14,000 application samples. We utilized

various machine learning frameworks to classify applications

as benign or harmful. Through a series of experiments, our

proposed model demonstrated significant enhancements in

predictive features and the identification of harmful

applications.

Moreover, our model offers a cost-effective alternative for

detecting malware in smartphone operating systems,

particularly malicious or recompiled applications. However, it

is essential to acknowledge the limitations of our research,

such as the need for further investigation into addressing

unknown malware detection and refining the feature selection

process.

REFERENCES

[1] Bai, H.P., Xie, N.N., Di, X.Q., Ye, Q. (2020). Famd: A

fast multifeature Android malware detection framework,

design, and implementation. IEEE Access, 8: 194729-

194740.

https://doi.org/10.1109/ACCESS.2020.3033026

[2] Atacak, I. (2023). An ensemble approach based on fuzzy

logic using machine learning classifiers for android

malware detection. Applied Sciences, 13(3): 1484.

https://doi.org/10.3390/app13031484

[3] Chopra, R., Acharya, S., Rawat, U., Bhatnagar, R. (2023).

An energy efficient, robust, sustainable, and low

computational cost method for mobile malware detection.

Applied Computational Intelligence and Soft Computing,

2023: 2029064. https://doi.org/10.1155/2023/2029064

[4] Niu, W.N., Wang, Y.H., Liu, X.Y., Yan, R., Li, X.,

Zhang, X. (2023). GCDroid: Android malware detection

based on graph compression with reachability

relationship extraction for IoT devices. IEEE Internet of

Things Journal, 10(13): 11343-11356.

https://doi.org/10.1109/JIOT.2023.3241697

[5] Mobile Operating System Market Share

Worldwide|Statcounter Global Stats—

gs.statcounter.com. https://gs.statcounter.com/os-

market-share/mobile/worldwide, accessed on Aug. 22,

2023.

[6] Oh, T., Stackpole, B., Cummins, E., Gonzalez, C.,

Ramachandran, R., Lim, S. (2012). Best security

practices for android, blackberry, and iOS. In 2012 The

First IEEE Workshop on Enabling Technologies for

Smartphone and Internet of Things (ETSIoT), Seoul, pp.

42-47. https://doi.org/10.1109/ETSIOT.2012.6311252

[7] Mobile Cyberthreat Report for 2022—securelist.com.

https://securelist.com/mobile-threat-report-

2022/108844/, accessed on Aug. 22, 2023.

[8] Ren, Y.J., Leng, Y., Cheng, Y.P., Wang, J. (2019).

Secure data storage based on blockchain and coding in

edge computing. Mathematical Biosciences and

Engineering, 16(4): 1874-1892.

https://doi.org/10.3934/mbe.2019091

[9] Detecting and Eliminating Chamois, a Fraud Botnet on

Android—Android-developers.googleblog.com.

519

https://android-

developers.googleblog.com/2017/03/detecting-and-

eliminating-chamois-fraud.html, accessed on Aug. 22,

2023.

[10] Malware Statistics & Trends Report|AV-TEST—av-

test.org. https://www.av-test.org/en/statistics/malware/,

accessed on Aug. 22, 2023.

[11] Kouliaridis, V., Kambourakis, G. (2021). A

comprehensive survey on machine learning techniques

for android malware detection. Information, 12(5): 185.

https://doi.org/10.3390/info12050185

[12] Chen, Y.C., Chen, H.Y., Takahashi, T., Sun, B., Lin, T.

(2021). Impact of code deobfuscation and feature

interaction in Android malware detection. IEEE Access,

9: 123208-123219.

https://doi.org/10.1109/ACCESS.2021.3110408

[13] Alabrah, A. (2023). A novel neural network architecture

using automated correlated feature layer to detect

Android malware applications. Mathematics, 11(20):

4242. https://doi.org/10.3390/math11204242

[14] Tarwireyi, P., Terzoli, A., Adigun, M.O. (2022).

BarkDroid: Android malware detection using bark

frequency cepstral coefficients. Indonesian Journal of

Information Systems, 5(1): 48-63.

https://doi.org/10.24002/ijis.v5i1.6266

[15] Fan, M., Liu, J., Luo, X.P., Chen, K., Tian, Z.Z., Zheng,

Q.H., Liu, T. (2018). Android malware familial

classification and representative sample selection via

frequent subgraph analysis. IEEE Transactions on

Information Forensics and Security, 13(8): 1890-1905.

https://doi.org/10.1109/TIFS.2018.2806891

[16] Fatima, A., Kumar, S., Dutta, M.K. (2020). Host-server-

based malware detection system for android platforms

using machine learning. In Advances in Computational

Intelligence and Communication Technology, vol 1086.

Springer, Singapore, pp. 195-205.

https://doi.org/10.1007/978-981-15-1275-9_17

[17] Cai, H.P., Jenkins, J. (2018). Poster: Towards sustainable

android malware detection. In 2018 IEEE/ACM 40th

International Conference on Software Engineering:

Companion (ICSE-Companion), Gothenburg, Sweden,

pp. 350-351. https://doi.org/10.1145/3183440.3195004

[18] Fang, Z., Liu, J., Huang, R.B., Chen, P., Li, X., Chen, X.

(2021). Research on multi-model android malicious

application detection based on feature fusion. In 2021 4th

International Conference on Robotics, Control and

Automation Engineering (RCAE), Wuhan, China, pp.

147-151.

https://doi.org/10.1109/RCAE53607.2021.9638928

[19] Surendran, R., Thomas, T., Emmanuel, S. (2020). A

TAN based hybrid model for android malware detection.

Journal of Information Security and Applications, 54(3):

102483. https://doi.org/10.1016/j.jisa.2020.102483

[20] Al Ali, M., Svetinovic, D., Aung, Z., Lukman, S. (2018).

Malware detection in Android mobile platform using

machine learning algorithms. In 2017 International

Conference on Infocom Technologies and Unmanned

Systems (Trends and Future Directions) (ICTUS), Dubai,

United Arab Emirates.

https://doi.org/10.1109/ICTUS.2017.8286109

[21] Cai, H.P., Meng, N., Ryder, B., Yao, D. (2019). DroidCat:

Effective Android malware detection and categorization

via app-level profiling. In IEEE Transactions on

Information Forensics and Security, 14(6): 1455-1470.

https://doi.org/10.1109/TIFS.2018.2879302

[22] Cao, K.L., Welham, Z.M. (2021). Principal component

analysis (PCA). Multivariate Data Integration Using R,

Chapman and Hall/CRC.

https://doi.org/10.1201/9781003026860-12

[23] Uddin, M.P., Mamun, M.A., Afjal, M.I., Hossain, M.A.

(2020). Information-theoretic feature selection with

segmentation-based folded principal component analysis

(PCA) for hyperspectral image classification.

International Journal of Remote Sensing, 42(1): 286-321.

https://doi.org/10.1080/01431161.2020.1807650

[24] Alsadi, A.A., Sameshima, K., Bleier, J., Yoshioka, K.,

Lindorfer, M., Eeten, M.V., Gañán, C.H. (2022). No

spring chicken: Quantifying the lifespan of exploits in

IoT malware using static and dynamic analysis. In

Proceedings of the 2022 ACM on Asia Conference on

Computer and Communications Security, 309-321.

https://doi.org/10.1145/3488932.3517408

[25] Costa, F.H., Medeiros, I., Menezes, T., Silva, J., Silva,

I.L., Bonif'acio, R., Narasimhan, K., Ribeiro, M. (2021).

Exploring the use of static and dynamic analysis to

improve the performance of the mining sandbox

approach for android malware identification. Journal of

Systems and Software, 183: 111092.

https://doi.org/10.1016/j.jss.2021.111092

[26] Gera, T., Singh, J., Faruki, P., Thakur, D. (2022).

Efficacy of Android security mechanisms on

ransomware analysis and detection. AIP Conference

Proceedings, 2357(1): 040007.

https://doi.org/10.1063/5.0080931

[27] Amer, E., Mohamed, A. (2022). Using machine learning

to identify android malware relying on API calling

sequences and permissions. Journal of Computing and

Communication, 1(1): 38-47.

https://doi.org/10.21608/jocc.2022.218454

[28] Ashmore, R., Calinescu, R., Paterson, C. (2021).

Assuring the machine learning lifecycle: Desiderata,

methods, and challenges. ACM Computing Surveys,

54(5): 1-39. https://doi.org/10.1145/3453444

[29] Pasdar, A., Lee, Y.C., Hong, S.H. (2023). Catch the

Intruder: Collaborative and Personalized malware

detection by on-device application fingerprinting. In

2023 IEEE International Conference on Web Services

(ICWS), Chicago, IL, USA, pp. 595-604.

https://doi.org/10.1109/ICWS60048.2023.00078

[30] Razgallah, A., Khoury, R., Hallé, S., Khanmohammadi,

K. (2021). A survey of malware detection in Android

apps: Recommendations and perspectives for future

research. Computer Science Review, 39: 100358.

https://doi.org/10.1016/j.cosrev.2020.100358

[31] Sihag, V., Vardhan, M., Singh, P. (2021). A survey of

android application and malware hardening. Computer

Science Review, 39: 100365.

https://doi.org/10.1016/j.cosrev.2021.100365

[32] Wang, S.S., Yan, Q.B., Chen, Z.X., Yang, B., Zhao, C.,

Conti, M. (2017). Detecting Android malware leveraging

text semantics of network flows. IEEE Transactions on

Information Forensics and Security, 13(5): 1096-1109.

https://doi.org/10.1109/TIFS.2017.2771228

[33] Zhu, H.J., You, Z.H., Zhu, Z.X., Shi, W.L., Chen, X.,

Cheng, L. (2018). DroidDet: Effective and robust

detection of android malware using static analysis along

with rotation forest model. Neurocomputing, 272: 638-

646. https://doi.org/10.1016/j.neucom.2017.07.030

520

[34] Google Play Python API. (2021)

https://github.com/fahadakbar24/google-play-api,

accessed on Aug. 22, 2023.

[35] Malware Dataset. (2021)

https://github.com/fahadakbar24/android-malware-

detection-dataset, accessed on Aug. 22, 2023.

[36] Androguard: Reverse Engineering, Malware Analysis of

Android Applications. (2021) Available online:

https://github.com/androguard/androguard, accessed on

Aug. 22, 2023.

521

