
An Arabic OCR Approach Using Levenshtein Distance and CNNs

Walid Fakhet1 , Salim El Khediri2* , Salah Zidi1

1 Laboratory Hatem Bettaher (IRESCOMATH), National School of Engineers of Gabes, Gabes 6029, Tunisia
2 Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia

Corresponding Author Email: s.elkhediri@qu.edu.sa

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290102 ABSTRACT

Received: 24 October 2023

Revised: 24 November 2023

Accepted: 8 December 2023

Available online: 27 February 2024

Arabic Handwritten Character Recognition (AHCR) systems encounter various challenges

arising from the unique characteristics of the Arabic language and the limited availability

of public databases. Consequently, numerous research endeavors have aimed to enhance

the recognition accuracy of AHCR. In this study, we propose a solution inspired by the

intricate functions of the human visual cortex and hippocampus. Our proposed system

employs a segmentation method to break down Arabic characters, and a Convolutional

Neural Network (CNN) is then utilized for character recognition. To recognize entire words,

we employ the Levenshtein distance with a personalized database containing an extensive

collection of Arabic words. Experimental results demonstrate that our system yields a word

error rate ranging from 1% to 25%, contingent upon the number of accurately recognized

characters.

Keywords:

AHCR, Convolutional Neural Network,

Levenshtein distance, Jaccard distance,

OCR

1. INTRODUCTION

In the contemporary digital era characterized by abundant

and readily accessible information, the significance of Optical

Character Recognition (OCR) technology cannot be

overstated. OCR has transformed the conversion of text from

printed or handwritten images and scanned documents into

machine-readable text, facilitating seamless digitization,

enhanced search capabilities, and analytical processes. While

OCR has found extensive application in languages based on

the Latin script [1-3], its implementation in the context of the

rich and intricate Arabic script poses distinctive challenges

and opportunities.

The Arabic language stands as a rich and ancient Semitic

language that has profoundly shaped the history, culture, and

progress of the Middle East and North Africa [4, 5]. Boasting

over 300 million native speakers [6], Arabic stands as one of

the most globally spoken languages, carrying substantial

significance in diverse domains such as literature, religion,

science, and diplomacy [7]. Nevertheless, the intricacy of

Arabic poses a formidable challenge for accurate character

recognition, as illustrated in Figure 1.

Figure 1. Arabic alphabet

Arabic OCR emerges as a solution to unlock the vast

potential hidden within manuscripts, historical documents, and

printed materials, offering a bridge between the traditional and

the digital.

The intricate nature of the Arabic script introduces

challenges that set Arabic OCR apart from its Latin

counterparts [8-10]. Key challenges include cursive

complexity, diacritics, ligatures, contextual variations, and

style variability.

In the human brain, information about words is stored in a

distributed manner across various regions associated with

language processing [11-13] as shown in Figure 2. For

example, the word “مدرسة” might be presented in the brain as

follows:

Visual Cortex: When you see the written word " مدرسة ”, the

visual information is processed by the visual cortex at the back

of our brain. The shape and appearance of the letters " م "," د ","

","ر س " and "ة" are recognized and processed here.

Fusiform Gyrus: The fusiform gyrus, located in the

temporal lobe, is responsible for recognizing and processing

visual objects, including familiar objects like cats. So, the

visual representation of a cat as a whole is stored in this region.

Wernicke's Area: As mentioned earlier, Wernicke's area,

located in the left hemisphere, is involved in understanding

and processing language. The word " مدرسة " is associated with

its meaning and semantic representation here. When we read

or hear the word " مدرسة ," Wernicke's area helps us

comprehend its meaning and relate it to the concept of a furry,

four-legged animal.

Broca's Area: If we are thinking about saying the word "

 aloud, Broca's area comes into play. It is involved in " مدرسة

the production of speech and helps us retrieve the appropriate

sounds and motor patterns needed to say the word " مدرسة " out

Ingénierie des Systèmes d’Information
Vol. 29, No. 1, February, 2024, pp. 9-17

Journal homepage: http://iieta.org/journals/isi

9

https://orcid.org/0000-0002-4682-6938
https://orcid.org/0000-0002-9765-1605
https://orcid.org/0000-0002-4330-6072
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290102&domain=pdf

loud.

Figure 2. The human brain

Hippocampus: The hippocampus plays a vital role in

forming and storing memories, including memories of words.

It helps with the consolidation of new information into long-

term memory. So, when we learn the word " مدرسة " for the

first time, the hippocampus helps encode and store that

memory.

Association Areas: Various association areas in the brain

help link the word " مدرسة " with related information and

experiences.

The word " مدرسة " is represented by a distributed network

of interconnected brain regions that work together to process

its visual form, meaning, and associations. As you encounter

and use the word more frequently, the connections between

these brain regions strengthen, making it easier to recall and

use the word " مدرسة " in various contexts.

The method presented in this article draws inspiration from

the functionality of the visual cortex and the Hippocampus

areas. In an effort to emulate these concepts, we sought to

recognize Arabic words by employing a dictionary containing

an extensive array of words, mimicking the role of the

Hippocampus. To replicate the visual cortex's functionality,

we implemented a segmentation method to break down a word

into characters and utilized a Convolutional Neural Network

(CNN) model for character recognition.The rest of this paper

is structured as follows: Section 2 provides an introduction to

the research background. The proposed methodology is

outlined in Section 3. Experimental results are thoroughly

examined in Section 4. The conclusion, along with future work,

is presented in Section 5.

2. RELATED WORKS

This section is divided into two subsections: In Sec 1, we

discuss some solutions for OCR segmentation. In Sec 2 we

present some applied CNN models for AHCR.

2.1 Segmentation for AHCR

Segmenting characters plays a crucial role in the initial

processing stages of character recognition within numerous

OCR systems. As a result, various segmentation techniques

are employed to divide Arabic characters effectively.

Najoua and Noureddine [14] introduced a technique based

on histogram analysis. The proposed method involves several

sequential steps: recognizing text lines, dividing text lines into

sections of Arabic words (PAW), isolating each PAW into

connected components, determining approximate boundaries

of various characters within the PAW, computing the

maximum count of black segments in a line of pixels,

extracting primitives, and employing an error checker to

identify segmentation errors. The effectiveness of this method

was assessed using the Arabic fonts "Nakesh," "Bagdadi," and

"Mehdi," yielding accuracy results ranging from 99% to 100%.

Another use of the histogram technique by Amin and

Masini [15] where the authors proposed a segmentation

method using horizontal and vertical projections. The

proposed method achieved a recognition rate of 85% for the

characters and 95% for the words.

Several approaches have been developed employing

contour tracing to address character segmentation challenges.

In Sari et al. [16], the authors utilized contour representation

to identify segmentation points by applying rules to the local

minima of the lower contour for each subword. The achieved

recognition rate on a dataset of 100 words was 86%.

Margner [17] developed a segmentation approach relying

on the contour of the primary body of words. Initially, the top

contour's start and end points are identified. Subsequently, the

upper contour is partitioned into sections with consistent

curvatures. Finally, a horizontal line detector is employed to

dismiss these lines as irrelevant for the recognition process.

This segmentation method demonstrated a recognition rate of

99% for characters without dots and 96.9% for characters with

dots.

In their work, Hamid and Haraty [18] applied a neuro-

heuristic approach for text line segmentation in Arabic

Handwritten script. The identification of potential

segmentation points involved a search for topographical

elements. The subdivision of these points relied on the average

block width of the letters. Through this method, they attained

an accuracy of 69.72%.

2.2 CNNs for AHCR classification

Lately, numerous studies have delved into the application

of Convolutional Neural Networks (CNNs) in Arabic

handwriting recognition. This section offers an overview of

various CNN models employed in the context of recognizing

Arabic handwritten characters.

In the work by El- Sawy et al. [19], a CNN model was

introduced for the classification of Arabic handwritten

characters. The employed CNN model comprises two

convolution layers with a Rectified Linear Unit (RELU)

activation function, a pooling layer with a 2x2 window size,

and a fully connected layer housing 1024 neurons. The model

was evaluated on their proprietary dataset (AHCD), yielding a

commendable recognition rate of 94.9%.

Another use of the CNN model by Younis [20], used a CNN

model with regularization parameters to prevent overfitting.

The author used the AHCD and AIA9K datasets to test the

proposed model, and the accuracy rate was 97.6% and 94.8%

respectively. In this study, the author mentioned that the

morphological similarity between the Arabic characters

affected the recognition rate of the proposed model.
Elkhayati and Elkettani [21] employed a unique architecture

incorporating a fully connected layer (FCL) divided into two
distinct blocks: conscious blocks (CB) and unconscious blocks

10

(UB). These blocks, separated from each other, are fully
connected to the output layer. The researchers evaluated their
approach using four benchmark databases: IFHCDB, AHCD,

AIA9K, and HACDB. The achieved recognition rates for these
databases were 98.4%, 98.7%, 96.1%, and 95.4%, respectively.

Table 1. Comparison table of Arabic Segmentation techniques

Author Character Recognition Method Scope of Application Database Size Accuracy

Najoua and

Noureddine [14]
Histogram techniques Multi-font Arabic text printed 1000 words 99%

Amin and Masini

[15]

Horizontal and vertical projections

and shape primitives
Multi-font Arabic text Printed 100 multi-font words 95%

Sari et al. [16] Contour presentation Dataset of 100 words 86%

Margner [17] Contour detection Printed Arabic text
4110 Printed Arabic

characters

99% without dots

96.9% with dots

Hamid and Haraty

[18]

Feed-forward multilayer neural

networks
Arabic Handwritten Characters

Arabic handwritten-10,000

exemplars
69.72%

Table 2. Comparison table of Arabic Recognition methods

Author Model Database Accuracy

El-Sawy et al. [19] CNN AHCD 94.9%

Younis [20] CNN
AHCD

AIA9K

97.6%

94.8%

Elkhayati and Elkettani [21] CNN

IFHCDB

AHCD

AIA9K

HACDB

98.4%

98.7%

96.1%

95.4%

Fakhet et al. [22] CNN HACDB 98%

Ahamed et al. [23] CNN Personal database 99.76%

In Fakhet et al. [22], a recognition system was proposed

based on the similarity of Arabic characters. To build the

similarity vector, a CNN model was used with the help of a

confusion matrix. The model was tested with the HACDB

dataset and achieved a recognition rate of 98%.

Ahamed et al. [23], the authors proposed a CNN model to

recognize handwritten Arabic numbers based on the work of

Ashiquzzaman and Tushar [24]. The authors used a personal

handwritten Arabic numerals dataset with 72,000 images. The

recognition rate achieved by the proposed model was 99.76%.

Most methods in the literature segment all words into

characters then use a recognition system (CNN, SVM,) to

recognize the words. These methods give more or less

acceptable results despite the large number of segmentation

and recognition of each character. in this study we propose a

method which reduces the number of segmentation and

recognition of characters.

3. PROPOSED METHOD

In this Section, the new Arabic OCR Approach is presented.

we will work on the “segmentation” phases and the

“classification” phase. Most of the errors that occur in an OCR

exist at the level of these two phases, so we propose to reduce

the number of times of segmentation and classification.

The solution we propose consists of segmenting the

characters of a word and then recognizing some characters,

then using a knowledge base that contains a set of words in

text format, we calculate a distance between the characters

recognized by the model and the words that exist in the

knowledge base. To calculate the distance between words, two

distances are considered: The Levenshtein distance and the

Jaccard distance. In our study, we tested the two methods to

get out with the best distance to use. In Table 1 and Table 2 a

summary of all related works surveyed in this section.

3.1 Levenshtein distance

The Levenshtein distance [25] is a mathematical measure

representing the dissimilarity between two character strings. It

corresponds to the minimum number of operations required-

whether deletion, insertion, or replacement-to transform one

string into another. The Levenshtein distance can be viewed as

a broader concept encompassing the Hamming distance (Eq.

(1)).

𝑙𝑒𝑣𝑎,𝑏

=

{

max(𝑖, 𝑗) 𝑖𝑓 min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1𝑎𝑖≠𝑎𝑗

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

The Levenshtein distance is the number of deletions,

insertions, or replacements required to transform a string ‘A’

to the string ‘B’. As shown in Figure 3, to calculate the

distance between the word “ ت---جم-ا ” (the word to be

recognized by our system) and the word “الجمعيات” (the word

existing in the knowledge base) a large number of insertions,

deletions and replacements are effectuated. The last number in

the matrix presents the distance between the two words. The

word “الجمعيات” is closer to the word that will be recognized

than the word “جماعات”.

3.2 Jaccard distance

Typically, the Jaccard similarity coefficient (or index) [26]

is employed to assess the similarity between two sets. For sets

A and B, the Jaccard index is defined as the ratio of the size of

their intersection to the size of their union, as expressed in Eq.

(2):

11

𝐽(𝐴, 𝐵) =
𝐴𝐵

𝐴𝐵
 (2)

These equations were used to calculate the similarity

between the segmented word and all the words that exist in the

knowledge base. If the similarity value is equal to 1 (0 for Eq.

(1)) this means that the word searched exists in the knowledge

base. Else, if the similarity value is less than 1 (less than the

number of recognized characters for Eq. (1)) this means that

the searched word doesn’t exist in the base, so we need to

recognize some other characters. To reduce the search space

of words, we divided the knowledge base into multiple file

texts, and each file text contains a set of words belonging to

previously predefined context. The algorithmic complexity of

Jaccard distance in the worst case is O(N2), where N is the

number of words in a file text. For Levenshtein distance the

algorithmic complexity between two words is O(|A|x|B|).

3.3 Knowledge base

The knowledge base contains a large number of words, it

consists of a vocabulary base for our model. We built the

knowledge base from Arabic texts collected from websites,

press articles, and other existing vocabulary databases on the

Internet. We have divided the Knowledge base into contexts

as shown in Figure 3, each context contains a set of words that

belong to this context (Table 3). The contexts used in our study

are sports, religion, economics, and politics.

The purpose of dividing the knowledge base into contexts

is to decrease the search space of a word in a context.

To build the knowledge base, we used JAVA code that

allows us to read RSS feeds from a website. Articles read from

RSS feeds are saved in text files after removing images and

non-Arabic characters. We used five text files depending on

the number of contexts we have chosen (Figure 4). To simplify

working with files, each word is written in a separate line, so

we kept only one occurrence for each word to reduce file size.

Table 3. Sample of words from the database

Sports Religion Economics Politics

 الوطن المنشآت الل الرياضية

 المؤسسات لمشروع رسول المنتخبات

 الاجراءات المجالات الجلالة البطولة

 للمنظمات المؤسسين صَلَّى الدوري

Figure 3. Example of Levenshtein distance calculation

Figure 4. Structure of the new database

12

3.4 Presentation of the approach

3.4.1 Segmentation

Sometimes we can read a word despite the characters not

being in the correct positions, so we ask the question of how

our brain can read these types of words and not pay attention

that the characters are not in their true positions. The

explanation that we came up with, is that our brain does not

recognize all the characters of a word but only recognizes a

few characters as Figure 5 illustrates, then using a dictionary

(a knowledge base) that presents the vocabulary learned by a

person during his life, it compares the characters recognized

with the words that exist in the vocabulary base to find the

appropriate word (Figure 6).

This research introduces a novel algorithm designed for the

recognition of Arabic texts. The algorithm's steps are

delineated in the following pseudo-code:

(1) Input word image

(2) Segment the word into characters

(3) Recognize some characters

(4) Find the closet word to the recognized characters by

applying a distance (Levenshtein, Jaccard)

(5) Return the result

The proposed algorithm starts by segmenting the image

containing a word into characters, we used the method in the

work [14] to segment the words. After segmentation, we

randomly chose a number of characters (less than the length of

the word) to recognize them, we used a CNN model to

recognize the characters, so we used the AHDC database to

train this model. Then, a distance is used to calculate the

similarity between the characters obtained in the segmentation

phase and the words that exist in the vocabulary base. Finally,

we display the word that has the greatest similarity measure, if

the similarity measure is not so sufficient, we can go back to

step 3 and recognize another character to improve the

similarity measure. Figure 7 shows an example application of

the algorithm to an Arabic word.

3.4.2 CNN architecture

The depicted CNN model in Figure 8 proposes three

convolutional layers aimed at extracting pertinent features

from the image. The initial convolutional layer employs a 3×3

kernel, yielding a feature map size of 32×32, succeeded by a

max pooling layer resulting in a feature map of 16×16. This

ensures effective low-level feature extraction. The second

convolutional layer encompasses a feature map of 16×16 and

a max pooling layer with a 2×2 size, producing a feature map

of 8×8. Finally, the third convolutional layer incorporates

feature maps of 8×8, followed by a max pooling layer yielding

a feature map size of 4×4. To mitigate overfitting, a dropout

of 50% was introduced.

Since the position of the characters is important in the

Levenshtein distance, we keep the position of the characters

by using the number of characters obtained during the

segmentation phase.

Figure 5. Our Perception of how the human brain recognizes words

Figure 6. The proposed CNN architecture

13

Figure 7. Sample of the proposed system

Figure 8. The proposed system

4. EXPERIMENT

4.1 Experimental settings

The system we developed uses the AHCD dataset to train

the CNN model to recognize Arabic characters. The AHCD

database is a database that contains 13622 images divided into

a test part and a training part. Thus, our system uses the

vocabulary base that we have created. The database is built

from 5 text files that present the 5 contexts that we choose to

work with.

The experiments are performed on an Intel® Core™ I5-

10300H processor and 16GB RAM. The operating system is

WINDOWS 10 64-bit.

4.2 Experimental results

In our experiments, we employed the Word Error Rate

(WER) to assess the performance of our system, calculated

using the Eq. (3):

WER =
m

n
 (3)

where, m is the total number of words recognized correctly by

our system and n is the total number of words existing in a

golden file to evaluate the system performance.

To evaluate our system, we used several parameters as

presented in Table 4 we tested the impact of the number and

the position of the recognized characters on the result. We see

that the number of characters affects the result, so the position

of the recognized characters can affect the result. The result

demonstrates that the Levenshtein distance gives better results

than the Jaccard distance.

Figure 9 presents the evolution of the word error rate

compared to the number of recognized characters; we see that

14

the Levenshtein distance gives better results than the Jaccard

distance when the number of recognized characters is bigger.

Figure 10 illustrates the error rate progression in the rule-

based system, the hybrid system [27], and our proposed

method utilizing Levenshtein distance. The comparison

clearly demonstrates that the new method exhibits a lower

error rate than the alternative systems. Despite using only

"L/2" characters (L: length of word) in our model to minimize

the recognized characters, it outperforms both the rule-based

and hybrid models. In our proposed method, we achieved an

error rate of 14.1% with 1000 words, and this error rate

decreases to 4% when the number of words is increased to

1500. The table provides a clear overview, indicating that our

system performs increasingly better as the number of words in

the database grows, maintaining an error rate between 6% and

1.2%.

Also in this research, we have studied the impact of bad

segmentation which is a very important step in our system. In

Table 5 we have presented the two types of segmentation

faults that can occur during the process of segmentation,

under-segmentation, and over-segmentation.

An error segmentation can cause characters to be

misrecognized. Segmentation faults can affect the

performance of our system, but we can overcome this problem

by increasing the number of characters to recognize. From the

experiments we have carried out, we can say that recognizing

half of the characters of a word can help have an excellent

result even if there are segmentation problems.

Our model basically depends on the number of words

present in the database. If the word to be recognized does not

exist in the database, the model will not be able to correctly

recognize the word but will return the closest match.

Table 4. Samples of words recognized by our system

N° Word Recognized Characters Number of Characters Word to Recognize Distance Output

 الجمعيات Livenshtein ات -ع-الج 6 ت ,ا ,ع ,ج ,ل ,ا الجمعيات 1

 الجمعيات Jaccard ات -ع-الج 6 ت ,ا ,ع ,ج ,ل ,ا الجمعيات 2

 الجمعيات Livenshtein ات -ع-ج-ا 5 ت ,ا ,ع ,ج ,ا الجمعيات 3

 الجمعيات Jaccard ات -ع-ج-ا 5 ت ,ا ,ع ,ج ,ا الجمعيات 4

 الجمعيات Livenshtein ت --ع-ج-ا 4 ت ,ع ,ج ,ا الجمعيات 5

 الجماعات Jaccard ت --ع-ج-ا 4 ت ,ع ,ج ,ا الجمعيات 6

 الرياضية Livenshtein ض --ر-ا-- 3 ض ,ر ,ا الرياضية 7

 الرياضية Jaccard ض --ر-ا-- 3 ض ,ر ,ا الرياضية 8

 ارضية Livenshtein ة ----ر-ا 3 ة ,ر ,ا الرياضية 9

 ارضية Jaccard ة ----ر-ا 3 ة ,ر ,ا الرياضية 10

Table 5. Sample of words with segmentation error

N° Word Error Type Character Not Segmented /Misrecognized Output

 تمهيدا not segmented ي Under-segmentation تمهيدا 1

 Misrecognition الدكتور 2
 ذ recognized as د

 ن recognized asت
 الدكتور

 المواطنون not segmented م Under-segmentation المواطنون 3

segmented as two charactersت Over-segmentation المتوقع 4 ن المتوقع

 للاستنفار ن segmented as two charactersس Over-segmentation للاستفسار 5

 بالاضافة ه recognized asة Misrecognition بالاضافة 6

Figure 9. The growth of error rate Figure 10. The growth of error rate

5. CONCLUSIONS

In this article, we introduced a novel method for recognizing

Arabic handwritten characters by leveraging the Levenshtein

distance in conjunction with a knowledge dataset. We made a

comparison between the Jaccard distance and the Levenshtein

distance to come up with a better distance to use in our

approach. The idea of this approach was inspired by the

functionality of the visual cortex and the hippocampus in the

human brain. To test the new approach, we developed our

personal Arabic database which contains a huge number of

words from multiple disciplines (sports, culture, economics,

religion…).

The experimental results indicate that our proposed system

outperforms the current state-of-the-art approach. The

recognition error rate ranged between 1% and 25%, contingent

15

upon the number of characters accurately identified.

In future works, we plan to imitate the functionality of the

other areas of the human brain like the Wernicke and the

Boca’s areas to see the impact on the recognition rate, also we

will enrich our personal dataset with new words in order to

make it a benchmark dataset.

REFERENCES

[1] Breuel, T.M., Ul-Hasan, A., Al-Azawi, M.A., Shafait, F.

(2013). High-performance OCR for printed English and

Fraktur using LSTM networks. In 2013 12th

International Conference on Document Analysis and

Recognition, IEEE, Washington, DC, USA, pp. 683-687.

https://doi.org/10.1109/ICDAR.2013.140

[2] Afli, H., Qui, Z., Way, A., Sheridan, P. (2016). Using

SMT for OCR error correction of historical texts. Tenth

International Conference on Language Resources and

Evaluation (LREC 2016), Portorož, Slovenia, pp. 962–

966

[3] Kolak, O., Resnik, P. (2005). OCR post-processing for

low density languages. In Proceedings of Human

Language Technology Conference and Conference on

Empirical Methods in Natural Language Processing, pp.

867-874.

[4] Blau, J., Blau, Y. (1981). The renaissance of Modern

Hebrew and Modern Standard Arabic: Parallels and

differences in the revival of two Semitic languages, Vol.

18. Univ of California Press.

[5] Hetzron, R. (Ed.). (1997). The Semitic Languages.

Taylor & Francis.

[6] Horesh, U., Cotter, W.M. (2016). Current research on

linguistic variation in the Arabic‐speaking world.

Language and Linguistics Compass, 10(8): 370-381.

https://doi.org/10.1111/lnc3.12202

[7] Julian, G. (2020). What are the most spoken languages in

the world. Retrieved May, 31(2020): 38.

https://www.fluentin3months.com/most-spoken-

languages/.

[8] Eviatar, Z., Ibrahim, R. (2014). Why is it hard to read

Arabic?. Handbook of Arabic literacy: Insights and

perspectives, 77-96. https://doi.org/10.1007/978-94-017-

8545-7_4

[9] AbdelRaouf, A., Higgins, C.A., Khalil, M. (2008). A

database for Arabic printed character recognition. In

Image Analysis and Recognition: 5th International

Conference, ICIAR 2008, Póvoa de Varzim, Portugal,

Proceedings Springer Berlin Heidelberg, 5: 567-578.

https://doi.org/10.1007/978-3-540-69812-8_56

[10] Kanoun, S., Slimane, F., Guesmi, H., Ingold, R., Alimi,

A.M., Hennebert, J. (2009). Affixal approach versus

analytical approach for off-line Arabic decomposable

vocabulary recognition. In 2009 10th International

Conference on Document Analysis and Recognition,

IEEE, Barcelona, Spain, pp. 661-665.

https://doi.org/10.1109/ICDAR.2009.264

[11] Stowe, L.A., Haverkort, M., Zwarts, F. (2005).

Rethinking the neurological basis of language. Lingua,

115(7): 997-1042.

https://doi.org/10.1016/j.lingua.2004.01.013

[12] Middlebrooks, E.H., Yagmurlu, K., Szaflarski, J.P.,

Rahman, M., Bozkurt, B. (2017). A contemporary

framework of language processing in the human brain in

the context of preoperative and intraoperative language

mapping. Neuroradiology, 59: 69-87.
https://doi.org/10.1007/s00234-016-1772-0

[13] Duff, M.C., Brown-Schmidt, S. (2012). The

hippocampus and the flexible use and processing of

language. Frontiers in Human Neuroscience, 6: 69.

https://doi.org/10.3389/fnhum.2012.00069

[14] Najoua, B.A., Noureddine, E. (1995). A robust approach

for Arabic printed character segmentation. In

Proceedings of 3rd International Conference on

Document Analysis and Recognition, Montreal, QC,

Canada, 2: 865-868.

https://doi.org/10.1109/ICDAR.1995.602038

[15] Amin, A., Masini, G. (1986). Machine recognition of

multifont printed Arabic texts. Proceedings of the 8th

International Conference on Pattern Recognition, pp.

392-295.

[16] Sari, T., Souici, L., Sellami, M. (2002). Off-line

handwritten Arabic character segmentation algorithm:

ACSA. In Proceedings Eighth International Workshop

on Frontiers in Handwriting Recognition, IEEE, Niagra-

on-the-Lake, ON, Canada, pp. 452-457.

https://doi.org/10.1109/IWFHR.2002.1030952

[17] Margner, V. (1992). SARAT-A system for the

recognition of Arabic printed text. In 11th IAPR

International Conference on Pattern Recognition. Vol. II.

Conference B: Pattern Recognition Methodology and

Systems, IEEE, Computer Society, 1: 561-562.

https://doi.ieeecomputersociety.org/10.1109/ICPR.1992

.201841

[18] Hamid, A., Haraty, R. (2001). A neuro-heuristic

approach for segmenting handwritten Arabic text. In

Proceedings ACS/IEEE International Conference on

Computer Systems and Applications, IEEE, Beirut,

Lebanon, pp. 110-113.

https://doi.org/10.1109/AICCSA.2001.933960

[19] El-Sawy, A., Loey, M., El-Bakry, H. (2017). Arabic

handwritten characters recognition using convolutional

neural network. WSEAS Transactions on Computer

Research, 5(1): 11-19.

[20] Younis, K.S. (2017). Arabic hand-written character

recognition based on deep convolutional neural networks.

Jordanian Journal of Computers and Information

Technology, 3(3).

[21] Elkhayati, M., Elkettani, Y. (2022). UnCNN: A new

directed CNN model for isolated Arabic handwritten

characters recognition. Arabian Journal for Science and

Engineering, 47(8): 10667-10688.
https://doi.org/10.1007/s13369-022-06652-5

[22] Fakhet, W., El Khediri, S., Zidi, S. (2022). Guided

classification for Arabic Characters handwritten

Recognition. In 2022 IEEE/ACS 19th International

Conference on Computer Systems and Applications

(AICCSA), Abu Dhabi, United Arab Emirates, IEEE, pp.

1-6.

https://doi.org/10.1109/AICCSA56895.2022.10017668

[23] Ahamed, P., Kundu, S., Khan, T., Bhateja, V., Sarkar, R.,

Mollah, A.F. (2020). Handwritten Arabic numerals

recognition using convolutional neural network. Journal

of Ambient Intelligence and Humanized Computing, 11:

5445-5457. https://doi.org/10.1007/s12652-020-01901-7

[24] Ashiquzzaman, A., Tushar, A.K. (2017). Handwritten

Arabic numeral recognition using deep learning neural

networks. In 2017 IEEE International Conference on

16

Imaging, Vision & Pattern Recognition (icIVPR), Dhaka,

Bangladesh, IEEE, pp. 1-4.

https://doi.org/10.1109/ICIVPR.2017.7890866

[25] Yujian, L., Bo, L. (2007). A normalized Levenshtein

distance metric. IEEE Transactions On Pattern Analysis

And Machine Intelligence, 29(6): 1091-1095.

https://doi.org/10.1109/TPAMI.2007.1078

[26] Niwattanakul, S., Singthongchai, J., Naenudorn, E.,

Wanapu, S. (2013). Using of Jaccard coefficient for

keywords similarity. In Proceedings of The International

Multiconference of Engineers and Computer Scientists,

Hong Kong, 1(6): 380-384.

[27] Doush, I.A., Alkhateeb, F., Gharaibeh, A.H. (2018). A

novel Arabic OCR post-processing using rule-based and

word context techniques. International Journal on

Document Analysis and Recognition (IJDAR), 21: 77-89.

https://doi.org/10.1007/s10032-018-0297-y

NOMENCLATURE

AHCR Arabic Handwritten Characters Recognition

OCR Optical Characters Recognition

CNN Convolutional Neural Networks

SVM Support Vector Machine

AHCD Arabic Handwritten Characters Dataset

HACDB Handwritten Arabic Characters DataBase

AIA9K Arabic Isolated Alphabets 9K

17

