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Arabic Handwritten Character Recognition (AHCR) systems encounter various challenges 

arising from the unique characteristics of the Arabic language and the limited availability 

of public databases. Consequently, numerous research endeavors have aimed to enhance 

the recognition accuracy of AHCR. In this study, we propose a solution inspired by the 

intricate functions of the human visual cortex and hippocampus. Our proposed system 

employs a segmentation method to break down Arabic characters, and a Convolutional 

Neural Network (CNN) is then utilized for character recognition. To recognize entire words, 

we employ the Levenshtein distance with a personalized database containing an extensive 

collection of Arabic words. Experimental results demonstrate that our system yields a word 

error rate ranging from 1% to 25%, contingent upon the number of accurately recognized 

characters. 
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1. INTRODUCTION

In the contemporary digital era characterized by abundant 

and readily accessible information, the significance of Optical 

Character Recognition (OCR) technology cannot be 

overstated. OCR has transformed the conversion of text from 

printed or handwritten images and scanned documents into 

machine-readable text, facilitating seamless digitization, 

enhanced search capabilities, and analytical processes. While 

OCR has found extensive application in languages based on 

the Latin script [1-3], its implementation in the context of the 

rich and intricate Arabic script poses distinctive challenges 

and opportunities. 

The Arabic language stands as a rich and ancient Semitic 

language that has profoundly shaped the history, culture, and 

progress of the Middle East and North Africa [4, 5]. Boasting 

over 300 million native speakers [6], Arabic stands as one of 

the most globally spoken languages, carrying substantial 

significance in diverse domains such as literature, religion, 

science, and diplomacy [7]. Nevertheless, the intricacy of 

Arabic poses a formidable challenge for accurate character 

recognition, as illustrated in Figure 1. 

Figure 1. Arabic alphabet 

Arabic OCR emerges as a solution to unlock the vast 

potential hidden within manuscripts, historical documents, and 

printed materials, offering a bridge between the traditional and 

the digital. 

The intricate nature of the Arabic script introduces 

challenges that set Arabic OCR apart from its Latin 

counterparts [8-10]. Key challenges include cursive 

complexity, diacritics, ligatures, contextual variations, and 

style variability. 

In the human brain, information about words is stored in a 

distributed manner across various regions associated with 

language processing [11-13] as shown in Figure 2. For 

example, the word “مدرسة” might be presented in the brain as 

follows: 

Visual Cortex: When you see the written word " مدرسة   ”, the 

visual information is processed by the visual cortex at the back 

of our brain. The shape and appearance of the letters " م   "," د   "," 

","ر س  " and "ة" are recognized and processed here. 

Fusiform Gyrus: The fusiform gyrus, located in the 

temporal lobe, is responsible for recognizing and processing 

visual objects, including familiar objects like cats. So, the 

visual representation of a cat as a whole is stored in this region. 

Wernicke's Area: As mentioned earlier, Wernicke's area, 

located in the left hemisphere, is involved in understanding 

and processing language. The word " مدرسة    " is associated with 

its meaning and semantic representation here. When we read 

or hear the word " مدرسة   ," Wernicke's area helps us 

comprehend its meaning and relate it to the concept of a furry, 

four-legged animal. 

Broca's Area: If we are thinking about saying the word " 

 aloud, Broca's area comes into play. It is involved in " مدرسة

the production of speech and helps us retrieve the appropriate 

sounds and motor patterns needed to say the word " مدرسة    " out 
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loud. 

 

 
 

Figure 2. The human brain 

 

Hippocampus: The hippocampus plays a vital role in 

forming and storing memories, including memories of words. 

It helps with the consolidation of new information into long-

term memory. So, when we learn the word " مدرسة    " for the 

first time, the hippocampus helps encode and store that 

memory. 

Association Areas: Various association areas in the brain 

help link the word " مدرسة    " with related information and 

experiences. 

The word " مدرسة    " is represented by a distributed network 

of interconnected brain regions that work together to process 

its visual form, meaning, and associations. As you encounter 

and use the word more frequently, the connections between 

these brain regions strengthen, making it easier to recall and 

use the word " مدرسة    " in various contexts. 

The method presented in this article draws inspiration from 

the functionality of the visual cortex and the Hippocampus 

areas. In an effort to emulate these concepts, we sought to 

recognize Arabic words by employing a dictionary containing 

an extensive array of words, mimicking the role of the 

Hippocampus. To replicate the visual cortex's functionality, 

we implemented a segmentation method to break down a word 

into characters and utilized a Convolutional Neural Network 

(CNN) model for character recognition.The rest of this paper 

is structured as follows: Section 2 provides an introduction to 

the research background. The proposed methodology is 

outlined in Section 3. Experimental results are thoroughly 

examined in Section 4. The conclusion, along with future work, 

is presented in Section 5. 

 
 

2. RELATED WORKS 

 
This section is divided into two subsections: In Sec 1, we 

discuss some solutions for OCR segmentation. In Sec 2 we 

present some applied CNN models for AHCR. 

 

2.1 Segmentation for AHCR 

 

Segmenting characters plays a crucial role in the initial 

processing stages of character recognition within numerous 

OCR systems. As a result, various segmentation techniques 

are employed to divide Arabic characters effectively. 

Najoua and Noureddine [14] introduced a technique based 

on histogram analysis. The proposed method involves several 

sequential steps: recognizing text lines, dividing text lines into 

sections of Arabic words (PAW), isolating each PAW into 

connected components, determining approximate boundaries 

of various characters within the PAW, computing the 

maximum count of black segments in a line of pixels, 

extracting primitives, and employing an error checker to 

identify segmentation errors. The effectiveness of this method 

was assessed using the Arabic fonts "Nakesh," "Bagdadi," and 

"Mehdi," yielding accuracy results ranging from 99% to 100%. 

Another use of the histogram technique by Amin and 

Masini [15] where the authors proposed a segmentation 

method using horizontal and vertical projections. The 

proposed method achieved a recognition rate of 85% for the 

characters and 95% for the words. 

Several approaches have been developed employing 

contour tracing to address character segmentation challenges. 

In Sari et al. [16], the authors utilized contour representation 

to identify segmentation points by applying rules to the local 

minima of the lower contour for each subword. The achieved 

recognition rate on a dataset of 100 words was 86%. 

Margner [17] developed a segmentation approach relying 

on the contour of the primary body of words. Initially, the top 

contour's start and end points are identified. Subsequently, the 

upper contour is partitioned into sections with consistent 

curvatures. Finally, a horizontal line detector is employed to 

dismiss these lines as irrelevant for the recognition process. 

This segmentation method demonstrated a recognition rate of 

99% for characters without dots and 96.9% for characters with 

dots. 

In their work, Hamid and Haraty [18] applied a neuro-

heuristic approach for text line segmentation in Arabic 

Handwritten script. The identification of potential 

segmentation points involved a search for topographical 

elements. The subdivision of these points relied on the average 

block width of the letters. Through this method, they attained 

an accuracy of 69.72%. 

 

2.2 CNNs for AHCR classification 

 

Lately, numerous studies have delved into the application 

of Convolutional Neural Networks (CNNs) in Arabic 

handwriting recognition. This section offers an overview of 

various CNN models employed in the context of recognizing 

Arabic handwritten characters. 

In the work by El- Sawy et al. [19], a CNN model was 

introduced for the classification of Arabic handwritten 

characters. The employed CNN model comprises two 

convolution layers with a Rectified Linear Unit (RELU) 

activation function, a pooling layer with a 2x2 window size, 

and a fully connected layer housing 1024 neurons. The model 

was evaluated on their proprietary dataset (AHCD), yielding a 

commendable recognition rate of 94.9%. 

Another use of the CNN model by Younis [20], used a CNN 

model with regularization parameters to prevent overfitting. 

The author used the AHCD and AIA9K datasets to test the 

proposed model, and the accuracy rate was 97.6% and 94.8% 

respectively. In this study, the author mentioned that the 

morphological similarity between the Arabic characters 

affected the recognition rate of the proposed model. 
Elkhayati and Elkettani [21] employed a unique architecture 

incorporating a fully connected layer (FCL) divided into two 
distinct blocks: conscious blocks (CB) and unconscious blocks 
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(UB). These blocks, separated from each other, are fully 
connected to the output layer. The researchers evaluated their 
approach using four benchmark databases: IFHCDB, AHCD, 

AIA9K, and HACDB. The achieved recognition rates for these 
databases were 98.4%, 98.7%, 96.1%, and 95.4%, respectively. 

 

Table 1. Comparison table of Arabic Segmentation techniques 

 
Author Character Recognition Method Scope of Application Database Size Accuracy 

Najoua and 

Noureddine [14] 
Histogram techniques Multi-font Arabic text printed 1000 words 99% 

Amin and Masini 

[15] 

Horizontal and vertical projections 

and shape primitives 
Multi-font Arabic text Printed 100 multi-font words 95% 

Sari et al. [16] Contour presentation  Dataset of 100 words 86% 

Margner [17] Contour detection Printed Arabic text 
4110 Printed Arabic 

characters 

99% without dots 

96.9% with dots 

Hamid and Haraty 

[18] 

Feed-forward multilayer neural 

networks 
Arabic Handwritten Characters 

Arabic handwritten-10,000 

exemplars 
69.72% 

 

Table 2. Comparison table of Arabic Recognition methods 

 
Author Model Database Accuracy 

El-Sawy et al. [19] CNN AHCD 94.9% 

Younis [20] CNN 
AHCD 

AIA9K 

97.6% 

94.8% 

Elkhayati and Elkettani [21] CNN 

IFHCDB 

AHCD 

AIA9K 

HACDB 

98.4% 

98.7% 

96.1% 

95.4% 

Fakhet et al. [22] CNN HACDB 98% 

Ahamed et al. [23] CNN Personal database 99.76% 

 

In Fakhet et al. [22], a recognition system was proposed 

based on the similarity of Arabic characters. To build the 

similarity vector, a CNN model was used with the help of a 

confusion matrix. The model was tested with the HACDB 

dataset and achieved a recognition rate of 98%. 

Ahamed et al. [23], the authors proposed a CNN model to 

recognize handwritten Arabic numbers based on the work of 

Ashiquzzaman and Tushar [24]. The authors used a personal 

handwritten Arabic numerals dataset with 72,000 images. The 

recognition rate achieved by the proposed model was 99.76%. 

Most methods in the literature segment all words into 

characters then use a recognition system (CNN, SVM,) to 

recognize the words. These methods give more or less 

acceptable results despite the large number of segmentation 

and recognition of each character. in this study we propose a 

method which reduces the number of segmentation and 

recognition of characters. 

 

 

3. PROPOSED METHOD 

 

In this Section, the new Arabic OCR Approach is presented. 

we will work on the “segmentation” phases and the 

“classification” phase. Most of the errors that occur in an OCR 

exist at the level of these two phases, so we propose to reduce 

the number of times of segmentation and classification.  

The solution we propose consists of segmenting the 

characters of a word and then recognizing some characters, 

then using a knowledge base that contains a set of words in 

text format, we calculate a distance between the characters 

recognized by the model and the words that exist in the 

knowledge base. To calculate the distance between words, two 

distances are considered: The Levenshtein distance and the 

Jaccard distance. In our study, we tested the two methods to 

get out with the best distance to use. In Table 1 and Table 2 a 

summary of all related works surveyed in this section. 

3.1 Levenshtein distance 

 

The Levenshtein distance [25] is a mathematical measure 

representing the dissimilarity between two character strings. It 

corresponds to the minimum number of operations required-

whether deletion, insertion, or replacement-to transform one 

string into another. The Levenshtein distance can be viewed as 

a broader concept encompassing the Hamming distance (Eq. 

(1)). 

 

𝑙𝑒𝑣𝑎,𝑏

=

{
 
 

 
 
max(𝑖, 𝑗)                   𝑖𝑓 min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1𝑎𝑖≠𝑎𝑗

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1) 

 

The Levenshtein distance is the number of deletions, 

insertions, or replacements required to transform a string ‘A’ 

to the string ‘B’. As shown in Figure 3, to calculate the 

distance between the word “ ت---جم-ا ” (the word to be 

recognized by our system) and the word “الجمعيات” (the word 

existing in the knowledge base) a large number of insertions, 

deletions and replacements are effectuated. The last number in 

the matrix presents the distance between the two words. The 

word “الجمعيات” is closer to the word that will be recognized 

than the word “جماعات”. 

 

3.2 Jaccard distance 

 

Typically, the Jaccard similarity coefficient (or index) [26] 

is employed to assess the similarity between two sets. For sets 

A and B, the Jaccard index is defined as the ratio of the size of 

their intersection to the size of their union, as expressed in Eq. 

(2): 
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𝐽(𝐴, 𝐵) =
𝐴𝐵

𝐴𝐵
 (2) 

 

These equations were used to calculate the similarity 

between the segmented word and all the words that exist in the 

knowledge base. If the similarity value is equal to 1 (0 for Eq. 

(1)) this means that the word searched exists in the knowledge 

base. Else, if the similarity value is less than 1 (less than the 

number of recognized characters for Eq. (1)) this means that 

the searched word doesn’t exist in the base, so we need to 

recognize some other characters. To reduce the search space 

of words, we divided the knowledge base into multiple file 

texts, and each file text contains a set of words belonging to 

previously predefined context. The algorithmic complexity of 

Jaccard distance in the worst case is O(N2), where N is the 

number of words in a file text. For Levenshtein distance the 

algorithmic complexity between two words is O(|A|x|B|). 

 

3.3 Knowledge base 

 

The knowledge base contains a large number of words, it 

consists of a vocabulary base for our model. We built the 

knowledge base from Arabic texts collected from websites, 

press articles, and other existing vocabulary databases on the 

Internet. We have divided the Knowledge base into contexts 

as shown in Figure 3, each context contains a set of words that 

belong to this context (Table 3). The contexts used in our study 

are sports, religion, economics, and politics. 

The purpose of dividing the knowledge base into contexts 

is to decrease the search space of a word in a context. 

To build the knowledge base, we used JAVA code that 

allows us to read RSS feeds from a website. Articles read from 

RSS feeds are saved in text files after removing images and 

non-Arabic characters. We used five text files depending on 

the number of contexts we have chosen (Figure 4). To simplify 

working with files, each word is written in a separate line, so 

we kept only one occurrence for each word to reduce file size. 

 

Table 3. Sample of words from the database 

 
Sports Religion Economics Politics 

 الوطن المنشآت  الل  الرياضية

 المؤسسات  لمشروع  رسول المنتخبات 

 الاجراءات  المجالات  الجلالة  البطولة 

 للمنظمات  المؤسسين  صَلَّى الدوري 

 

 
 

Figure 3. Example of Levenshtein distance calculation 

 

 
 

Figure 4. Structure of the new database 
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3.4 Presentation of the approach 

 

3.4.1 Segmentation 

Sometimes we can read a word despite the characters not 

being in the correct positions, so we ask the question of how 

our brain can read these types of words and not pay attention 

that the characters are not in their true positions. The 

explanation that we came up with, is that our brain does not 

recognize all the characters of a word but only recognizes a 

few characters as Figure 5 illustrates, then using a dictionary 

(a knowledge base) that presents the vocabulary learned by a 

person during his life, it compares the characters recognized 

with the words that exist in the vocabulary base to find the 

appropriate word (Figure 6). 

This research introduces a novel algorithm designed for the 

recognition of Arabic texts. The algorithm's steps are 

delineated in the following pseudo-code: 

(1) Input word image 

(2) Segment the word into characters 

(3) Recognize some characters 

(4) Find the closet word to the recognized characters by 

applying a distance (Levenshtein, Jaccard) 

(5) Return the result 

The proposed algorithm starts by segmenting the image 

containing a word into characters, we used the method in the 

work [14] to segment the words. After segmentation, we 

randomly chose a number of characters (less than the length of 

the word) to recognize them, we used a CNN model to 

recognize the characters, so we used the AHDC database to 

train this model. Then, a distance is used to calculate the 

similarity between the characters obtained in the segmentation 

phase and the words that exist in the vocabulary base. Finally, 

we display the word that has the greatest similarity measure, if 

the similarity measure is not so sufficient, we can go back to 

step 3 and recognize another character to improve the 

similarity measure. Figure 7 shows an example application of 

the algorithm to an Arabic word. 

 

3.4.2 CNN architecture  

The depicted CNN model in Figure 8 proposes three 

convolutional layers aimed at extracting pertinent features 

from the image. The initial convolutional layer employs a 3×3 

kernel, yielding a feature map size of 32×32, succeeded by a 

max pooling layer resulting in a feature map of 16×16. This 

ensures effective low-level feature extraction. The second 

convolutional layer encompasses a feature map of 16×16 and 

a max pooling layer with a 2×2 size, producing a feature map 

of 8×8. Finally, the third convolutional layer incorporates 

feature maps of 8×8, followed by a max pooling layer yielding 

a feature map size of 4×4. To mitigate overfitting, a dropout 

of 50% was introduced. 

Since the position of the characters is important in the 

Levenshtein distance, we keep the position of the characters 

by using the number of characters obtained during the 

segmentation phase. 

 

 
 

Figure 5. Our Perception of how the human brain recognizes words 

 

 
 

Figure 6. The proposed CNN architecture 
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Figure 7. Sample of the proposed system 

 

 
 

Figure 8. The proposed system 

 

 

4. EXPERIMENT 

 

4.1 Experimental settings 

 

The system we developed uses the AHCD dataset to train 

the CNN model to recognize Arabic characters. The AHCD 

database is a database that contains 13622 images divided into 

a test part and a training part. Thus, our system uses the 

vocabulary base that we have created. The database is built 

from 5 text files that present the 5 contexts that we choose to 

work with. 

The experiments are performed on an Intel® Core™ I5-

10300H processor and 16GB RAM. The operating system is 

WINDOWS 10 64-bit. 

 

4.2 Experimental results 

 

In our experiments, we employed the Word Error Rate 

(WER) to assess the performance of our system, calculated 

using the Eq. (3):  

 

WER =
m

n
 (3) 

 

where, m is the total number of words recognized correctly by 

our system and n is the total number of words existing in a 

golden file to evaluate the system performance. 

To evaluate our system, we used several parameters as 

presented in Table 4 we tested the impact of the number and 

the position of the recognized characters on the result. We see 

that the number of characters affects the result, so the position 

of the recognized characters can affect the result. The result 

demonstrates that the Levenshtein distance gives better results 

than the Jaccard distance. 

Figure 9 presents the evolution of the word error rate 

compared to the number of recognized characters; we see that 
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the Levenshtein distance gives better results than the Jaccard 

distance when the number of recognized characters is bigger.  

Figure 10 illustrates the error rate progression in the rule-

based system, the hybrid system [27], and our proposed 

method utilizing Levenshtein distance. The comparison 

clearly demonstrates that the new method exhibits a lower 

error rate than the alternative systems. Despite using only 

"L/2" characters (L: length of word) in our model to minimize 

the recognized characters, it outperforms both the rule-based 

and hybrid models. In our proposed method, we achieved an 

error rate of 14.1% with 1000 words, and this error rate 

decreases to 4% when the number of words is increased to 

1500. The table provides a clear overview, indicating that our 

system performs increasingly better as the number of words in 

the database grows, maintaining an error rate between 6% and 

1.2%. 

Also in this research, we have studied the impact of bad 

segmentation which is a very important step in our system. In 

Table 5 we have presented the two types of segmentation 

faults that can occur during the process of segmentation, 

under-segmentation, and over-segmentation. 

An error segmentation can cause characters to be 

misrecognized. Segmentation faults can affect the 

performance of our system, but we can overcome this problem 

by increasing the number of characters to recognize. From the 

experiments we have carried out, we can say that recognizing 

half of the characters of a word can help have an excellent 

result even if there are segmentation problems. 

Our model basically depends on the number of words 

present in the database. If the word to be recognized does not 

exist in the database, the model will not be able to correctly 

recognize the word but will return the closest match. 

 

Table 4. Samples of words recognized by our system 

 
N° Word Recognized Characters Number of Characters Word to Recognize Distance Output 

 الجمعيات  Livenshtein ات -ع-الج 6 ت  ,ا ,ع ,ج  ,ل ,ا الجمعيات  1

 الجمعيات  Jaccard ات -ع-الج 6 ت  ,ا ,ع ,ج  ,ل ,ا الجمعيات  2

 الجمعيات  Livenshtein ات -ع-ج-ا 5 ت  ,ا  ,ع  ,ج ,ا الجمعيات  3

 الجمعيات  Jaccard ات -ع-ج-ا 5 ت  ,ا  ,ع  ,ج ,ا الجمعيات  4

 الجمعيات  Livenshtein ت --ع-ج-ا 4 ت  ,ع  ,ج ,ا الجمعيات  5

 الجماعات Jaccard ت --ع-ج-ا 4 ت  ,ع  ,ج ,ا الجمعيات  6

 الرياضية Livenshtein ض --ر-ا-- 3 ض ,ر  ,ا الرياضية 7

 الرياضية Jaccard ض --ر-ا-- 3 ض ,ر  ,ا الرياضية 8

 ارضية Livenshtein ة ----ر-ا 3 ة  ,ر  ,ا الرياضية 9

 ارضية Jaccard ة ----ر-ا 3 ة  ,ر  ,ا الرياضية 10

 

Table 5. Sample of words with segmentation error 

 
N° Word Error Type Character Not Segmented /Misrecognized Output 

 تمهيدا not segmented ي Under-segmentation تمهيدا 1

 Misrecognition الدكتور  2
 ذ  recognized as د

 ن recognized asت 
 الدكتور 

 المواطنون not segmented م Under-segmentation المواطنون 3

segmented as two charactersت  Over-segmentation المتوقع  4 ن   المتوقع  

 للاستنفار ن segmented as two charactersس  Over-segmentation للاستفسار  5

 بالاضافة  ه  recognized asة  Misrecognition بالاضافة  6

 

  
  

Figure 9. The growth of error rate Figure 10. The growth of error rate 

 

 

5. CONCLUSIONS 

 

In this article, we introduced a novel method for recognizing 

Arabic handwritten characters by leveraging the Levenshtein 

distance in conjunction with a knowledge dataset. We made a 

comparison between the Jaccard distance and the Levenshtein 

distance to come up with a better distance to use in our 

approach. The idea of this approach was inspired by the 

functionality of the visual cortex and the hippocampus in the 

human brain. To test the new approach, we developed our 

personal Arabic database which contains a huge number of 

words from multiple disciplines (sports, culture, economics, 

religion…). 

The experimental results indicate that our proposed system 

outperforms the current state-of-the-art approach. The 

recognition error rate ranged between 1% and 25%, contingent 
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upon the number of characters accurately identified. 

In future works, we plan to imitate the functionality of the 

other areas of the human brain like the Wernicke and the 

Boca’s areas to see the impact on the recognition rate, also we 

will enrich our personal dataset with new words in order to 

make it a benchmark dataset. 
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OCR Optical Characters Recognition 

CNN Convolutional Neural Networks 

SVM Support Vector Machine 
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