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Breast tumors have become one of the most frequent illnesses among women, with 287,850 

new cases projected to be discovered in 2022. Of those, 43,250 women passed away from 

this malignancy. The mortality rate for cancer might be decreased through early detection. 

Despite this, employing mammography photographs to manually identify this kind of 

cancer is a challenging process that always demands an expert. In the literature, a number 

of AI-based (Artificial Intelligence) strategies have been proposed. However, they still deal 

with issues including irrelevant feature extraction, inadequate training models, and 

similarities between cancerous and non-cancerous areas. In order to identify breast cancer, 

this research suggested an SMO-MAFNet-Hybrid Alexnet model. The images in this study 

were first preprocessed to get rid of noise. After that, the multi-attention fusion network 

(MAFNet) is used to extract features. The Spider Monkey Optimization (SMO) method is 

utilized in this work to optimize the learning rate in MAFNet. Following feature extraction, 

classification is done using the AlexNet model. In this work, hybrid optimization, namely 

Ant Colony Optimization-Reptile Search Algorithm (ACO-RSA), is applied to fine-tune 

the hyperparameters in AlexNet classification. The suggested method was tested using the 

CBIS-DDSM (Curated breast imaging subset of Digital Database for Screening 

Mammography) dataset and demonstrated an accuracy of 98%, outperforming previous 

models. 
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1. INTRODUCTION

Large connected gadgets link to the Internet of Things (IoT), 

an interactive paradigm that is constantly increasing and 

enabling communication between people and things in our 

current digital environment. IoT includes all medical devices 

that gather patient health information, including smartphones, 

smartwatches, wearable wristbands, integrated surgical 

instruments, and other flexible health monitoring gadgets [1]. 

This technology is used in both homes and hospitals to 

remotely monitor patients, facilitating the early diagnosis and 

treatment of serious illnesses and medical problems. Remote 

patient monitoring in hospital settings has the potential to 

drastically lower needless doctor visits, hospital stays, 

readmissions, and total healthcare expenses [2]. Despite the 

difficulties and barriers encountered in the past, IoT 

technologies have revolutionized the world of medical 

applications [3]. These IoT devices have the potential to 

provide large amounts of biomedical data, which may be very 

helpful in the creation of systems that automatically gather 

medical data [4]. As IoT devices are connected, big data, 

together with cutting-edge Machine Learning (ML) 

technology, plays a crucial role in improving current 

healthcare systems' diagnosis, treatment, and decision-making 

[5]. 

The Internet of Everything (IoE), which incorporates 

symptomatic treatments and monitoring along with tracking of 

patients, has attracted research attention as a result of IoT in 

biomedical applications [5]. The World Health Organization 

(WHO) ranks breast tumors as the most common worldwide 

reason for death in women. Early identification of breast 

tumors in women is the greatest approach to saving lives and 

reducing healthcare expenditures [6]. In general, cancers are 

classified as either benign or malignant. Benign tumors don't 

pose a life-threatening hazard, but they may make women 

more likely to develop breast cancer. On the other hand, 
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malignant tumors are cancerous and need to be treated right 

away. According to research on breast cancer screening, 20% 

of women had malignant tumors [7]. Breast tumors may be 

identified over an extended duration of time by utilizing a 

number of methods, including X-rays, ultrasound, 

mammography, magnetic resonance imaging (MRI), positron 

emission tomography (PET), and computed tomography [8]. 

Breast cancer in its early stages may be assessed by screening, 

which finds the disease when small breast symptoms appear. 

Mammography, clinical breast exams, and other methods are 

additional methods for breast screening. In mammography, 

doctors utilize brief-intensity X-rays to scan the breasts for 

anomalies. There are two other imaging techniques to check 

for breast cancer issues: ultrasound and MRI scans [9]. A "one-

size-fits-all" screening strategy runs the risk of 

underdiagnosing breast tumors, particularly in women with 

dense breasts. Breast density, which is the ratio of 

fibroglandular tissue to fatty tissue in the breast, affects the 

sensitivity of mammography [10]. Mammography has 

established as the most accurate approach for identifying 

breast tumors because of its capacity and affordability to meet 

medical needs. The major technique used by doctors to make 

diagnoses is mammography analysis, although this approach 

is subject to bias and physician fatigue [11]. 

The mammography technique has a poor rate in detecting 

breast tumors, which is unfortunate. Depending on the type of 

tumors, the general size of the female breasts, and the elder 

age of the victim, it may give false-negative results of 5% to 

30% [12]. As a result, mammography uses low-dose 

radiography, which enables viewing of the internal breast 

tissue. Breast cancer is detected using a variety of signal 

processing techniques, such as curvelet transform, microwave 

imaging, and ultrasound imaging. The traditional approach for 

categorizing medical infections, such as skin blemishes, breast 

lumps, and brain tumors, is based on pattern recognition [13]. 

The mammography characteristics for breast cancer are 

manually retrieved, and they are then sent inside an ML 

classifier for categorization. Obtaining a proper classification, 

however, remains challenging because of many imaging 

difficulties and alterations in tumor regions. As a result, deep 

learning (DL) has played a major part in the past ten years in 

the detection and classification of medical infections, 

particularly for breast cancer [14]. 

Current techniques for identifying breast cancer from 

mammography pictures mostly depend on deep learning 

architectures or classic machine learning algorithms. Although 

these techniques have showed promise, they frequently fail to 

capture the complex patterns and nuanced characteristics 

typical of breast cancer in its early stages. Additionally, they 

can be less effective in clinical situations due to noise and 

fluctuations in image quality. 

By utilizing cutting-edge approaches in deep learning and 

attention mechanisms, the suggested method, "Detection of 

Breast Cancer in Mammogram Images using Multi-Attention 

Feature Extraction with Hybrid RSA-based AlexNet," seeks to 

overcome these drawbacks. The major contributions in this 

paper are: 

• Preprocessing the mammography images to

eliminate noise is a vital initial step in our

methodology.

• In order to extract pertinent characteristics from the

images, this paper uses the MAFNet. It uses the SMO

approach to optimize the learning rate in MAFNet,

resulting in effective feature extraction.

• For classification, the AlexNet model is used. The

ACO-RSA hybrid optimization strategy is utilized to

tune the AlexNet classification technique’s

hyperparameters.

• Performance measures such as accuracy (ACC),

recall (RC), precision (PR), and F1 are used to assess

overall results.

Organization of the work 

Section 2 reviews the relevant works, Section 3 offers a 

brief description of the proposed model, Section 4 illustrates 

the results and testing analysis, and then Section 5 delivers the 

results in pictorial form and tabulation with conclusion. 

2. RELATED WORKS

In their study, Pati et al. [15] created a deep transfer learning 

(DTL) model-based autonomous system for identifying breast 

cancer. For their investigation, they used mammography 

pictures from the publicly available online archive the cancer 

imaging archive (TCIA). Preprocessing was done on the data 

before it was entered into the model. In order to improve 

predictive accuracy (ACC), the study combined well-known 

deep learning (DL) techniques, such as support vector machine 

(SVM) classifiers and convolutional neural networks (CNNs), 

with transfer learning (TL) methods, specifically by utilizing 

models like Inception V3, ResNet50, VGG16, AlexNet, and 

VGG19. The research extensively used simulations to test the 

viability of their suggested strategy, evaluating several 

performance metrics and network indicators. Notably, the 

large collection of mammography pictures was divided into 

benign and malignant categories. With percentages of 97.99%, 

99.51%, 98.43%, 80.08%, and 98.97%, respectively, for 

precision (PR), sensitivity, specificity, F1 score, and accuracy, 

the findings outperformed earlier mammography-based 

studies. The report also described the use of fog computing 

technology, which improves system performance while 

reducing the load on core servers and upholds strict criteria for 

patient privacy and data security. 

Specifically, for IoT applications, Rajeswari et al. [16] set 

out to construct an exponential honey badger optimization-

based deep convolutional neural network (EHBO-based 

DCNN) with a major emphasis on early breast cancer (BC) 

diagnosis. They cleverly combined the Honey badger 

optimisation (HBO) strategy with the exponential weighted 

moving average (EWMA) method to produce the EHBO 

approach, which they used to achieve their goal. The EHBO 

framework was painstakingly created to enable the smooth 

transfer of medical data collected through IoT to a central base 

station (BS) and at the same time identify important cluster 

heads to discover instances of BC. The study then used data 

augmentation methods, texture analysis, and the extraction of 

statistical features. The implementation of a deep 

convolutional neural network (DCNN) for BC classification 

was the last phase. With test scores of 0.9029, 0.9051, and 

0.8971, respectively, the algorithm demonstrated remarkable 

performance, attaining impressive levels of specificity, 

sensitivity, and total accuracy. The multi-layer perceptron 

(MLP), deep learning (DL), support vector machine (SVM), 

and ensemble-based classifier were all outperformed by this 

suggested approach, with margins of 7.23%, 6.62%, 5.39%, 

and 3.45%, respectively. 

Kwak et al. [17] used DL methods for medical image 
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identification in their study to dive into the field of breast 

cancer detection. Their in-depth investigation included a 

variety of medical imaging modalities, including histology, 

ultrasonography, and X-ray (Mammography) pictures. This 

thorough investigation's main goals were to improve breast 

cancer detection precision and give accurate identification of 

afflicted anatomical areas. The main objective was to improve 

the detecting process's overall accuracy. A wide range of 

image classification techniques were investigated by the 

researchers, including VGGNet19, ResNet50, DenseNet121, 

and EfficientNet v2. They also explored the world of picture 

segmentation technologies, analyzing choices including UNet, 

ResUNet++, and DeepLab v3. Furthermore, the research dug 

into the evaluation of numerous loss functions, including 

binary cross-entropy, dice loss, and Tversky loss, as ways to 

improve the analysis. A variety of data augmentation methods 

were carefully used to expand the dataset and strengthen the 

validity of their conclusions. 

Park et al. [18] designed to evaluate the capability of an ML 

system in predicting axillary lymph node (ALN) metastasis by 

incorporating preoperative contrast-enhanced computed 

tomography (CECT) data from both the main tumour and ALN. 

The study included 266 breast cancer patients who received 

pretreatment CECT scans of their chest cavities at a single 

medical facility. The study included a variety of ML methods, 

such as extreme gradient boosting (XGBoost), random forests, 

and neural networks (NN). The researchers included statistical 

analysis with recursive feature elimination (RFE) as part of the 

ML process. With an ACC of 0.74 and an Area Under the 

Receiver Operating Characteristic Curve (AUROC) of 0.12, 

the NN with RFE model was shown to be the most successful 

ML model for predicting ALN metastases in breast cancer. 

The contrast between a model without these properties and a 

NN with RFE model adding ALN characteristics from CECT 

was particularly remarkable. The former consistently 

outperformed the latter across all evaluation criteria, 

highlighting the significant benefit of integrating ALN 

features in the model. By using contrast-enhanced computed 

tomography (CECT) images from both the original tumour 

and axillary lymph nodes, this research illustrates how well 

ML methods predict ALN metastasis. These results 

demonstrate ML's outstanding capability to distinguish 

between benign and malignant ALNs, offering helpful 

information for therapeutic decision-making in the treatment 

of breast cancer. 

An IoT-based automated method for diagnosing breast 

cancer was created by Gao and Rezaeipanah [19]. When a 

suspect patient is examined using IoT-enabled medical 

equipment, this cutting-edge device quickly communicates 

medical pictures to a data warehouse. The ability to precisely 

analyze these medical pictures by radiologists was enabled by 

the researchers' use of four pre-trained CNN models, notably 

InceptionResNetV2, InceptionV3, VGG 19, and ResNet 152. 

To combine these models for greater accuracy, they used an 

ensemble classifier. Additionally, algorithms were used to 

offer accurate predictions in three separate categories: 

pneumonia patients, healthy people, and women with breast 

tumors. The research used two separate datasets, each of which 

had CT-scan and X-RAY pictures. Notably, the 

InceptionResNetV2 architecture attained a remarkable 

accuracy rate of 99.36% for CT-scan pictures whereas the 

Inception V3 model showed an exceptional accuracy rate of 

96.94% for X-RAY images. These discoveries have the 

potential to improve patient care by enabling healthcare 

workers to identify breast tumors early on and so minimizing 

the need for frequent doctor visits, which would lessen the 

burden on healthcare facilities. 

The combination of several CNNs and meta-learning 

algorithms was researched by Ali et al. [20] to create a 

trustworthy and efficient breast cancer classification model. A 

sizable database of breast ultrasound images (BUSI), which 

included a range of breast abnormalities, was used in the 

investigation. The major objective was to identify these 

tumors' malignant or benign status, an essential step in the 

early detection and quick treatment of breast cancer. The 

complicated and varied composition of the images presented a 

challenge to current ML and DL techniques. To completely 

resolve this issue, the research team proposed a novel model 

integrating cutting-edge techniques such as meta-learning 

ensemble approach, transfer learning, and data augmentation. 

The model's use of meta-learning to accelerate learning and 

provide speedy adaptation to new datasets was its primary 

strength. Utilizing pre-trained models like Inception, 

ResNet50, and DenseNet 121 further helped the model's 

capacity to extract features. The dataset was augmented with 

artificially created training images to increase its size and 

diversity. Notably, the model improved classification accuracy 

(ACC) by combining the outcomes of several CNNs utilizing 

meta ensemble learning techniques. As part of the research 

methodology, the BUSI dataset was preprocessed, and 

different CNNs with various architectures and trained models 

were trained and assessed. After employing a meta-learning 

technique to refine the learning process, ensemble learning 

was used to merge many CNN outputs. The study's results 

provided significant new information about the proposed 

model in addition to confirming its correctness and 

effectiveness. The research team conducted a thorough 

investigation, compared their model's F1 score, ACC, recall 

(RC), and precision-recall (PR) measurements with cutting-

edge methods employed in current systems. 

Thirumalaisamy et al. [21] developed a novel approach to 

aid radiologists in detecting breast cancer more rapidly. This 

approach includes synthesized convolutional neural networks 

(CNNs), an enhanced optimization strategy, and transfer 

learning. A crucial part of this technique was modifying the 

ant colony optimization (ACO) method to fit the limitations of 

opposition-based learning (OBL). The researchers used the 

enhanced ant colony optimization (EACO) technique to tune 

the hyperparameters of the CNN architecture. The EACO-

ResNet101 model was developed inside this unique 

framework by combining the ResNet101 CNN architecture 

with the EACO algorithm. Experiments were conducted using 

mammographic datasets from MIAS and DDSM (CBIS-

DDSM) to evaluate the efficacy of this method. The suggested 

model performed better, according to the CBIS-DDSM dataset 

findings, which had ACC rates of 98.63%, sensitivity rates of 

98.76%, and specificity rates of 98.89%. The model performed 

quite well on the MIAS dataset as well, with a classification 

ACC of 99.15%, a sensitivity of 97.86%, and a specificity of 

98.88%. These findings unequivocally show that, as compared 

to older techniques, the EACO-ResNet101 model performs 

better in breast cancer diagnosis.  

3. PROPOSED METHODOLOGY

Figure 1 depicts the stages involved in putting the proposed 

approach into action. The section (workflow) contains image 
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preprocessing, feature extraction using SMO based MAFNet 

and hybrid optimization based AlexNet feature classification.  

Figure 1. Workflow 

3.1 Dataset description 

The study conducts an in-depth analysis utilizing data 

extracted from 1459 mammograms sourced from the Curated 

Breast Imaging Subset of the Digital Database for Screening 

Mammography (CBIS-DDSM). The CBIS-DDSM dataset 

represents an enhanced version of the Digital Database for 

Screening Mammography (DDSM), which is widely 

recognized and utilized in breast cancer research and 

diagnostics. This upgraded manifestation, the CBIS-DDSM 

dataset, comprises a diverse range of mammographic images 

annotated with detailed information regarding various 

abnormalities and lesions. 

Within the CBIS-DDSM database, a comprehensive array 

of mammogram images is categorized based on the presence 

and nature of abnormalities. Specifically, the dataset 

encompasses 398 images depicting benign calcifications, 417 

images illustrating benign masses, 300 images showcasing 

malignant calcifications, and the remaining images displaying 

malignant masses. These classifications provide a nuanced 

representation of different pathological conditions and 

abnormalities commonly encountered in mammography 

screenings. 

All images contained within the CBIS-DDSM dataset 

adhere to a standardized format, with dimensions set at 224 × 

224 pixels and encoded in the RGB (Red, Green, Blue) color 

space. This uniformity ensures consistency in image resolution 

and format across the entire dataset, facilitating streamlined 

data preprocessing and analysis procedures. Table 1 in the 

study provides a comprehensive overview of the dataset, 

summarizing key characteristics and distribution statistics 

pertaining to the different categories of abnormalities 

represented within the CBIS-DDSM database. This summary 

serves as a valuable reference for researchers and practitioners 

involved in the field of breast cancer detection and diagnosis, 

offering insights into the composition and diversity of the 

dataset under scrutiny. 

Overall, the utilization of the CBIS-DDSM dataset in the 

study underscores the importance of leveraging high-quality, 

annotated data repositories to drive advancements in medical 

imaging research, particularly in the context of breast cancer 

detection and diagnosis. The dataset's richness in pathological 

variations and standardized image attributes empowers 

researchers to develop and validate robust algorithms and 

methodologies aimed at improving the accuracy and efficiency 

of breast cancer screening and prognosis. 

Table 1. Dataset description 

Name Description 

Total Number of Images 1459 

Color Grading RGB 

Benign Classification 398 

Benign Mass 417 

Malignant Mass 344 

Malignant Classification 300 

Dimension 224×224 

After receiving the dataset, several photos that were just 

artifacts labeled as malignant masses or blank images were 

discovered. ACC might suffer as a result of these photographs. 

17 photos were therefore manually eliminated. 327 malignant 

mass mammograms remained in the photos after the 

photographs had been removed, whereas the number of 

mammogram images in the other categories remained steady. 

As a consequence, 1442 photos in a dataset with four distinct 

classifications are produced. Examples of four classes are 

shown in Figure 2, along with information on their traits and 

artifacts. 

Figure 2. Dataset (CBIS-DDSM) comprising mammograms 

having four classifications in which multiple artefacts appear 

in each class 

Figures 2(a) and (b) both include a little label at the bottom 

edge of the picture, a huge label in Figure 2(b), a pair of 

straight lines linked towards the image's breast region in 

Figure 2(c), and a straight line at the bottom edge of Figure 

2(d). 

3.2 Preprocessing 

Before inserting the pictures inside a neural network for 

analysis, image pre-processing thought to be the most crucial 

operation to attain a reasonable level of ACC and shorten the 

computing time of a model. It is complicated to an artificial 

neural network technique in order to categorize mammograms 

without first using pre-processing methods. As a result, picture 

pre-processing is done first. The studies [22, 23] outlined 

many pre-processing methods that may be used without 

degrading the quality of the original picture. Two further 

research [24] improved the contrast of mammography using 

tried-and-true techniques. 

In this part, it is explained how mammography quality and 

quantity might be improved. This covers picture improvement, 

background removal, and artifact removal. The primary 

processes, related sub-processes of picture pre-processing 

phase are shown in Figure 3. Artefact removal, remove line, 

picture enhancement, and testing are the primary procedures. 
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Figure 3. Phase chart of image pre-processing where every 

process is depicted with a structure of blocks 

Block (A): A variety of approaches are used to remove any 

anomalies seen in original mammograms as: binary masking 

of the image, morphological opening (second process), and 

largest contour identification that produce artefact at ease 

mammograms; In block (B) lines are connected with the 

female breast portion of the mammograms eliminated via 

different techniques: in Range Operation(the early process) 

following Gabor filter, Morphological opening, which is the 

third process and then Invert mask manipulation; (C) image 

enhancement through further Gamma correction following, 1st 

then 2nd contrast limited adaptive histogram equalization and 

Green Fire Software with a Blue Filter, which is ImageJ; 

subsequently in the block (D) the ACC of modified pictures 

has been examined by image statistical evaluation. 

To get a more accurate result, artifacts from the 

mammograms are first eliminated, then certain techniques 

(binary masking of images, followed by process of 

morphological opening process, and biggest contour 

identification, the final phase) are used. Second, the vertical 

line connected to the breast region is removed using the 

"remove line" step. In this study, techniques including Range 

operation, Gabor filter morphological operation subsequently 

inverse masking methods were applied. The subprocesses of 

opening and dilatation are both part of the morphological 

operation. Thirdly, image enhancement is used to boost the 

contrast and luminosity of the initial pictures in order to 

improve the visibility of the malignant condition. Gamma 

correction, which is depicted in the block image [25], CLAHE 

(1st process) [26], CLAHE (2nd process), and the green-

coloured fire blue ImageJ filtering [27] are the subprocesses of 

this stage2. An increase in visibility may be seen after using 

CLAHE. Then, CLAHE is used once again to boost the 

contrast. In other words, the method involves applying 

CLAHE twice. CLAHE should not be used a third time since 

doing so might distort the contrast level and impair the ability 

to see fine details in mammograms. Finally, in the verification 

step, evaluation methods are performed to the processed 

pictures to analyze the outcomes, including PSNR (peak 

signal-to-noise ratio), MSE (mean square error), RMSE (root 

mean squared error), SSIM (structural similarity index) and 

histogram analysis. Figure 3 depicts the entire pre-processing 

pipeline, with the result of each stage serving as the input for 

the next stage. 

3.3 Feature extraction using SMO based MAFNet 

3.3.1 MAFNet architecture 

As a feature extractor, multi-attention fusion CNN 

(MAFNet) technique is used in this research. Four convolution 

models are present in the centre of MAFNet's  1 × 1 × 1 

convolution layers [28], while three convolution frameworks 

are found throughout all the modules. And the distribution of 

the convolution module follows a symmetrical pattern similar 

to [29]. Finally, there are 26 convolution modules in the FC 

layer [30, 31]. Following that, the pictures are supplied as 

input, and the first 1 × 1 convolutional method is carried out. 

4 convolution algorithms are subsequently passed for four 

times again. The contextual transformer (CoT) block of the 

primary ResNet (Residual Network) convolution structures 

replaces 3 × 3 convolutional operation. The characteristics 

recovered are next provided as feed to FC levels (layers), 

which carry out the function of "classification" in neural 

network approach, following the early convolution, pooling, 

and excitation procedures [32]. Figure 4 depicts the MAFNet 

model's architecture. To assess the likelihood of categorization, 

it also uses the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥  function. The outcome resulting 

from the classifier's results is finally provided as below. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑛
𝑖=1

, (1) 

Figure 4. Architecture of MAFNet 

Eq. (1) exhibits the total number of groups or classes, 𝑧𝑗
indicates result value for jth node, 𝑧𝑖 denotes the result value of

ith node, while 𝑒  indicates the fundamental constant, which 

may be computed as follows. 

𝑆𝐿𝐶𝐸 = −∑𝑙𝑖𝑙𝑜𝑔𝑝𝑖

𝑁

𝑖=1

(2) 

The variable 𝑙𝑖 in Eq. (2) refers to the thermal encoding of 

individual tags i from the set i (0, … , N − 1). When 𝑙𝑖 equals 

1, it implies that the 𝑖𝑡ℎ tag is present among the labels, while 

all other labels are set to zero. 𝑁 also reflects the total number 

of tags present. The prediction probability associated with the 

ith label is represented by 𝑝𝑖  which corresponds to the

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 score when the target label is 𝑖. 
This needs to be observed that a lower learning rate could 

conclude in less rapid integration, while the 

maximum learning rate might end up resulting in a continuous 

fluctuation of loss function. When trying to construct a system 

with outstanding ACC and optimal variables accompanied 

with quick learning, an adjustable learning rate technique is 

used, which allows the learning rate to be adjusted every thirty 

epochs, where calculation appears below [33]. 

𝑙𝑟 = 𝑙𝑟0 × 0.1
𝑒𝑝𝑜𝑐ℎ
30 (3) 

In Eq. (3), 𝑙𝑟 signifies the current learning rate, 𝑙𝑟𝑜 indicates

the main learning rate, while 𝑒𝑝𝑜𝑐ℎ denotes the whole number 

of training cycles. 
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3.3.2 Learning rate optimization using SMO 

Spider Monkey Optimization (SMO) plays an essential role 

in optimizing the learning rate (lr), as specified in Eq. (3). The 

SMO technique is a metaheuristic approach that was inspired 

by the social behavior of spider monkeys. This novel approach 

to problem solving draws on the collective behaviors of spider 

monkeys, integrating features of fission and swarm 

intelligence, as mentioned in the studies [34, 35]. Spider 

monkeys reside in communities between 40 and 50. A leader 

divides the responsibility of finding food in a community. 

Typically, a spider monkey swarm consists of 40 to 50 

individuals, and the leader divides out the responsibility of 

finding food within an area. The worldwide leader of the 

swarm in the case of a food scarcity is always a leading female, 

which results in changeable smaller groupings. Based on the 

food supply in a particular area, the group size is determined. 

The spider monkey's size is closely correlated with the amount 

of food available. The required requirements are satisfied by 

the SMO-based approach of swarm intelligence (SI). 

Smaller groups are formed to share the spider monkeys' 

foraging tasks. Self-organization: The group size is used to 

determine the food availability requirement. Intelligent 

foraging activity results in an intelligent choice. Swarm is used 

to start the food hunt. The distance between persons serving as 

food sources is computed. The distances between the members 

of the food groups change the locations for choosing. It is 

calculated how far apart individual is from their food supply. 

Figure 5. Flowchart of SMO 

For its six iterative collaborative stages, the SMO approach 

relies on trial and error: global leader decision phase, learning 

phase, local leader learning phase, local leader decision phase, 

global leader and local leader phase. ACO algorithms, inspired 

by the foraging behavior of ants, excel in exploring complex 

search spaces and identifying optimal solutions through 

iterative interactions. The collaborative framework of hybrid 

ACO-RSA enhances the robustness and generalizability of 

AlexNet by mitigating the risk of model bias and overfitting. 

By leveraging diverse optimization strategies, the model can 

effectively adapt to variations in mammogram images and 

generalize its diagnostic capabilities across diverse patient 

populations and imaging conditions. 

In summary, the selection of SMO for MAFNet and the 

integration of a hybrid ACO-RSA approach with AlexNet 

reflect a strategic fusion of bio-inspired optimization 

techniques tailored to the unique requirements of breast cancer 

detection in mammogram images. These algorithmic choices 

contribute to the development of robust, efficient, and 

clinically relevant detection frameworks, ultimately advancing 

the field of medical image analysis and improving patient 

outcomes in breast cancer diagnosis and treatment. This 

approach's workflow is shown in Figure 5. 

Below is a detailed explanation of the SMO approach. 

Initializing 

Population P of spider monkeys are distributed using the 

SMO technique, where 𝑆𝑀𝑝 stands for the 𝑝 − 𝑡ℎ monkey in

the population and 𝑝 = 1,2 …𝑃.  The entire number of 

variables in a monkey is 𝑀, making them an M-dimensional 

vector. Using Eq (4), one potential response to each 𝑆𝑀𝑝.

𝑆𝑀𝑝𝑞 = 𝑆𝑀𝑚𝑖𝑛𝑞 + 𝑈𝑅(0,1) × (𝑆𝑀𝑚𝑎𝑥𝑞 − 𝑆𝑀𝑚𝑖𝑛𝑞) (4) 

where, 𝑆𝑀𝑝𝑞  is 𝑝𝑡ℎ  𝑆𝑀  of 𝑞𝑡ℎ dimension. 𝑆𝑀𝑝𝑞 lower and

upper bounds are𝑆𝑀𝑚𝑖𝑛𝑔 𝑎𝑛𝑑 𝑆𝑀𝑚𝑎𝑥𝑔  in the 𝑞𝑡ℎ direction for

random number of 𝑈𝑅(0,1) uniform distribution is within the 

range of [0, 1]. 

Local Leader Phase (LLP) 

LLP is an important part of the process in which SM, the 

local leader, changes the current location based on previous 

occurrences involving local group members. This change is 

done to improve the applicability of the new site in comparison 

to the prior one. The decision to relocate SM is conditional on 

the new site's fitness value exceeding that of the existing 

location. Eq. (5) provides the formula for updating the location 

of the 𝑝𝑡ℎ SM within the 𝑙𝑡ℎ local group.  

𝑆𝑀𝑛𝑒𝑤𝑝𝑞 = 𝑆𝑀𝑝𝑞 + 𝑈𝑅(0,1) × (𝐿𝐿𝑙𝑞 − 𝑆𝑀𝑝𝑞) +

𝑈𝑅(−1,1) × (𝑆𝑀𝑟𝑞 − 𝑆𝑀𝑝𝑞)
(5) 

The symbol for the 𝑞𝑡ℎ dimension's 𝑙𝑡ℎ local group leader 

location is 𝐿𝐿𝑙𝑞  .The 𝑞𝑡ℎ dimension's 𝑙𝑡ℎ local group of the

𝑙𝑡ℎ 𝑆𝑀 is chosen at random and is designated as 𝑆𝑀𝑟𝑞, where

𝑟, 𝑝. 

Global Leader Phase (GLP) 

The local group members' input and the global leader's 

insights are used to guide the location improvement process, 

which is carried out in accordance with the LLP. Eq. (6) is 

used to calculate the new location data. 

𝑆𝑀𝑛𝑒𝑤𝑝𝑞 = 𝑆𝑀𝑝𝑞 + 𝑈𝑅(0,1) × (𝐺𝐿𝑙𝑞 − 𝑆𝑀𝑝𝑞) +

𝑈𝑅(−1,1) × (𝑆𝑀𝑟𝑞 − 𝑆𝑀𝑝𝑞)
(6) 

where, 𝑞𝑡ℎ dimension of global leader location is denoted as 

𝐺𝐿𝑙𝑞  and an arbitrarily selected index is 𝑞 = 1,2,3, …𝑀.

In this step, the SM fitness determines probability 𝑝𝑟𝑏𝑝. 

Based on the probability value, the location of 𝑆𝑀𝑝 is updated,

and a better site’s candidate can allow to a variety of 
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opportunities to enhance convergence. Eq. (7) provides the 

probability calculation results. 

 

𝑝𝑟𝑏𝑞 =
𝑓𝑛𝑝

∑ 𝑓𝑛𝑝
𝑁
𝑝=1

  (7) 

 

where, 𝑝𝑡ℎ  𝑆𝑀  ,the symbol for fitness value is 𝑓𝑛𝑝 . A 

comparison is made between the SMs' new location fitness and 

their prior location. The location's top fitness value is taken 

into account. 

 

Global Leader Learning (GLL) Phase 

The global leader location has been updated by using a 

greedy approach. New spider monkey’s position is based upon 

world leader position for optimum population viability. The 

ideal site is used to apply the global leader. There is a 1 

increment added to Global Limit Count in the event of updates. 

 

Local Leader Learning (LLL) Phase 

The local group and a greedy selection method are used to 

update the position of the local leader. The SM location is 

modified to guarantee the local leader's ideal placement inside 

a particular local group. The local leader's position is then 

precisely adjusted to ensure success. The local limit count is 

raised by one if no new entries are found. 

 

Local Leader Decision (LLD) Phase 

Local group candidates alter location at random in 

accordance with step 1 if the local leader can’t able to alter the 

position or uses the existing data from the global and local 

leaders based on the Eq. (8). 

 

𝑆𝑀𝑛𝑒𝑤𝑝𝑞 = 𝑆𝑀𝑝𝑞 + 𝑈𝑅(0,1) × (𝐺𝐿𝑙𝑞 − 𝑆𝑀𝑝𝑞)

+ 𝑈𝑅(0,1) × (𝑆𝑀𝑟𝑞 − 𝐿𝐿𝑝𝑞) 
(8) 

 

Global Leader Decision (GLD) Phase 

If the position is not changed for a global leader up to the 

GLL, according to the preferences of the global leader, the 

populace is split into smaller sections. After receiving a 

maximum number of groups (MG), the splitting procedure 

begins. Each time, a local authority figure is chosen for 

recently established group. The greatest number of permissible 

sets is formed, and the global leader remains in their position 

until the pre-fixed permitted limit has been attained. At that 

point, the global leader seeks to combine all permitted groups 

into an individual group. The largest number of permissible 

chains is formed, and the global leader holds on to that position 

until the pre-fixed maximum has been reached. At that point, 

the global leader seeks to combine all permitted chains to unite. 

The following are the SMO evaluating control specifications: 

Rate of perturbation (pr); 

Maximum number of groups (MG); 

Global Leader Limit; 

Rate of Local Leader Limit. 

 

Gaussian Mutation  

In difficult iterative optimization situations, the SMO 

approach gets stymied in a local optimum. The algorithm 

solution value does not vary throughout iteration. This strategy 

leaves the location of the local optimum and includes 

stochastic perturbation and the Gaussian mutation before 

continuing on executing the creed in order to enhance the 

algorithm probability and algorithm deficiency. Eq. (9) 

displays the Gaussian mutation. 

𝑥𝑖,𝑖𝑡𝑒𝑟+1 = {
𝑥𝑖,𝑖𝑡𝑒𝑟+𝑟𝑎𝑛𝑑                         𝑖𝑓 𝑟 ≥ 0.2

𝑥𝑖,𝑖𝑡𝑒𝑟 × Gaussian(𝜇, 𝜎)   otherwise
}  (9) 

 

where, 𝑟𝑗  is random fluctuation and 𝑟𝑎𝑛𝑑 , a randomized 

number between the interval of [0,1].  The dispersion of 

Gaussian variance is given in Eq (10). 

 

Gaussian (𝜇, 𝜎) = (
1

√2𝜋𝜎
) exp− (

(𝑥−𝜇)2

2𝜎2
)  (10) 

 

where, 𝜎2 and  𝜇 are denoted for variance and mean value. 

 

3.4 Classification using hybrid optimization based AlexNet  

 

3.4.1 AlexNet model  

When features that had been extracted, the AlexNet CNN 

DL architecture has been used in the proposed study to classify 

breast cancer. The network's architecture has 5 convolution 

layers, which are followed by an average of 3 pooling layers, 

making it deeper than ordinary CNN. To prevent data 

overfitting, a dropout percentage of 0.5% has been assigned to 

the entirely linked layers present. The following elements 

make up the architecture: 

• 1 Convolution with 11 × 11 kernel size (1CONV) 

• Rectified Linear Unit Layer Activation (RELU) 

• 3 Maximum Pooling (3 × 3) 

• 1 Maximum Pooling (4 × 4 kernel) 

• Rectified Linear Unit Layer Activation (RELU) 

• Rectified Linear Unit Layer (RELU) 

• Response Normalization Layer 

• Rectified Linear Unit Layer (RELU) 

• Rectified Linear Unit Layer Activation (RELU) 

• 4 Convolution with 3 × 3 kernel size 

• Rectified Linear Unit Layer Activation (RELU) 

• 2 Convolution with 5 × 5 kernel size (2CONV) 

• Fully Connected Layer (4096 nodes) 

• 2 Maximum Pooling (3 × 3) 

• Fully Connected Layer (4096 nodes) 

• 3 Convolution with 3 × 3 kernel size (3CONV) 

• Soft-max out 

 

 
 

Figure 6. AlexNet CNN architectural layout of the proposed 

technique 

This research is built on the suggested AlexNet CNN 

framework, which is shown in Figure 6. The first picture input 

layer serves as a preprocessing step for the study project. The 

spatial dimensions of incoming frames are down-sampled 

from 640 × 480 to 227 × 227, thereby lowering the processing 

requirements of the DL architecture. The architecture is made 

up of five convolutional (CONV) layers, three pooling (POOL) 

layers, and a rectified linear unit (RELU) after each. A total of 

96 kernels with size of 11 × 11 by 3 are used in the first 

convolutional layer. The second convolutional layer then 
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makes use of 256 kernels that are 5 × 5 in size. 384 kernels 

with 3 × 3 dimensions are selected for the third, fourth, and 

fifth layers. An activation map is produced for each 

convolutional layer. A 2 × 2 stride is used to merge the 

activation maps (feature maps) from the first, second, and fifth 

convolutional layers with the 3 × 3 pooling layers. The 

framework is divided into eight levels, each containing 4096 

nodes. These layers are essential for building flexible feature 

maps that make feature extraction easier. Then, the fully 

connected layers (FC) get the activation maps, and Soft-max 

activation is used to generate classification probabilities, 

which are then used in the final classification step. 

 

Convolution Network Layer 

The layer that creates the activation maps that is exposed to 

classification layers in the DL phenomenon of neural networks 

is the most important layer. It contains kernel which moves 

across the source frame (input) to produce the activation map 

as the output. Everywhere the input, matrix multiplication was 

done, and the result was then integrated. Eq. (11)'s output 

activation map is described as: 

 

𝑁𝑥
𝑟 =

𝑁𝑥
𝑟−1−𝐿𝑥

𝑟

𝑆𝑥
𝑟 + 1;𝑁𝑦

𝑟 =
𝑁𝑦
𝑟−1−𝐿𝑦

𝑟

𝑆𝑦
𝑟 + 1  (11) 

 

where, (𝑁𝑥, 𝑁𝑦)  is the width along with the height of 

activation map that is output for the final layer, (𝐿𝑥 , 𝐿𝑦), size 

of kernel and (𝑆𝑥 , 𝑆𝑦) which determines the amount of pixels 

omitted by kernel in both vertical and horizontal lines and r, 

index denotes the level or layer i.e., 𝑟 = 1. Convolution is 

performed on the activation map being input and a kernel to 

produce resultant activation map that is described as: 

 

𝑋1(𝑚, 𝑛) = (𝐽 ∗ 𝑅)(𝑚, 𝑛)  (12) 

 

where, 𝑋1(𝑚, 𝑛)  is a 2D output activation map created on 

combining the 2D kernel 𝑅 of magnitude (𝐿𝑥 , 𝐿𝑦)  and input 

activation map 𝐽  as indicated in Eq. (12). The symbol * 

denotes the convolution around 𝐽  and 𝑅 . In Eq. (13), the 

convolution process is defined below; 

 

𝑋1(𝑚, 𝑛) = ∑ ∑ 𝐽(𝑚 − 𝑝, 𝑛 − 𝑞)𝑅(𝑝, 𝑞)
𝑞=+

𝐿𝑥
2

𝑞=𝐿𝑦
2

𝑝=+
𝐿𝑥
2

𝑝=−
𝐿𝑥
2

  (13) 

 

In the proposed structure, the utilization of 5 CONV layers 

along with RELU layer and response normalization layer for 

obtaining the highest activation maps generate the input 

frames needed to train the dataset with optimum ACC. 

 

Rectified Linear Unit Layer 

RELU activation technique is applied to each of the 

versatile layers in the next step in order to make the network 

non-linear and reinforce it. It effectively compensates 

regarding non-linear characteristics. It is employed to the map 

of features produced by the convolutional layer as the output. 

feature map. With regard to training time, the nonlinear slope 

descent becomes saturated by the usage of tanh(.) and the 

RELU activation function. Eq. (14) describes tanh(.) as:  

 

𝑋2(𝑚, 𝑛) = tanh(𝑋1(𝑚, 𝑛)) =
sinh (𝑋1(𝑚,𝑛))

cosh (𝑋1(𝑚,𝑛))
= 1 +

1−𝑒−2∗𝑋1(𝑚,𝑛) 

1−𝑒−2∗𝑋1(𝑚,𝑛)
  

(14) 

where, 𝑋2(𝑚, 𝑛) is a 2D result activation map by performing 

tanh(.) to the source activation map 𝑋1(𝑚, 𝑛) that is acquired 

after sent via the convolutional layer. The parameters used in 

the last activation map are acquired using RELU procedure as 

mentioned below: 

 

𝑋(𝑚, 𝑛) = {
0,                          𝑖𝑓 𝑋2(𝑚, 𝑛 < 0) 

𝑋2(𝑚, 𝑛),                  𝑖𝑓 𝑋2(𝑚, 𝑛 ≥ 0
}  (15) 

 

where, 𝑋( 𝑚, 𝑛) is derived by adapting the negative numbers 

to zero and gives the identical number again on obtaining any 

affirmative result which is demonstrated in Eq. (15). Inclusion 

this RELU layer into the design that was proposed as deep 

CNNs obtain substantially faster pace when integrating this 

specific layer (RELU).  

 

Maximum Pooling Layer 

In order to decrease the relative dimension of every frame 

and the computational cost of the recommended DL structure, 

a layer is that is added to the suggested framework (pooling 

layer) despite the primary and next convolution layers and then 

again following the fifth convolution layer. The pooling 

method typically averages each slice of the picture or simply 

selects the highest value. The suggested method employs 

pooling, which produces superior results on this configuration, 

by utilizing the maximum value against each slice. Figure 7 

shows how to activate the output for down-sampling the 

pictures while using the maximum pooling layer. 

 

 
 

Figure 7. Maximum pooling layer 

 

Response Normalization Layer and the SoftMax 

Activation 

After the first two sessions, response normalization is 

carried out to decrease the rate of error on a test set of the 

recommended system. Along with the data input of the whole 

network in Eq. (16), this particular layer normalizes the layers 

of input inside systems. The process of normalizing works as 

described below: 

𝑁𝑒,𝑞
𝑥 =

𝑏𝑒,𝑓
𝑥

(𝑧+𝛼∑ (𝑏𝑒,𝑓
𝑥 )

2min (𝑇−1,𝑥+𝑐 2)⁄
𝑗=max (0,𝑥−𝑐 2)⁄ )

𝛾  (16) 

 

where, 𝑁𝑥,𝑒, 𝑓 indicates the normalization of the behavior of 

neurons 𝑏𝑒,𝑓 
𝑥 that is estimated at location (𝑒, 𝑓) using the help 

of the kernel, k. 𝑇 is the entire spectrum of kernels inside the 

different layers. 𝑧, 𝑐, 𝑎, 𝑔  are the consistent values 

hyperparameters and the values they hold are modified 

through applying a set of validation parameters 

correspondingly. 

A classifier on the top of the retrieved characteristics is 

called Soft-max. For classification of multiclass, the output of 

deep convolutional network layer (DCNN) is supplied to layer 
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Softmax, which aids in calculating classification probabilities, 

after five sets of convolutional network layer processing. The 

last classification layer utilizes these probabilities in order to 

divide each frame into crowd/out-field, close-up, medium and 

long perspectives. 

 

Dropout Layer 

To avoid excessive fitting of the input information by 

raising the number of iterations by a ratio of two, keeping the 

neurons densely packed the dropout layer is implemented in 

the initial pair of layers that are completely connected once the 

number of iterations twice in the network. It employs neural 

networks to average models, and it is a particularly effective 

technique of managing training data. The generated activation 

map is down sampled to a single frame (pixel) for every map 

by the processing of maximum pooling layers, convolutional 

layer kernel sizes, and their skipping factors. The output of the 

uppermost layers is further related to a 1D feature vector 

through a layer that is completely connected. In order to 

extract higher-level characteristics from the training data, the 

top layer must always be properly connected to the output unit 

for the class label. This method, a normalization approach on 

completely linked layers prior to and subsequent dropout is 

illustrated. 

 

3.4.2 Hyper parameter tuning using hybrid optimization 

 

Ant colony optimization  

Ant colony optimization (ACO) is an organically designed 

MA which imitates the ant's foraging behavior. Since ACO 

permits parallel processing without creating a process 

dependence and provides feedback on ant behavior in the 

search space, the model is more rational than previous MAs 

[36]. Ants can determine the quickest path between their 

colony and a food source; therefore, they are not blind while 

searching for food. Ants drop down a chemical substance 

known as pheromones along their trails as they go. The 

pheromone acts as a conduit to facilitate interaction amongst 

ants and indicates the shortest approach to their food source of 

food. Ants find food on detecting the pheromones left behind 

by other ants who have already travelled a certain route, which 

enhances the likelihood that more ants will follow in their 

footsteps. ACO bases its probabilistic judgments on the 

heuristic data and pheromone trail. As they go along a trail, the 

ants adjust the pheromone amount at any point. A feature has 

a greater chance of becoming a component of the shortest 

route the more ants pass over it and the more pheromones are 

deposited there as a consequence. The most ants will go down 

the route with the greatest concentration of pheromones, and 

it will also be the shortest way. Ants have distributed 

arbitrarily among a group of features corresponding to a 

predetermined greatest number of several generations 𝑇  and 

the pheromone level 𝑡0 = 1 is initiated in each of the features 

of 𝑀. The change in probability 𝑇𝑃𝑖
𝑘(𝑔) of the 𝑘𝑡ℎ ant at the 

𝑖𝑡ℎ feature in Eq. (17) has shown below [37]. 

 

𝑇𝑃𝑖
𝑘(𝑔) = {

[𝜏𝑖(𝑔)]
𝛼[𝜂𝑖]

𝛽

∑ [𝜏𝑖(𝑔)]
𝛼[𝜂𝑖]

𝛽
𝑗𝜖𝑗𝑖
𝑘

                 𝑖𝑓 𝑗𝜖𝑗𝑖
𝑘

0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (17) 

 

where, 𝑗𝑖
𝑘 is a collection of probable neighbors of 𝑖𝑡ℎ features 

that aren't examined using the 𝑘𝑡ℎ ant. The relative relevance 

of pheromone intensity 𝑡𝑖  and heuristic information ℎ𝑗  with 

regard to ants’ actions are given by non-negative constants 

𝑎 and 𝑏 , correspondingly. On selecting an additional feature 

in the ant’s route, a function of fitness (FF) is applied to 

measure the fresh set of chosen features. The progression of 

𝑘𝑡ℎ ant is terminated if the increase in the fitness value is not 

obtained after inserting any additional feature. In Eq. (18), if 

the halting requirement is not fulfilled, the quantity of 

pheromone level at succeeding generation 𝑔 + 1 at 𝑖𝑡ℎ feature 

is upgraded as 

 

𝜏𝑖(𝑔 + 1) = (1 − 𝑝)𝜏𝑖(𝑔) + ∑ Δ𝑁
𝑘=1 𝜏𝑖

𝑘(𝑔)  (18) 

 

Δτ𝑖
𝑘(𝑔) =  {

𝐹𝐹(𝑆𝑘(𝑔))/|𝑆
𝑘(𝑔))|,      if 𝑖 𝜖 𝑆𝑘(𝑔)

0,                                      otherwise   
}  (19) 

 

where, p serves as the pheromone decaying rates, 0 ≤ 𝑝 ≤ 1 

N represents the count of ants,  𝑆𝑘(𝑔) represents number of 

the chosen features, then 𝐷𝑡𝑖𝑘  stands for the pheromone 

dropped by 𝑘𝑡ℎ ant if 𝑖𝑡ℎ feature is along the simplest route of 

ants; if not it equals 0; which is mentioned in Eq. (19). 

The stoppage criteria are accomplished whenever g hits the 

preset threshold 𝑇 . The set of features having the greatest 

pheromone level and least fitness score will be chosen as an 

𝑂𝐹𝑆. 

 

Reptile search algorithm 

To mimic the surrounding and hunting behavior of 

crocodiles, [25] suggested the reptile search algorithm (RSA) 

in 2021. It represents a gradient-free technique that may 

commences with producing the following random responses 

to Eq. (20): 

 

𝑥𝑖,𝑗 = 𝑟𝑎𝑛𝑑𝜖[0,𝑁] × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) +

𝐿𝐵𝑗     for 𝑖 𝜖 {1, … , 𝑁} and 𝑗 𝜖 {1, … ,𝑀}  
(20) 

 

where, 𝑥𝑖,𝑗 is its 𝑖𝑡ℎ response for 𝑗𝑡ℎ source feature for entire 

𝑁 responses containing 𝑀 features, 𝑟𝑎𝑛𝑑𝜖[0,𝑁] is an arbitrary 

integer dispersed similarly in the interval [0,1](0,1), then this 

𝑗𝑡ℎ feature comprises upper 𝑈𝐵𝑗  and lower 𝐿𝐵𝑗  limits. 

RSA may be defined in terms of two principles: exploration 

and exploitation, much as the other nature-inspired MAs. The 

crocodile's ability to makeover while surrounding its prey 

helps to explain these concepts. To benefit from crocodiles' 

natural behavior, RSA's total iterations are split into four 

phases. RSA completes the investigation in the first two 

phases using an encircling habit that includes high and belly 

walking motions. Crocodiles start to circle the area to explore 

it, enabling a more thorough search of the solution space. Eq. 

(21) may be used to quantitatively represent this behavior as 

follows: 

𝑥𝑖,𝑗(𝑔 + 1) =

{
 
 

 
 

[−𝑛𝑖,𝑗(𝑔). 𝛾. 𝐵𝑒𝑠𝑡𝑗(𝑔)]

−[𝑟𝑎𝑛𝑑𝜖[1,𝑁]. 𝑅𝑖,𝑗(𝑔)],   𝑔 ≤
𝑇

4

𝐸𝑆(𝑔). 𝐵𝑒𝑠𝑡𝑗(𝑔). 𝑥(𝑟𝑎𝑛𝑑𝜖[1,𝑁],𝑗), 

 𝑔 ≤
2𝑇

4
 and 𝑔 >

𝑇

4 }
 
 

 
 

  (21) 

 

where, 𝐵𝑒𝑠𝑡𝑗(𝑔) be the optimum response on 𝑗𝑡ℎ feature, 𝑛𝑖,𝑗 

pertains to the search operation for the 𝑗𝑡ℎ feature in the 𝑖𝑡ℎ 

response (estimated using Eq. (22)), the parameter 𝑔 regulates 

entire exploration ACC through ℎ𝑜𝑢𝑡  the total number of 

iterations and is fixed as 0,1. The reduction component 𝑅𝑖,𝑗 is 

employed to decrease the exploration location and is 

calculated as in Eq. (25), 𝑟𝑎𝑛𝑑𝜖[1,𝑁]  is an integer from 
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1 and 𝑁 intended to dynamically choose any of the possible 

candidate response, and 𝐸𝑆(𝑔)  an evolutionary sense, that 

refers to the probability ratio dropping from 2 to -2 across 

iterations, determined in Eq. (21). 

 

𝑛𝑖,𝑗 = 𝐵𝑒𝑠𝑡𝑗(𝑔) × 𝑃𝑖,𝑗   (22) 

 

where, 𝑃𝑖,𝑗  denotes the % distinct differences among the 𝑗𝑡ℎ 

value of the best response and its equivalent amount of value 

in the present response and is computed in Eq. (23) as: 

 

𝑃𝑖,𝑗 = 𝜃 +
𝑥𝑖,𝑗−𝑀(𝑥𝑖)

𝐵𝑒𝑠𝑡𝑗(𝑔)×(𝑈𝐵𝑗−𝐿𝐵𝑗)+𝜖
  (23) 

 

where, 𝑞  symbolizes a crucial parameter that governs the 

exploration effectiveness, 𝑒 is a small floor value, then 𝑀(𝑥𝑖) 
denotes the typical responses in the Eq. (24) which is 

expressed as: 

 

𝑀(𝑥𝑖) =
1

𝑛
∑ 𝑥𝑖,𝑗
𝑛
𝑗=1   (24) 

 

𝑅𝑖,𝑗 =
𝐵𝑒𝑠𝑡𝑗(𝑔)−𝑥(𝑟𝑎𝑛𝑑𝜖[1,𝑁],𝑗)

𝐵𝑒𝑠𝑡𝑗(𝑔)+𝜖
  (25) 

 

𝐸𝑆(𝑔) = 2 × 𝑟𝑎𝑛𝑑𝜖[−1,1] × (1 −
1

𝑇
)  (26) 

 

where, the measure 2 functions as a multiplier to put forward 

correlation levels in the interval [0,2], then 𝑟𝑎𝑛𝑑𝜖[−1,1]  is a 

randomized numerical quantity within (-1,1) in Eq. (26).  

In the conclusive 2 stages, RSA develops the exploitation 

(hunting) searching feature space to provide optimal solution 

via the following methods: seeking coordination and 

cooperation. The solution may modify the values at the 

time of exploitation utilizing the subsequent Eq. (27):  

 

𝑥𝑖,𝑗(𝑔 + 1) =

{
 
 

 
 
𝑟𝑎𝑛𝑑𝜖[−1,1]. 𝐵𝑒𝑠𝑡𝑗(𝑔). 𝑃𝑖,𝑗(𝑔),

𝑔 ≤ 𝑔 >
2𝑇

4

 [𝜖. 𝐵𝑒𝑠𝑡𝑗(𝑔). 𝑛𝑖,𝑗(𝑔)] − [(𝑔)],

 𝑔 ≤ 𝑇 and 𝑔 >
3𝑇

4
     }

 
 

 
 

  (27) 

 

The sophistication of candidate responses at each and every 

iteration is evaluated by utilizing the predefined FF as well as 

the algorithm breaks after taking 𝑇 iteration and a candidate 

response with the least fitness value is chosen as online 

forwarding strategy (OFS). 
 

 

4. RESULTS AND DISCUSSION 

 

4.1 Experimental setup 

 

A Dell PowerEdge T430 computer with 2 GB of RAM is 

utilized for training the experiments. The computer has a 

graphics processing unit (GPU) and is powered by an Intel 

Xeon 2 processor with eight cores running at 2.4 GHz. It also 

has 32 GB of DDR4 RAM. The computing resources required 

to carry out the tests and assess the effectiveness of the 

suggested strategy are provided by these specifications. the 

size of the dataset, and the desired level of convergence. In the 

context of training models on the CBIS-DDSM dataset, the 

number of epochs typically ranges from 70, although this may 

better on experimentation and validation performance. The 

batch size refers to the 250 of training examples utilized in 

each iteration of the training process. Larger batch sizes can 

expedite the training process by leveraging parallel processing 

capabilities, while smaller batch sizes may offer more stability 

and generalizability. 

 

4.2 Performance metrics  

 

From the proposed technique devised by utilizing the CBIS-

DDSM dataset, four analytical measures, such as true positive 

(TP), true negative (TN), false positive (FP) and false negative 

(FN) have been computed and used to assess the efficacy of 

the proposed classification method, as illustrated below. 

When evaluating the efficacy of a classification model, 

ACC is described as the ratio of correct assumptions to total 

assumptions made: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (28) 

 

PR, also known as positive predictive value, defines the 

proportion of correctly detected positive instances in relation 

to the total number of positive examples: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (29) 

 

The proportion of correctly categorized positive instances 

among the total number of positive instances is measured by 

RC, also known as sensitivity or the true positive rate. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝐶) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (30) 

 

The F1 is an integrated metric that incorporates PR and RC 

into a single numerical value: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 (𝐹1) =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (31) 

 

4.3 Analysis of feature extraction  

 

In Table 2, the existing models such as DCNN, VGG-19, 

EfficientNet are used in analysing the feature extraction using 

MAFNet. The performance metrices include ACC, PR, RC 

and F1 taken for testing the existing models and proposed 

model. 

In the analysis of Feature Extraction using MAFNet from 

Table 2, DCNN has 0.91 ACC, PR level, F1 of 0.96 and 0.96 

of RC.VGG-19 has ACC rate of 0.93, RC of 0.96, PR of 0.94, 

and F1 of 0.95. EfficientNet attained the ACC level of 0.94, 

PR of 0.95, F1 of 0.97, RC of 0.96 and the MAFNet has 0.99 

of ACC, F1 of 0.98, PR of 0.98, RC of 0.99. When comparing 

with all other models, MAFNet achieved better performance 

in ACC analysis with 0.99. Figure 8 offering the graphical 

description of proposed model. 

 

Table 2. Analysis of feature extraction using MAFNet 

 
Models ACC PR RC F1 

DCNN 0.91 0.94 0.96 0.96 

VGG-19 0.93 0.94 0.96 0.95 

EfficientNet 0.94 0.95 0.96 0.97 

MAFNet 0.99 0.98 0.99 0.98 
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Figure 8. Analysis of feature extraction using MAFNet 

 

4.4 Analysis of classification with existing models  

 

The existing techniques which are DenseNet121, ResNet50, 

Inception V3 are used for analysis of feature classification. 

The performance metrices include ACC, RC, F1 and PR were 

taken to teste the existing models with the proposed model. 

From Table 3, the analysis of Inception V3 model benign 

and malignant have ACC 0.83. In REsNet50, both achieved 

ACC level 0.88. In DenseNet121 model analysis, both benign 

and malignant have ACC level 0.84. In proposed technique, 

both have an ACC level 0.98. Inception V3, benign has a PR 

of 0.78, 0.85 of F1 and 0.93 of RC. In the analysis of ResNet50 

model, benign has a PR of 0.84, 0.89 of F1 and 0.94 of RC. In 

the analysis of DenseNet121 model, benign has a PR of 0.81, 

0.85 of F1 and 0.89 of RC. In the analysis of the proposed 

model, benign has a PR of 0.97, 0.96 of F1 and 0.96 of RC. 

Inception V3, malignant has a PR of 0.91, 0.82 of F1 and 0.74 

of RC. In the analysis of ResNet50 model, malignant has a PR 

of 0.93, 0.88 of F1 and 0.82 of RC. In the analysis of 

DenseNet121 model, malignant has a PR of 0.88, 0.83 of F1 

and 0.79 of RC. In the analysis of the proposed model, 

malignant has a PR of 0.96, 0.95 of F1 and 0.96 of RC. When 

comparing with all other models, the proposed model achieved 

better performance in ACC analysis with 0.98. The graphical 

description for Table 3 is represented in Figure 9. 

 

Table 3. Analysis of feature classification 

 
Model Class ACC PR RC F1 

Inception V3 
Benign 

Malignant 
0.83 

0.78 

0.91 

0.93 

0.74 

0.85 

0.82 

ResNet50 
Benign 

Malignant 
0.88 

0.84 

0.93 

0.94 

0.82 

0.89 

0.88 

DenseNet121 
Benign 

Malignant 
0.84 

0.81 

0.88 

0.89 

0.79 

0.85 

0.83 

Proposed Model 
Benign 

Malignant 

0.98 

 

0.97 

0.96 

0.96 

0.96 

0.96 

0.95 

 

 
 

Figure 9. Analysis of feature classification 

 

 

Table 4. Analysis of hybrid optimization based on ACO-RSA 

 

Existing Techniques Without Optimization With Optimization 

 ACC PR RC F1 ACC PR RC F1 

InceptionV3 85 87 84 86 89 89 85 88 

ResNet50 87 84 78 87 88 86 79 89 

DenseNet121 85 79 86 87 89 83 91 89 

Proposed Model 95 94 95 94 98 97 97 98 

 

 
 

Figure 10. Analysis of hybrid optimization based on ACO-

RSA 

 

In the analysis of existing techniques without hybrid 

optimization from Table 4, Inception V3 has 85% ACC, 87% 

of PR, 86% of F1 and 84% of RC. ResNet50 has ACC rate 

87%, RC 78%, F1 level 87% and PR level of 84%. 

DenseNet121 has ACC level 85%, RC of 86%, PR level of 

79%, and F1 87%. On analysing the proposed model, it has 

95% of ACC, PR the same as ACC level 95%, F1 level 94% 

and RC level 95%. In the analysis of existing techniques with 

optimization, Inception V3 has 89% ACC 89% of PR, 88% of 

F1 and 85% of RC. ResNet50 has ACC rate of 88%, RC of 

79%, PR of 86%, and then F1 of 89%. DenseNet121 has an 

ACC level of 89%, F1 level 89%, PR 83% and RC 91% and 

F1 of 89%. On analysing the proposed model with 

optimization, it has 98% of ACC, 97% PR, 97% RC, 98% F1. 

When comparing with all other models, the proposed model 

achieved better performance in ACC analysis with 98%. 

Figure 10 offering the graphical description of proposed 

model. The hyperparameters are tuned using hybrid 
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optimization in the proposed model. Hence the proposed 

model achieves better ACC than the existing techniques.  

 

 

5. CONCLUSION 

 

Mammogram pictures are categorized into four groups in 

this research utilizing the CBIS-DDSM dataset and the 

proposed approach. Noise is removed in this case using an 

image pre-processing approach. To further enhance the quality 

of the unprocessed mammography, backdrop elimination and 

methods for enhancing images were employed. The feature of 

extraction employs the MAFNet model. The learning rate 

indicated in MAFNet is optimized using the SMO approach. 

Following feature extraction, feature categorization is carried 

out by using the AlexNet model. In this work, hybrid 

optimization in the form of ACO-RSA is used to fine-tune the 

hyperparameters in feature classification based on AlexNet. 

As a consequence, the suggested system's performance metrics 

evaluation revealed that it had a 98% accuracy rate, which is a 

superior outcome than other current models. Future image 

fusion approaches will integrate the tumor segmentation phase, 

and segmentation taken into consideration for the process 

feature extraction. The computational time issue will be 

addressed by an improved feature fusion method. 
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