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During metal cutting processes, manufacturers and researchers strive to achieve two 

primary goals: increasing productivity and enhancing the quality of the cutting process. 

This study focused on hard alloy steel machining using a high-precision CNC lathe. The 

experimental design followed the orthogonal array L27 of the Taguchi method, and the 

optimization of cutting parameters (cutting speed, feed rate, cutting depth) and the SiO2 

nanoparticle concentration in the cutting fluid was performed using the response surface 

methodology. The objective was to achieve the lowest possible surface roughness (Ra). 

Analysis of variance was used to evaluate the impact of input factors on the output 

response. A second-degree mathematical regression model with a determined 

coefficient of 84.64% was developed to predict the surface roughness. A multi-

objective optimization strategy was employed to concurrently minimize surface 

roughness while maximizing the material removal rate (MRR). A cutting mode was 

implemented with the following parameters: a cutting speed of 80 m/min, a cutting 

depth of 0.6 mm, a feed rate of 0.1576 mm/rev, and a nanoparticle concentration of 4%. 

The surface roughness achieved under the optimal conditions was 0.9075 µm. The 

material removal rate reached 7450.7 mm³/min. This study provides further evidence 

of the effectiveness of applying minimal lubrication with a nanofluid, as the best surface 

roughness was obtained when machining with a cutting fluid containing 4% SiO2 

nanoparticles. 
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1. INTRODUCTION

Simultaneously attaining high productivity and good 

quality in metal cutting is a key concern for manufacturers and 

an attractive challenge for researchers. The objective of this 

research is to identify a cutting mode that fulfills both quality 

and productivity criteria, which are represented by the 

roughness and MRR, respectively. 

Due to its hardness, toughness, and resistance to thermal 

cracking [1, 2], JIS SKD61 steel is widely used in various 

industries, particularly in the mould and die industry. However, 

its mechanical properties make it a challenging material to 

machine, especially after the heat treatment process used to 

increase its hardness. In conventional machining, the initial 

stages involve milling, turning, and drilling operations. 

Subsequently, a metal heat treatment process is conducted to 

achieve the required hardness. Finally, grinding operations are 

carried out to attain the desired level of precision. This process 

is time-consuming and leads to higher costs. However, with 

the advancement of material technology, there has also been 

progress in cutting tool technology. Cutting tools can now 

machine high-hardness steel workpieces after heat treatment. 

Cutting processes that are applied after heat treatment are 

known as hard machining [3, 4]. 

Hard machining typically generates a significant amount of 

heat due to the high hardness of the workpiece material. This 

limitation affects machining with high cutting speeds and 

significantly impacts the wear and tool life of cutting tools [5-

9]. The environmental and health impacts of hard milling on 

workers have yet to be fully addressed, particularly in the 

application of flood coolant. However, a practical solution that 

has shown effectiveness in hard machining is minimum 

quantity lubrication (MQL). MQL, known for its efficiency 

and eco-friendliness, has gained widespread adoption across 

various machining operations. As highlighted by Phafat et al. 

[10], machining processes using a very small quantity of 

lubricating and cooling fluid (below 250ml/h) are referred to 

as MQL machining processes. This lubricant is mixed with 

compressed air and then sprayed onto the cutting zone. The 

use of MQL has been shown to enhance surface finish quality, 

extend tool life, minimize tool wear, lower cutting 

temperatures, and reduce lubrication costs [2, 11-13]. The 
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efficacy of MQL has been demonstrated in various machining 

operations, encompassing turning, milling, and drilling. 

Incorporating solid nanoparticles with sizes ranging from 

10-100 nm into the cutting fluid used in the MQL machining 

process can significantly enhance machining efficiency [14, 

15]. This cooling lubrication technique was pioneered by Choi 

and Eastman [16]. The nanofluid-based MQL method offers a 

multitude of advantages over traditional cooling lubrication 

techniques, notably surpassing conventional MQL methods. 

The addition of nanoparticles notably improves the lubricating 

and cooling capabilities of the base cutting fluid. The 

enhanced cooling effect of nanofluids stems from the 

optimized heat exchange mechanism enabled by the presence 

of nanoparticles within the cutting oil. Additionally, 

nanoparticles enhance the wetting ability of the nanofluid 

compared to the base cutting fluid [17-19]. The heightened 

lubricating effectiveness of the nanofluid can be ascribed to 

four mechanisms: the rolling of nanospheres [20-22], a self-

repairing effect [23-25], the formation of tribofilms, and a 

polishing effect [26]. Nanofluid has shown remarkable 

efficacy in reducing surface roughness, cutting force, and heat, 

as well as minimizing tool wear and extending tool life in 

various metal cutting processes, including turning [27-29], 

milling [30-34], and grinding [35, 36]. 

Implementing the nanofluid-based MQL approach is 

relatively inexpensive. With a small investment, 

manufacturers can upgrade a standard machine to benefit from 

advanced lubrication. The conversion process involves 

installing an MQL nozzle onto a conventional machine to 

enable MQL nanofluid cooling. This low-cost solution offers 

efficient lubrication and cooling capabilities [19]. 

In a single-objective optimization problem, the main 

objective is to discover the optimal solution for a particular 

criterion, without taking into account other criteria. 

Manufacturers, however, aim to achieve multiple criteria 

simultaneously, even though these criteria may be 

contradictory. Multi-objective optimization aims to find a 

‘win-win’ solution that addresses conflicting criteria. 

Numerous researchers employ the response surface 

methodology, which endeavors to optimize output responses 

affected by input variables, also referred to as independent 

variables. [13, 19, 31, 37-39]. 

In a study conducted by Sahoo et al. [27], a multi-objective 

optimization was conducted to assess the influence of cutting 

parameters in turning AISI 1040 steel. An optimal cutting 

mode has been identified to simultaneously achieve two 

objectives: minimizing surface roughness and maximizing 

MRR. In a study on optimizing the MRR and Ra in the turning 

process of X20Cr13, the Taguchi methodology combined with 

Grey analysis was employed [40]. The study employed single-

objective optimizations for each criterion separately. The 

author suggests that machining with cutting parameters set at 

the lowest levels of cutting speed, feed rate, and depth of cut 

will result in the minimal surface roughness. Conversely, the 

cutting mode with the highest levels of these parameters 

yielded the highest MRR. Additionally, a multi-objective 

optimization method was utilized to simultaneously minimize 

roughness and maximize material removal rate. Consequently, 

an optimal cutting mode comprising the maximum cut depth, 

cutting speed, and minimum feed rate was identified. 

In a study led by Do and Phan [31], four cutting parameters, 

including cutting speed, depth of cut, feed rate, and material 

hardness, were investigated. The study aimed to devise an 

optimal cutting mode that would effectively minimize 

roughness while maximizing MRR. In another investigation 

led by Dinesh et al. [41], three fundamental cutting parameters 

(cutting speed, depth of cut, and feed rate) along with tool nose 

radius were included in the evaluation using the response 

surface methodology. Their aim was to achieve the dual 

objectives of minimizing surface roughness while maximizing 

MRR. Additionally, they developed mathematical regression 

models to describe the intricate relationship between the 

cutting condition and the resultant output responses of 

roughness and MRR. When milling AL8112 aluminum alloy 

using minimum quantity lubrication supplemented with 

nanofluid, Okokpujie et al. [42] discovered optimal machining 

conditions that addressed three primary criteria: surface 

roughness, MRR, and cutting force. 

It can be observed that many researchers share the common 

goal of simultaneously minimizing roughness and maximizing 

MRR. However, each study is only a ‘case study’ with specific 

parameters and conditions. Further research on multi-

objective optimization to attain the mentioned goals is still 

needed. Moreover, the addition of new input parameters 

represents an important research direction. 

The aim of this research is to incorporate a new input 

parameter, nanoparticle concentration, to bolster the scientific 

understanding of the impact of nanofluids on cutting processes, 

and to provide a reference for future studies. This study delves 

into the impact of nanoparticle concentration and three 

parameters of cutting condition (cutting velocity, feed rate, 

and cutting depth) on the turning process of hardened SKD61 

alloy steel. Employing the response surface methodology, 

both mono-objective and multi-objective optimization 

strategies are explored. The research is centered on enhancing 

two pivotal aspects: quality and productivity, with a specific 

focus on surface roughness and MRR as the key output 

responses. To establish the intricate relationship between the 

input variables and output responses, a comprehensive 

mathematical regression model is constructed. Additionally, 

the robustness of the model is evaluated through analysis of 

variance (ANOVA).  

 

 

2. EXPERIMENTAL SETUP 

 

 
 

Figure 1. Setting up experiments on an EMCO Maxxturn 45 

CNC lathe 

 

All experiments were conducted using an EMCO Maxxturn 

45 CNC lathe machine, as depicted in Figure 1. The cutting 

tool was equipped with a polycrystalline cubic boron nitride 

(CBN) insert, specifically tailored for precision finishing tasks 

on materials, such as hardened steels within the hardness range 
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of 45-65 HRC and nodular cast iron. The insert shape is a 

rhombus with a vertex angle of 35°. The size is 16 mm, and 

the tool nose radius is 0.4 mm. The insert is shown in Figure 

2. The workpieces utilized were cylindrical SKD61 alloy steel 

blocks with an initial diameter of 35 mm, which underwent 

heat treatment to achieve a hardness of 55 HRC. Table 1 

displays the chemical composition of the workpieces. These 

workpieces were securely clamped onto a three-jaw chuck. 

The MQL system was utilized, positioning the nozzle 20 mm 

from the cutting zone. A steady MQL supply pressure of 3 

kg/cm² was maintained, with a fluid flow rate of 50 ml/h 

directed into the cutting zone. 

 

Table 1. Chemical composition of the workpieces (w %) 

 

C Si Mn Cr Mo V Ni 

0.32 

- 

0.42 

0.80 

- 

1.20 

0.20 

- 

0.50 

4.75 

- 

5.50 

1.10 

- 

1.75 

0.80 

- 

1.20 

0.00 

- 

0.30 

 

 
 

Figure 2. The CBN insert 

 

 
 

Figure 3. Measuring roughness with the SJ-410  

 

The process of incorporating SiO2 nanoparticles into the 

CT232 cutting fluid involved stirring for six hours to achieve 

a uniform dispersion and stable suspension. The stirring 

process was carried out using a small magnetic stirrer. The 

maximum speed of the device was 1500 rpm. The stirring 

process in the study did not utilize the heating function of the 

device. An appropriate amount of solution for one experiment 

was poured into the device’s stirring cup (which can hold a 

maximum of 2l of solution). Then, an appropriate amount of 

nanoparticles was added to the cup. The device was activated 

and adjusted to a speed of 1000 rpm. Once the stirring process 

was complete, the solution was used immediately to avoid the 

gradual settling of the solid nanoparticles.  

Surface roughness measurements were conducted 

immediately after each experiment using a Mitutoyo SJ-410 

roughness measuring instrument. To ensure accuracy, three 

distinct positions on the machined surface were chosen for 

each measurement. The Ra measurement process is illustrated 

in Figure 3. 

The cutting parameters considered as input factors were 

cutting speed v, feed rate f, cutting depth d, and nanoparticle 

concentration c. Each factor was categorized into three levels: 

low, high, and middle. These categorizations were determined 

using machining condition recommendations from the tool 

manufacturer, as well as references from the author's research 

and other scholarly sources. 

To systematically conduct the experiments using the 

Taguchi method, we employed the L27 array. With four input 

parameters, each having three levels, a total of twenty-seven 

tests were carried out. To minimize potential random errors, 

each test was performed three times. The Ra results were 

obtained as average values. 

 

 

3. RESULTS AND DISCUSSION 
 

The Ra and MRR outcomes from the twenty-seven 

experiments are presented in Table 2. The Ra values range 

from 0.832 µm (experiment 22) to 1.062 µm (experiment 3). 

The minimum MRR is 800 mm3/min (experiment 1), while the 

maximum is 9600 mm3/min (experiment 18).  

By employing the response surface methodology (RSM), a 

second-order mathematical model illustrates the correlation 

between surface roughness and the input factors, as expressed 

in the following formula. 

 

𝑅𝑎  =  0.910 − 0.0089𝑐 − 0.00485𝑣 − 0.148𝑑 − 1.79𝑓
− 0.00432𝑐2 − 0.000047𝑣2 + 0.122𝑑2

+ 10.95𝑓2 + 0.000103𝑐𝑣 + 0.0160𝑐𝑑
− 0.001𝑐𝑓 + 0.00205𝑣𝑑 − 0.0066𝑣𝑓
− 0.14𝑑𝑓 

 

 
 

Figure 4. Optimal plots for 𝑅𝑎 
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Table 2. Ra and MRR results 

 

No. 

Nanoparticle 

Concentration 

c (%) 

Cutting 

Speed 

v (m/min) 

Cutting 

Depth 

d (mm) 

Feed Rate 

f (mm/rev) 

Surface 

Roughness 

𝑅𝑎 (µm) 

MRR 

(mm3/min) 
Note 

1 0 40 0.2 0.1 0.932 800 
Min 

MRR 

2 0 40 0.4 0.15 0.962 2400  

3 0 40 0.6 0.2 1.062 4800 
Max 

𝑅𝑎 

4 0 60 0.2 0.15 0.952 1800  

5 0 60 0.4 0.2 1 4800  

6 0 60 0.6 0.1 0.912 3600  

7 0 80 0.2 0.2 0.982 3200  

8 0 80 0.4 0.1 0.893 3200  

9 0 80 0.6 0.15 0.934 7200  

10 2 40 0.2 0.15 0.903 1200  

11 2 40 0.4 0.2 1.012 3200  

12 2 40 0.6 0.1 0.9 2400  

13 2 60 0.2 0.2 0.99 2400  

14 2 60 0.4 0.1 0.954 2400  

15 2 60 0.6 0.15 0.999 5400  

16 2 80 0.2 0.1 0.853 1600  

17 2 80 0.4 0.15 0.922 4800  

18 2 80 0.6 0.2 1.004 9600 
Max 

MRR 

19 4 40 0.2 0.2 1 1600  

20 4 40 0.4 0.1 0.867 1600  

21 4 40 0.6 0.15 0.881 3600  

22 4 60 0.2 0.1 0.832 1200 
Max 

𝑅𝑎 

23 4 60 0.4 0.15 0.861 3600  

24 4 60 0.6 0.1 0.946 3600  

25 4 80 0.2 0.15 0.855 2400  

26 4 80 0.4 0.2 0.933 6400  

27 4 80 0.6 0.1 0.858 4800  

 

Table 3. Analysis of variance (ANOVA) 

 
Source DF Adj-SS Adj-MS F-Value P-Value C% 

Model 14 0.079077 0.005648 4.72 0.005 84.64 

Linear 4 0.071053 0.017763 14.86 0.000 76.05 

c 1 0.012621 0.012621 10.56 0.007 13.50 

v 1 0.004513 0.004513 3.77 0.076 4.83 

d 1 0.004571 0.004571 3.82 0.074 4.89 

f 1 0.043326 0.043326 36.24 0.000 46.37 

Square 4 0.008214 0.002054 1.72 0.211 8.79 

c2 1 0.001746 0.001746 1.46 0.250 1.86 

v2 1 0.001947 0.001947 1.63 0.226 2.08 

d2 1 0.000140 0.000140 0.12 0.739 0.14 

f2 1 0.004385 0.004385 3.67 0.080 4.69 

2-Way Interaction 6 0.001782 0.000297 0.25 0.951 1.90 

cv 1 0.000187 0.000187 0.16 0.699 0.20 

cd 1 0.000408 0.000408 0.34 0.570 0.43 

cf 1 0.000000 0.000000 0.00 0.992 0 

vd 1 0.000746 0.000746 0.62 0.445 0.79 

vf 1 0.000486 0.000486 0.41 0.536 0.52 

df 1 0.000019 0.000019 0.02 0.901 0.02 

Error 12 0.014347 0.001196 - - 15.35 

Total 26 0.093424 - - - - 

R-sq=84.64% 
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(a) 𝑅𝑎 vs. 𝑣, 𝑐 

 
(b) 𝑅𝑎 vs. 𝑑, 𝑐 

 
(c) 𝑅𝑎 vs. 𝑓, 𝑐 

 

Figure 5. Contour plots of 𝑅𝑎 against input factors 

 

The analysis of variance table (Table 3) indicates a 

favourable assessment of the model. The R-squared value is 

84.64%, indicating that the model accounts for about 85% of 

the variability in surface roughness attributable to the input 

factors. This demonstrates the reliability of the model. The 

analysis reveals that the feed rate exerts a substantially greater 

influence on Ra compared to other factors, contributing to over 

46% of the variation observed in surface roughness. 

Nonetheless, the nanoparticle concentration also plays a 

significant role, contributing 13.5% to the observed variation. 

Conversely, the impact of cutting speed and depth of cut on 

surface roughness is comparatively minor. The factors with P-

values less than 0.05 indicate that their impacts on the output 

response are statistically significant. 
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Figure 6. Probability plot of 𝑅𝑎 

 

 
 

Figure 7. Multi-objective optimization 

 

Increased feed rates result in higher roughness values. This 

is due to the phenomenon where machining at higher feed rates 

causes the formation of deeper and larger grooves on the 

machined surfaces. However, the application of nanofluids 

significantly improves the roughness. Increasing the 

concentration of nanoparticles (as shown in Figure 4) leads to 

a significant reduction in roughness, which can be explained 

by the mechanism of reducing the cutting zone friction and 

enhancing the heat transfer efficiency within the base fluid. 

Figure 4 depicts an ideal representation of surface 

roughness. The plot illustrates that the minimum Ra value of 

0.818 µm is attained by employing specific machining 

parameters: a high cutting speed of 80 m/min, a low feed rate 

of 0.1071 mm/rev, and a small depth of cut of 0.2 mm. 

Furthermore, the MQL cooling technique is applied, 

employing a nanoparticle concentration of 4 wt%. It is evident 

that achieving minimum roughness involves maximizing the 

cutting speed while minimizing both the feed rate and the 

cutting depth. 

Figure 5 illustrates the interaction between the surface 

roughness and the output factors. Each panel in Figure 5 

represents the influence of nanoparticle concentration and a 

specific cutting parameter. It is evident that the nanoparticle 

concentration has a greater impact than the cutting speed and 

the cutting depth. Changes in the nanoparticle concentration 

noticeably affect Ra resulting from the machining process. The 

relationship is inverse, indicating that as the nanoparticle 

concentration increases, surface roughness decreases. 

However, when examining the extent of influence on Ra, the 

feed rate emerges as the predominant factor. The ANOVA 

table also supports this conclusion. 

The probability plot of Ra, as shown in Figure 6, exhibits 

data points that are tightly clustered around a central straight 

line. This strongly suggests that the selected terms in the model 

have a pronounced impact on the provided responses.  

This research adopted a multi-objective optimization 

strategy to achieve both the minimum surface roughness and 

the maximum material removal rate. The optimal values for 

this multi-objective problem were determined using the 

Minitab statistical software, utilizing the desirability function 
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depicted in Figure 7. A balanced solution was achieved by 

evaluating a composite desirability value of 0.7125, leading to 

a minimized surface roughness of 0.9075 µm and a maximized 

material removal rate of 7450.7 mm3/min. These optimal 

values were reached through the utilization of precise 

machining parameters: a cutting speed set at 80 m/min, a depth 

of cut of 0.6 mm, a feed rate of 0.1576 mm/rev, and a 

nanoparticle concentration maintained at 4%. These 

parameters collectively contributed to achieving the desired 

balance between surface roughness and material removal rate. 

A validation experiment was executed to validate the 

robustness of the model. This experiment was conducted under 

the determined multi-objective optimal conditions, confirming 

the accuracy and reliability of the developed model. A Ra 

value of 1.012 µm and an MRR of 7564.8 mm3/min were 

achieved under these conditions. Therefore, the model has an 

error of 11.5% in predicting surface roughness and 1.53% in 

predicting MRR, indicating that it is reliable. 

In summary, a quadratic regression mathematical model has 

been effectively developed to predict surface roughness based 

on cutting parameters. Notably, this model incorporates a 

novel parameter, the nanoparticle concentration. A multi-

objective optimization approach is employed to 

simultaneously achieve two objectives: improving surface 

roughness while increasing MRR. The results also 

demonstrate the excellent effectiveness of nanofluid 

application. 

 

 

4. CONCLUSIONS 

 

This study aimed to simultaneously optimize both quality 

and productivity objectives. The study encompassed the 

analysis of four variables: nanoparticle concentration, cutting 

speed, depth of cut, and feed rate, within the framework of 

hard turning of alloy steel SKD61. The RSM was employed to 

conduct single-objective and multi-objective optimizations for 

both roughness and material removal rate. From this research, 

several key conclusions can be drawn: 

i. A quadratic regression mathematical model was 

formulated to describe the correlation between surface 

roughness and the four input parameters. 

ii. Analysis indicated that the feed rate and nanoparticle 

concentration were the primary factors influencing 

surface roughness, accounting for 46.4% and 13.5% of 

the total variation, respectively. These results are in line 

with theoretical arguments that have been presented. 

iii. The results showcased the significant effect of improving 

roughness by incorporating SiO2 nanoparticles in the 

cutting oil compared to conventional MQL techniques. 

iv. Multi-objective optimization was conducted to achieve 

the dual objectives of minimizing roughness and 

maximizing MRR. The results yielded a compromise 

outcome with a minimum roughness value of 0.9075 µm 

and a maximum MRR of 7450.7 mm3/min. The 

composite desirability value for this solution was 0.7125. 

Overall, the findings in this research provide further 

evidence regarding the influence of machining conditions on 

surface roughness. The identified multi-objective optimization 

conditions serve as a valuable reference outcome for future 

studies. However, the impact of nanoparticle size was not 

addressed. Exploring the efficacy of blending various types of 

nanoparticles into the base solution also presents a promising 

avenue for future investigation.  
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