
Comprehensive Analysis to Detect Optimal Vehicle Position for Roadside Traffic

Surveillance Using Lightweight Contour-Based CNN

Nand Kishore Sharma1* , Surendra Rahamatkar2 , Abhishek Singh Rathore3

1 Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University

Chhattisgarh, Raipur 493225, India
2 Avantika University, Ujjain 456006, India
3 Department of Computer Science and Engineering, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore 453111, India

Corresponding Author Email: er.nksharma.mtechcs@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijtdi.080119 ABSTRACT

Received: 26 December 2023

Revised: 30 January 2024

Accepted: 9 February 2024

Available online: 31 March 2024

In the realm of transport development, the fusion of modern technology and vehicle

surveillance in roadside areas becomes indispensable. Traditional surveillance demands

continuous monitoring through closed-circuit television cameras. It results in a huge

amount of data, which requires high computation. This study delves into the challenges of

real-time processing of vehicle surveillance within smart cities with quality data. In

addition to a specific focus on monitoring the roadside traffic region despite technological

advancements, including target variability, lighting conditions, and occlusion, the

manuscript introduces a lightweight contour-based convolutional neural network to

address these challenges. The proposed work aims to gain the maximum features from the

vehicle via detecting the optimal position and incorporating a Region-Proposal-Network,

Region-of-Interest-Align and pooling, Non-Maximum-Suppression, Structural-Similarity-

Index, and Peak-Signal-to-Noise-Ratio. The proposed work extracts hierarchical

information from a custom video dataset and demonstrates superior performance with an

accuracy rate of 97.36% and a minimum loss of 0.0816 in an elapsed time of 1s 159ms.

Furthermore, it achieves a validation loss of 0.1506, and a validation accuracy of 96.46%.

Additionally, manuscripts illustrate different datasets and models through a systematic

literature review. Moreover, the manuscript also illustrates the Smart-City framework and

Integrated Traffic Management System architecture.

Keywords:

real-time vehicle surveillance, Smart-City,

vehicle makes and model recognition,

structural similarity index, scale-invariant

feature transform, contour-based CNN,

transport development

1. INTRODUCTION

In the rapidly expanding era of technology, the systematic

monitoring of individuals has become pervasive. In smart

cities, the demand for surveillance extends to roadside traffic

areas, where video surveillance systems are instrumental in

analyzing traffic flow, detecting incidents, and enforcing

traffic laws [1]. The roadside surveillance encompasses

intricate trending technologies, good-quality and meaningful

data sources with reliable communication protocols. However,

the implementation of such type of complex setup and their

regular maintenance incurs a considerable cost. This cost may

occur just because of complex software, highly configured

hardware, and high computation resources. Therefore, striking

a balance between the advantages and drawbacks of complex

surveillance systems becomes imperative in addressing the

multifaceted challenges those are associated with them.

To collect the data from different road-side traffic areas the

wireless-sensor network [2, 3] has appeared as the most

capable technology. In addition, computer vision also plays a

very crucial role in numerous surveillance applications. It is

found capable of handling challenges like real-time

computation amidst many vehicles at peak traffic times and

occlusions [4].

In recent years, the deep-learning techniques have been

harnessed during vehicle surveillance because of their good

performance and features. Its adoption is substantiated due to

its gainful attributes, robustness, generalization, and

scalability. For the same, the Deep Learning Convolutional-

Neural-Network (CNN) comprises two core components

namely feature extraction and classification. Feature

extraction is aimed at the acquisition of relevant features in the

input data, while classification is responsible for labeling the

input data based on the ascertained characteristics. This

architectural configuration is illustrated in Figure 1.

The feature extractor component typically includes multiple

convolutional layers, each designed to learn fundamental

features such as edges and corners, which represent low-level

features in the context of the data analysis process. These low-

level features are then amalgamated and processed by

subsequent layers to learn higher-level features such as shapes.

The classifier encompasses a fully connected layer, which

takes the extracted features as an input and a probability

International Journal of Transport Development and
Integration

Vol. 8, No. 1, March, 2024, pp. 197-213

Journal homepage: http://iieta.org/journals/ijtdi

197

https://orcid.org/0000-0001-8260-1739
https://orcid.org/0000-0002-1211-0560
https://orcid.org/0000-0002-5513-2639
https://crossmark.crossref.org/dialog/?doi=10.18280/ijtdi.080119&domain=pdf

distribution over the possible vehicle classes as an output.

Figure 2 depicts the working of CNN to detect the vehicle.

Figure 1. Convolutional neural network architecture

Figure 2. Working with CNN to detect vehicle and feature

extraction

1.1 Smart city framework for transport development and

integration

The concept of a smart city represents an advanced urban

environment built on robust data infrastructure and

sophisticated frameworks, specifically tailored for the

development and integration of transportation systems. The

foundational elements of the smart city framework include

physical infrastructures, networking systems, central

computing centers, and data storage systems. All elements are

essential in the context of smart transport management, as

illustrated in Figure 3 [5].

Figure 3. The general smart city framework

At the core of this architecture lies the physical

infrastructure, strategically planned with sensors, devices, and

cameras. These devices are aimed at capturing and generating

transportation-related data. This raw data is then transmitted

through network communication mediums to a central

computation center, where it undergoes processing to extract

pertinent details, such as vehicle information during Red-

Light-Violation incidents at roadside zebra crossings.

The seamless exchange of data between acquisition

devices and central computing centers is facilitated through

various communication channels and mediums. The processed

data then traverses through these communication mediums to

reach virtual machines, cloud computing devices, and servers

within the central computing center before being stored. The

exchange of information is essential; however, the emphasis is

on confirming the reliability of the data [6]. Reliable

information is indispensable for making swift decisions and

generating timely responses within the framework of a smart

city. The applications within smart cities utilize gathered data

to forecast outcomes, which depend significantly on a well-

designed network and astute management systems [7]. The

effectiveness solely relies on a well-designed network and an

ITMS. They both are essential for the overall functioning of

the smart city framework. Roadside traffic surveillance takes

center stage in smart cities as an integral part of an ITMS.

Video streams act as the predominant medium in surveillance

with video analytics. Figure 4 depicts a comprehensive

workflow of a modern surveillance system, outlining the

intricacies of surveillance within a smart city.

Figure 4. A comprehensive workflow of the modern video

surveillance system

The surveillance process initiates with video acquisition,

where cameras and sensors are strategically deployed as

acquisition devices. The acquired video data is then

transmitted to a central processing unit for further analysis,

where raw video streams are transformed into digital formats

to enable efficient processing and storage. In the module

analysis stage, the processed data is fed into dedicated

software modules for object detection by employing deep-

learning models for accurate results. Following data

processing and analysis, the information is stored in a

dedicated unit. These units are either on-site or cloud-based,

catering specifically to the surveillance of roadside traffic and

incorporating ITMS.

1.2 Integrated-traffic-management-systems (ITMS)

The ITMS is illustrated by a conjunction of technologies,

data inputs, and communication protocols. They are aimed at

enhancing the integration of modern transport development.

The deployment of such a system demands meticulous

198

planning of acquisition devices and equipment. The intention

behind this plan is to consider a coverage area, camera angles,

and lighting conditions. The system incorporates two distinct

camera types: the Automatic Number Plate Recognition

(ANPR) camera and the Red-Light Violation Detection

(RLVD) camera, each serving a specific role as illustrated in

Figure 5. This setup is implemented across the city and

establishes a strong interconnected network for efficient

transmission in capturing real-time information for transport

management and integration. This setup is aimed to optimize

the detection and tracking of vehicles during their stationary

periods, emphasizing safety and security.

The architectural configuration illustrated in Figure 6 and

Table 1 provides a comprehensive overview of the smart city

ITMS architecture.

Figure 5. Camera set-up of ITMS at road-side traffic area

Figure 6. ITMS architecture in Smart-City

These acquisition devices in the combination of RLVD and

ANPR are situated approximately 20 feet (6.5 meters) above

the road and 13 meters from the zebra crossline, the cameras

possess a focal length of 3.2-3.5 meters, strategically focused

on the zebra crossline. The ANPR camera is committed to

detecting the vehicle's number plate and capturing a single

image, while the RLVD camera functions as a surveillance

camera, capturing four additional images upon detecting a

violation. The captured data is transformed through a media

converter and is transmitted back to the Local Processing Unit

(LPU) via fiber optic cables. The interconnection of devices is

facilitated through an L-2 switch employing cat-6 cables.

Subsequently, the LPU transmits this processed data to the

control room via fiber optic cables, where further processing

occurs. The control room is equipped with an L-3 switch, a

storage unit, and a set of 3-4 servers, including the Central

Server, Data Server, and Media Server. The Central Server,

serving as the master server, issues instructions to the other

servers, while the Media Server functions as an aggregation

point for data from various junctions. It operates as a

distributed system to reduce server load. Moreover, the data

are stored here in multiple replicas to ensure reliability. So that

if one server goes down or is manipulated during a cyberattack,

the same data can be retrieved from another server.

Table 1. Elements and their uses within an ITMS

architecture in Smart-City

Key Elements & Uses Description

Cameras: Data

collections

Cameras with high resolution, such as

Pan-Tilt-Zoom (PTZ) cameras, are

strategically installed based on

specific needs to capture live footage

of traffic.

Video Analytics: Data

processing and analysis

This software utilizes sophisticated

algorithms to analyze the data,

identify and assess vehicles,

recognize license plates, and detect

incidents.

Servers: Data storage

The video data that has undergone

processing, along with the analytics

data, is stored either on local servers

or in the cloud for subsequent

processing.

Communication

network:

Communication

infrastructure

A dependable communication

network is crucial for the

transmission of video and data among

cameras, analytics software, storage

systems, and end-users.

User interfaces and

applications

An interface that is easy for users to

navigate enables the supervision and

management of the system through

analyzed data and reports.

Decision support and

control systems:

Integration with other

systems

Based on the analyzed data and

processing outcomes, decision

support systems provide suggestions

to traffic management authorities and

control systems. Video surveillance

of roadside traffic, such as integrated

traffic management systems, can be

integrated with additional traffic

signal control systems and emergency

response systems [8].

This manuscript focuses on a cost-efficient model for

extracting low-level vehicle features for efficient roadside

traffic surveillance. That can be achieved with the combination

of the Integrated Traffic Management System (ITMS) with

199

Smart-City transport development. The proposed work

employs a lightweight contour-based CNN to extract

hierarchical information from the vehicle by employing a

custom video dataset while considering real-world scenarios.

The key contributions of this work include two phases:

(1) Transforming the acquired vehicle video into

separate frames.

(2) Selecting the best vehicle position frame to maximize

feature extraction.

The proposed work incorporated a Region Proposal

Network (RPN), Region of Interest Pooling or Region of

Interest Align, and Non-Maximum Suppression to optimize

the entire detection process. Apart from this, the feature

extraction is enhanced through the utilization of the Structural-

Similarity-Index (SSIM) with thorough parameters

calculation, including Mean Luminance Similarity (MLS),

Mean Contrast Similarity (MCS), Mean Structure Similarity

(MSS), and Peak-Signal-to-Noise-Ratio (PSNR) for each duo

frame.

The use of contour-based detection algorithms in the

proposed methodology is justifiable for several reasons,

despite the availability of state-of-the-art. The choice of the

proposed approach aligns with the specific objectives, dataset

characteristics, and real-world traffic surveillance challenges

like varying lighting conditions, complex scenes, and

occlusions. Contour-based detection algorithms are inherently

versatile for handling complex scenarios. Unlike some

algorithms that rely on predefined patterns or features,

contour-based methods are adaptive and can identify object

edges even in challenging situations.

Overall, this research contributes to the improvement of

robust surveillance solutions tailored for smart city transport,

thereby enhancing shelter and efficiency in urban transport

systems.

2. LITERATURE REVIEW

In the context of transport development and integration,

vehicle surveillance along the roadside has gained increasing

prominence in recent times. The identification of vehicles has

emerged as a substantial focus of research due to its diverse

and valuable applications, spanning from assisting traffic

planners to facilitating real-time traffic management. This

literature review encompasses pertinent research within this

domain, placing particular emphasis on the comparison of

various surveillance techniques and technologies.

Currently, the detection of vehicle objects based on visual

information is categorized into [9, 10]: state-of-the-art

machine learning and advanced deep learning algorithms.

After detection, the recognition of vehicles became an

emerging technology that has found widespread applications

in ITMS [11]. The fine-grained-recognition and coarse-

grained recognition [12] are generally the main categories of

vehicle recognition. Fine-grained-recognition presents a

confronting due to the subtle differences within the same

vehicle class and the high similarity between different vehicle

classes. Coarse-grained recognition focuses on dividing

vehicles into cars, vans, buses, and truck types. However, the

main challenges are inter-class and intra-class diversity.

Various approaches have been proposed that utilize local

features like Scale-Invariant-Feature-Transform (SIFT) [12,

13], and Speeded-Up-Robust-Features (SURF) [14-16], along

with different encoding algorithms, to construct feature

dictionaries for vehicle recognition. However, these methods

exhibit limitations in accurately discerning specific vehicle

attributes. To address these challenges, a novel technique for

vehicle classification has been discussed in the study [17].

Various deep-learning algorithms have been applied to

video surveillance in recent times, exhibiting diverse levels of

accuracy and inherent limitations. The subsequent Table 2

outlines the recent deep learning model employed in video

surveillance, accompanied by performance and associated

limitations.

Table 2. Comparative overview of various deep learning

models

Model Descriptions

You-Only-

Look-Once

(YOLO)

[18-27]

It is a widely used object detection model for

vehicle surveillance, renowned for its speed

and accuracy. It has achieved state-of-the-art

performance on benchmark datasets including

the COCO dataset.

Faster R-CNN

[28-33]

It is a prevalent object detection algorithm

employed during vehicle surveillance. It

operates in two stages, generating region

proposals and then classifying objects within

those regions. The performance is good but

may be slower than YOLO.

Single-Shot-

Multi-Box-

Detector (SSD)

[34-37]

It is a high-speed and accurate real-time

object-detection technique, excelling on the

COCO dataset and various other benchmark

datasets.

Mask R-CNN

[38]

It is an advanced version of Faster R-CNN

and identifies instances as well as objects. It

is an object identification and segmentation

method, demonstrating proficiency in

recognizing and segmenting objects in video

sequences.

Panoptic

Feature Pyramid

Networks

(PANet) [39]

It is an extension of Mask R-CNN, and

introduces a spatial consideration mechanism

and a feature pyramid attention (FPA)

module, enhancing performance in instance

and semantic segmentation tasks.

PointRend

[40]

It is an extension of Mask R-CNN and

employs a pixel-level rendering approach for

image segmentation. It utilizes a point-based

sampling technique and a learnable

interpolation module, producing high-quality

instance segmentation results.

EfficientDet

[41, 42]

It is a modern object detection technique. It is

known for good performance and quick

response through neural architecture search

and efficient scaling. It shows promise in

enhancing surveillance systems but demands

substantial processing resources.

CenterNet

[43]

It is a contemporary object recognition

technique predicting object centers and

offsets using a single heatmap. It requires a

larger training dataset. Demonstrates good

performance but may face challenges in

detecting small objects.

DeepSORT

[43]

It is a contemporary object-tracking

methodology, that exhibits high tracking

accuracy on benchmarks like MOTChallenge,

MOT17, and DukeMTMC. It may face

challenges with occlusions, necessitating

additional post-processing approaches to

enhance tracking effectiveness.

The algorithm functions by analyzing vehicles and

discerning essential features. Various algorithms are available

200

for extracting features of four-wheeler vehicles for

surveillance, contingent on the surveillance system type and

available data. Several common algorithms include the

License Plate Recognition (LPR) Algorithm [44-47] employs

image processing techniques to detect and recognize the

license plates of four-wheeler vehicles. Subsequently, it

utilized methods like binarization, edge detection, and

character segmentation to extract characters from the license

plate. Object Detection and Tracking Algorithms [28, 35, 48-

54] identified the presence of four-wheeler vehicles within a

given scene. Techniques like Haar Cascades, Histogram-of-

Oriented-Gradients (HOG), and CNN are applied to recognize

vehicles in the image.

The Vehicle Make and Model Recognition algorithm [55]

analyses visual attributes of the car, such as shape, and size,

utilizing deep learning algorithms to classify the vehicle under

a specific brand and model for Intelligent Transportation

Systems (ITSs) [6]. By incorporating deep learning techniques

a robust real-time system achieves high accuracy. The real-

time approach combines the SURF detector with the Support

Vector Machines (SVM) and provides a solution for Make and

Model Recognition (MMR) to recognize car types from single

images based on the geometry and appearance of car emblems

in rear-view images. These images are captured by traffic

cameras. The aim is to learn both the geometry and appearance

of car emblems for accurate vehicle model recognition. The

SURF features of vehicles' front- or rear-facing images are

extracted and stored as codewords in dictionaries. Addressing

the intricacies of vehicle model recognition, the research [15,

56, 57] introduced a real-time vehicle make and model

recognition (VMMR) using a Bag-of-Speeded-Up-Robust-

Features (BoSURF).

According to the survey, video surveillance systems have

advanced over three generations, as illustrated in Figure 7.

Figure 7. Generations of surveillance system

The literature review underscores the versatility of deep

learning, offering solutions across diverse domains and

complex problem scenarios. The identified research gaps are

listed in Table 3.

In summary, this comprehensive literature review delves

into the latest research in this field, focusing on diverse

surveillance methods and technologies. The collective

findings emphasize that different deep learning models exhibit

varying performance for different tasks during vehicle video

surveillance such as detection, tracking, and classification,

normally it ranges from 90-95%. Consequently, selecting a

deep learning model for a specific application should be

guided by the task requirements, computational resources, and

dataset characteristics.

Moreover, Deep learning also plays a crucial role in vehicle

surveillance and provides an automated and hierarchical

approach to extracting valuable insights from vehicle images

or video frames. Algorithms such as License Plate Recognition

(LPR), Object Detection and Tracking, and Vehicle Make and

Model Recognition are used for feature extraction..

Table 3. Potential research gaps identified from systematic

literature review

Parameter Descriptions

Unnecessary data

Developing effective techniques to handle

imbalanced data for vehicle recognition,

ensuring unbiased model training.

Real-time

computation

Probing methods to enhance the real-time

processing capabilities of deep learning

algorithms, especially in resource-

constrained environments.

Integration of the

latest models

Exploring strategies to seamlessly integrate

modern techniques like EfficientDet,

CenterNet, and DeepSORT into existing

surveillance systems for enhanced

functionality.

Optimization of

computational

resources

Developing algorithms that optimize

computational resources, ensuring efficient

processing on low-power devices without

compromising accuracy.

Incorporation of

multiple

procedures

Integration of various algorithms,

including LPR, Object Detection, and

VMMR to enhance the overall efficiency

and accuracy of vehicle surveillance.

Adaptation to

circumstances

Capable algorithms for adapting a diverse

environmental condition, such as varying

lighting, weather, and occlusions, to ensure

consistent and reliable vehicle recognition

in all situations.

Improved image

pre-processing

techniques

Finding advanced image preprocessing

techniques to enhance image quality,

reduce noise, and improve the clarity of

captured vehicle images, aiding in more

accurate recognition processes.

3. DATASET

Over the preceding decades, a multitude of datasets have

been extensively employed in the domain of object detection

and vehicular surveillance, as comprehensively elucidated in

the literature review undertaken within this research

manuscript. The ensuing Table 4 provides prevalent datasets

employed in the realm of vehicle detection and video

surveillance, accompanied by descriptive details and rationale

for their utilization.

The custom dataset excels in aligning with specific research

goals for vehicle detection in realistic traffic scenarios. It

offers diversity, real-world legitimacy, and a deliberate focus

on the research objectives. Real-world challenges, such as

partial occlusions, enhance the dataset's complexity,

addressing unique hurdles during vehicle analysis. While

benchmark datasets may not precisely match the targeted

research focus on optimal vehicle position detection. The

custom dataset stands out for its alignment with specific

research goals with the ability to capture vehicles from

multiple angles conducive to comprehensive vehicle analysis.

The experimental dataset in this study is meticulously

curated to meet the evolving needs of integration of transport

development. The target location is the roadside traffic signal

201

area, here vehicles temporarily halt according to signal time.

Typically, the signal time ranged from 30 seconds to 2 minutes,

hence accordingly videos were recorded. This bespoke dataset

features 20 video recordings 5 for each Indian four-wheeler

vehicle, the duration of the video ranges from 50 seconds to

1.5 minutes. Each video contains 300 frames. Notably, the

videos include four distinct vehicle brands: Hyundai i20,

Maruti-WagonR, Maruti-Swift, and Maruti-Suzuki-Brezza,

selected to accommodate variations in body length and style.

All decided vehicles exhibit different colors. The reason for

selecting different vehicles was to account for variations in

body length and style across different models, which surely

prevented the model from being biased during training.

The videos were captured in the morning, afternoon, and

evening, with a moving camera. The videos were strategically

recorded from diverse angles (+15 to -15 degrees relative to

the scene) to ensure coverage of vehicles from various

positions and viewpoints. This approach facilitates the

identification of optimal vehicle positions. The videos also

consider different meteorological conditions, including sunny

and opaque scenarios, with some recordings featuring partial

occlusions caused by shadows from trees and individuals.

Sample video snippets of the recorded dataset are illustrated in

Figure 8.

This comprehensive and diverse custom dataset serves as a

valuable resource for training and testing vehicle detection,

providing real-world challenges and scenarios that extend

beyond the limitations of existing benchmark datasets.

Table 4. Commonly used datasets in vehicle detection

Dataset Description Justification

KITTI [58-60]

It is a large size dataset, containing real-world data annotated 2D and

3D object labels. Data is accumulated from cars driving around the

city which comprises various cameras and sensors. The dataset

comprises 323 annotated images categorized into the road, vertical,

and sky classes, 252 acquisitions with RGB and Velodyne scans,

divided into 140 for training and 112 for testing. Additionally, there

are 170 training images and 46 testing images, covering 11 classes.

The benchmark dataset is for autonomous

driving research. It proposes real-world

scenarios but may lack diversity in vehicle

models and colors.

CamVid [61, 62]

It is a moderate-size street scene video dataset annotated with object

segmentation and classification. It is five video sequences captured by

a 960×720 resolution camera, annotated in various 32 classes.

Appropriate for vehicle detection in urban

contexts nevertheless may not cover diverse

vehicle types.

City-Scapes [63]

It is a large dataset, that recorded urban street scenes in various cities.

Data is annotated for semantic segmentation and object detection. It

contains approx 5000 fine annotated and 20,000 coarse annotated

images.

Primarily used for semantic segmentation-

related tasks and may be employed for

vehicle detection in urban environments.

MIO-TCD [64]

It is a large-size traffic camera images and video dataset that covers

various traffic scenarios and vehicle categories. It consists of a

localization dataset of 1,37,743 full video frames with bounding

boxes around traffic objects and a classification dataset of 6,48,959

crops of traffic objects from the 11 classes.

Offers diversity but may be deficient in

comprehensive annotations for several tasks.

COCO [65]

It is a very large size and large-scale dataset with a diverse collection

of images with object annotations in various contexts. The dataset

consists of 328K images of 80 object categories.

It is a comprehensive dataset for object

detection. Its diverse context may not align

precisely with the study's objective.

MOT-Challenge

[66]

It is a moderate to large-size dataset with multiple camera views and

annotated object tracks. Focuses on multi-object tracking tasks

Predominantly adapted for tracking tasks and

may require adaptation for single-frame

object detection scenarios.

Figure 8. Recorded video snippets featuring various Indian vehicles captured at different times and under diverse occlusion

conditions

202

4. METHODOLOGY

This section depicts the entire proposed methodology and

implementation details.

4.1 Proposed methodology

The contour-based detection approach commonly utilizes

edge detection. The graphical representation of the proposed

approach is illustrated in Figure 9.

Figure 9. Graphical representation of the proposed approach

Initially, the video acquisition camera will record the video.

This recorded video will be used as an input. The proposed

work will process the video and generate 300 frames, which

comprises vehicles only. For the same, the contours will be

detected, and the contour feature will be computed (as

illustrated in the algorithm: contour-based detection) in each

frame to resemble the vehicle only.

In state-of-the-art, the contour-detection approach uses edge

detection to identify and detect the contours. This approach

finds the boundaries between regions of the image with

different intensity values and gradients. In vehicle detection to

get the optimal position of the four-wheeler, these boundaries

can be understood as the outer hood or bonnet, bumper,

bumper grill, side mirrors, side indicators, front glass, license

plate, vehicle logo, headlights, etc. It means, the frames which

contain maximum contours, have maximum features.

Therefore, the optimal position of the vehicle is one where

maximum features are present. Once the contours have been

identified, they can be used to extract features from the frame.

Later, all processing will performed on these frames only.

Further processing includes the computation of SSIM with

parameters and in-depth analysis of the vehicle through pixel

intensity and distribution.

Therefore, these methods involve identifying the

boundaries between areas of the image with different intensity

values or gradients. The entire suggested methodology is

segmented into two phases:

(1) Transforming video into individual frames for

vehicle detection.

(2) Identifying and choosing the best vehicle position to

maximize feature extraction.

Phase-I: Transforming video into individual frames for

vehicle detection

The proposed workflow is initiated by systematically

processing a sequence of continuous video frames, ensuring

the careful conversion of each frame into an image

representation, and storing it in the '𝑓𝑟𝑎𝑚𝑒𝑖𝑚𝑎𝑔𝑒𝑠' list. This

methodical approach guarantees the seamless capture of every

frame, laying the foundation for in-depth analysis. Some of the

sample frames are depicted in Figures 10, 11, and 12. Selected

50 frames of Figure 10 represent the front view of the vehicle,

selected 50 frames of Figure 11 represent the partial side view

of the vehicle, and selected 119 frames of Figure 12 represent

the total side view of the vehicle.

To give in-depth clarity to video frames of the front view,

partial side view, and total side view, a single sample frame is

picked from Figures 10, 11, and 12, which is illustrated in

Figure 13.

Figure 10. Sample 50 frames depicting the front view of the

vehicle

Figure 11. Sample 50 frames depicting the partial side view

of the vehicle

Figure 12. Sample frames depicting the complete side view

of the vehicle

203

Figure 13. Sample frame from each view of the vehicle

Contour-based vehicle object detection in a video involves

detecting the contours of vehicles in each frame of the video

and tracking them across frames to determine their motion and

trajectory. The set of all contours can be represented through

Eq. (1):

Contours = {Ctr1, Ctr2, Ctr3, ..., Ctrn} (1)

In the above Eq. (1) Contours represent the set of contours

in the image, and Ctr1, Ctr2, Ctr3, ..., Ctrn represents

individual contours within the set. Each contour can be

represented as a set of points or a continuous curve that defines

the boundary of an object in the image, these boundaries can

be understood as the outer hood or bonnet, bumper, bumper

grill, side mirrors, side indicators, front glass, license plate,

vehicle logo, headlights, etc. Let 𝑉_𝑂𝑏𝑗𝑡 be the set of vehicle

objects in frame t, and 𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠𝑡 be the set of contours

detected in frame t. The contour-based vehicle object detection

can be defined via Eqs. (2), (3) and (4):

Contourst = Detect_Contours (frame t) (2)

V_Objt = {Ctri|Ctri∈Contourst, Is_VehicleContour(Ctri)} (3)

V_Objt = Track_Vehicles(V_Objt -1, V_Objt) (4)

The Eqs. (2)-(4) parameters are as follows:

• Detect_Contours(.) = function detects contours in

each frame

• Is_VehicleContour(.) = function that determines

whether a contour corresponds to a vehicle object based on its

size, shape, & other features

• Track_Vehicles(.) = function traces the vehicles

across the frame

The algorithm detects and identifies the contours in each

video frame that correspond to vehicles. This progression is

repetitive for each video frame.

Algorithm - contour-based-detection

Inputs: VideoStream

Outputs:

V_Obj = {v1, v2, ..., vn}

C(t) = {c1, c2, ..., cm}

f(ci) = {f1, f2, ..., fk}

Procedure:

Initial set of vehicle objects V_Obj = {}

for each_frame t in the video:

a. Extract contours C(t) in the video frame

b. for each_contour c in C(t):

i. Calculate the contour features f(c)

ii. Use a classifier or thresholding technique

to determine if the contour resembles a

vehicle.

iii. If the contour resembles a vehicle object,

add it to the set of vehicle objects V_Obj.

c. Track the motion and trajectory of each vehicle

object in V_Obj over time.

End

In the proposed algorithm, the Outputs the V_Obj represents

the set of vehicle objects, C(t) represents the set of contours in

frame t, ci represents the ith the contour in C(t), f(ci) represents

the feature vector for contour ci, and k represents the number

of contour features.

Utilizing contour detection techniques, the proposed

method adeptly identifies vehicle contours within a predefined

detection area. The process meticulously employs filters with

specific location and size criteria, ensuring that only relevant

contours are retained for closer examination. To improve

result visualization, the pipeline enhances its functionality by

visually overlaying the identified vehicle outlines onto the

original video frames, providing a clear representation of the

outcomes.

In-depth calculations for the same will be conducted in

phase-II.

Phase-II: Identifying and choosing the best vehicle position

to maximize feature extraction

In addition to vehicle detection, the objective is to determine

the ideal positioning of vehicles. From the multitude of frames

produced by the above algorithm (comprising 300 frames

exclusively showcasing vehicles), the identification of the top

frames (5 frames) relies on the presence of the highest number

of features. The author employed a methodology based on

features to extract specific attributes or characteristics of

vehicles, which were then utilized to train the model in

identifying vehicles in the optimal position with the greatest

number of features. Therefore, a crucial element of this

process involves selecting the most informative features for

the given task.

In computer vision, feature gain denotes the amount of

information acquired by extracting a particular feature from an

image or object. Maximum feature gain is attained when the

feature can effectively distinguish the object of interest from

other objects in the image. The calculation of maximum

features is determined through Eq. (5):

G(DataSet, Features)= H(DataSet)-H(DataSet│Features) (5)

In the Eq. (5), the parameters denote:

• DataSet = Dataset

• G(DataSet, Features) = represents the maximum

feature gain in the DataSet

• H(DataSet) = signifies the entropy of the DataSet

• H(DataSet|Features) = signifies the conditional

entropy of the DataSet given Features

204

Let, DataSet be D and Features is F, then the maximum

feature gain represents the amount of information gained by

adding feature F to the dataset D. The entropy of the dataset D

represents the amount of uncertainty in the dataset, while the

conditional entropy of the dataset given feature F represents

the amount of uncertainty in the dataset that can be explained

by feature F. The mathematical expression for maximum

feature gain from a vehicle object can be represented as

follows:

Let V_Obj be the set of vehicle objects in an image, and F

be the set of features that can be extracted from each object.

The maximum feature gain can be defined via Eq. (6):

𝑚𝑎𝑥(𝐹𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐹(𝑢, 𝑣) ∗ 𝑙𝑜𝑔(
𝑃(𝑉𝑂𝑏𝑗|𝑢, 𝑣)

𝑃(!𝑉_𝑂𝑏𝑗|𝑢,𝑣)
) (6)

In Eq. (6), the parameters denote:

• Fi = represents the ith feature in F

• u,v = represent the coordinates of a pel in the image

• P(V_Obj|u,v) = probability of a pel being part of a

vehicle object

• P(!V_Obj|u,v) = probability of a pel not being part of

a vehicle object

It is based on the principle of information gain to measure

the uncertainty while extracting a particular feature. The

feature that maximizes this reduction in uncertainty is

considered the feature that provides the most information

about the presence or absence of a vehicle object in the image.

To extract feature maps of a consistent size from the image's

feature map, Region-of-Interest-Pooling (RoI pooling) or

Region-of-Interest-Align (RoI align) techniques are

employed. In RoI pooling, the RoI is divided into a fixed grid,

and max pooling is performed within each grid cell to obtain

feature maps of a fixed size. On the other hand, RoI align uses

bilinear interpolation to align the RoI to a fixed size, ensuring

more accurate spatial alignment. The resulting RoI feature

maps are then utilized for localization. Non-maximum

suppression (NMS) is applied to eliminate redundant

detections and keep only the most confident ones. TensorFlow

provides functions, such as tf. image. non_max_suppression,

to perform NMS efficiently.

4.2 Implementation

Python 3.8 was chosen for implementing the algorithms

discussed in this manuscript, leveraging its open-source

nature. Python's extensive collection of robust libraries and

packages makes it well-suited for the execution of deep

learning models. The implementation occurred on an Intel

Core i7 processor with 8 GB of RAM.

The CNN model, constructed using the Keras library,

encompasses multiple layers, including convolutional layers

with ReLU activation functions, max-pooling layers, dropout

regularization (0.25), and fully connected layers. Tailored for

vehicle feature extraction and generating a SoftMax output,

the CNN model undergoes training with the Adam optimizer

and categorical cross-entropy loss function.

Accuracy is monitored as a training metric over 10 epochs

with a batch size of 10. The model incorporates processes like

frame differencing, contour detection, and classification.

Notably, the code allows users to specify a video file for

processing. Table 5 provides a summary of the model

architecture, detailing layer types, output shapes, and

parameters, where out of a total of 2,00,174 parameters,

2,00,168 are trainable, and 6 are non-trainable.

Table 5. The architecture of the proposed CNN with

parameters

Layer (Type)
Output

Shape
Parameter

batch_normalization

(BatchNormalizaton)

(None, 28,

28, 3)
12

conv2d (Conv2D)
(None, 26,

26, 32)
896

max_pooling2d (MaxPooling2D)
(None, 13,

13, 32)
0

conv2d_1 (Conv2D)
(None, 13,

13, 64)
32832

max_pooling2d_1

(MaxPooling2D)

(None, 6, 6,

64)
0

conv2d_2 (Conv2D)
(None, 6, 6,

128)
73856

max_pooling2d_2

(MaxPooling2D)

(None, 3, 3,

128)
0

dropout (Dropout)
(None, 3, 3,

128)
0

flatten (Flatten) (None, 1152) 0

dense (Dense) (None, 128) 147584

dense_1 (Dense) (None, 64) 8256

dense_2 (Dense) (None, 32) 2080

dense_3 (Dense) (None, 2) 66

5. RESULT AND DISCUSSION

5.1 Result

The proposed workflow is initiated by systematically

processing a sequence of continuous video frames, ensuring

the careful conversion of each frame into an image

representation, and storing it in the '𝑓𝑟𝑎𝑚𝑒𝑖𝑚𝑎𝑔𝑒𝑠' list. This

methodical approach guarantees the seamless capture of every

frame, laying the foundation for our in-depth analysis. To

emphasize specific features within these frames, this

manuscript explores various plot patterns. Notably, one of the

simplest yet most insightful ways to visualize these features is

by presenting the image itself. As illustrated in Figures 10, 11,

and 12 the author adopts this approach to showcase the series

of consecutive video frames as individual images, with each

frame treated as an element in the '𝑓𝑟𝑎𝑚𝑒𝑖𝑚𝑎𝑔𝑒𝑠' list.

Figure 13 illustrates the front, partial side, and total side

view of the vehicle. In the continuation, Figure 14 illustrates

all detected contours in the initial and final frames of the video

for reference. Here, the dark-colored vehicle is parked in the

shadow of a tree, which can be seen in Figure 14.

All detected contours are represented in green to show the

different intensity values and gradients. In the first image, the

contours are detected on the front glass, bonnet, bumper grill,

license plate, and logo. In the second image, the contours are

detected on the side glass and gate. Which reflects the

maximum contours available in the first image. Therefore, the

best vehicle position is illustrated in Figure 15.

To highlight the maximum information those are detected

by the contours illustrated by the heatmap. Figure 16 displays

the magnitude of the phenomenon in a 2-dimensional

Heatmap.

In addition, Figure 17 depicts the contours of the white

Maruti Swift, which has been parked on sunny times without

any shade.

205

Figure 14. Contours detected in the front and side

perspectives of an image featuring a Maruti WagonR, taken

under the shadow of a tree

Figure 15. Optimal vehicle position, which has maximum

features

Figure 16. Heatmap to display the magnitude of the

phenomenon in 2-dimensional Heatmap

Figure 17. Detected contours in the frontal view of a White

Maruti Swift Vehicle

In Figure 17, all contours are detected on the headlight,

bonnet, license plate, grill, and logo. Moreover, the contours

are also highlighting the image that is present on the bonnet.

All this information may be beneficial for effective

surveillance and maximum information gain.

Additionally, the histogram plot can shed light on how the

pixel values in an image are distributed. Video histogram

analysis focuses on the quantitative analysis and visualization

of pixel intensity distributions within images and video

frames. The analysis can provide details regarding the

brightness, contrast, and pixel intensity as a whole. A

histogram is generated using the flattened pixel intensity

values. It is divided into 256 bins, representing the full range

of pixel intensities (0 to 255). The following is a representation

of the histogram plot used for illustrating the distribution of

features:

Assume that X = {x1, x2, ..., xn}T is a collection of n

observations of a particular feature. The feature values xi can

be discrete or continuous. Let B = [B1, B2, ..., Bk] be the

collection of k non-overlapping bins. Each of [Bj] symbolizes

a range of feature values. The observations in each bin are then

counted in the next step.

Let C = "c1, c2, ..., cn" be the collection of counts, with cj

denoting the number of observations that fit into the bin Bj. To

determine the relative frequencies in each bin, the counts must

be normalized in the last step. By dividing each count cj by the

sum of the observations n and the width of the bin Bj, this is

often accomplished.

Corresponding to the range and distribution of the feature

values, each bin can be either uniform or varied. These are

possible representations for the normalized counts or relative

frequencies as shown in Eq. (7):

𝑓𝑗 =
𝑐𝑖

(𝑛 ∗ 𝐵𝑗)
 (7)

Here, in Eq. (7) the fj stands for the relative frequency of

observations in the bin Bj.

The relative frequencies fj can be plotted against the bin

centers or boundaries to get the histogram. Depending on the

desired level of granularity in the plot, the midpoints or ends

of the bins can be chosen as the bin centers or limits. The

resulting plot shows the distribution of the feature values

206

graphically and can be used to spot trends or abnormalities in

the data. Figure 18 portrays the pixel distribution of 2 different

frames of video first and last frame sequentially, whereas

Figure 19 illustrates the intensity of pixels in the video.

This manuscript also acknowledges the inevitable diversity

in pixel intensities across the extracted frames. To examine the

relationship between pixel intensity fluctuations and the

corresponding video content, it becomes essential to calculate

the average intensity across all frames, effectively

representing the mean video intensity. Hence, subgraphs (a)

and (b) of Figure 20 depict the average intensity of 100 frames

through a line plot (showing frame-time correlation) and a

scatter plot (facilitating the comparison of pixel intensities) for

video analytics.

Figure 18. Histogram of pixel distribution

Figure 19. Pixel intensity in video

Figure 20. (a) Line plot and (b) Scatter plot for visualizing video intensity across 100 frames to observe the correlation between

pixel intensity changes and corresponding video

207

In the realm of practical real-life scenarios, the two

different vehicles can look the same or the same vehicle can

look different in different positions, illumination, and light

intensity. Therefore, metrics that replicate this behavior tend

to be more effective. The Structural Similarity Index (SSIM)

[67] and Scale-Invariant Feature Transform (SIFT) are two

methodologies for extracting features to compare between two

images. SSIM serves as a metric to evaluate the similarity

between two images. The SSIM computed via Eq. (8) and its

parameter descriptions are listed in Table 6.

𝑆𝑆𝐼𝑀(𝐼1, 𝐼2)

=
((2 ∗ 𝜇𝐼2 ∗ 𝜇𝐼2 + 𝐶𝑜𝑛𝑠𝑡1) ∗ (2𝜎𝐼1𝐼2 + 𝐶𝑜𝑛𝑠𝑡2))

((𝜇𝐼12 + 𝜇𝐼22 + 𝐶𝑜𝑛𝑠𝑡1) ∗ (𝜎𝐼12 + 𝜎𝐼22 + 𝐶𝑜𝑛𝑠𝑡2))

(8)

Table 6. Description of Eq. (8) parameters

Parameters Description

μI1, μI2 Mean: over a window in Image I1 and I2

σI1, σI2
Std deviation: over a window in Image I1

and I2

σI1I2
Co-variance: over a window among

Image I1 and I2

Const1, Const2,

Const3
Constants

Table 7 displays Mean SSIM (MSSIM) and Table 8

displays various parameters of SSIM including Mean

Luminance Similarity (MLS), Mean Contrast Similarity

(MCS), Mean Structure Similarity (MSS), and Peak-Signal-to-

Noise-Ratio (PSNR) for pairs of frames (from frame 0 to 299).

However, considering the overall similarity of nearly

consecutive frames, only 15 comparisons were conducted

between the initial and final frames, gradually transitioning

between them to compute all parameters. The value ranges

from -1 to +1, where +1 signifies identical or extremely similar

images, and -1 indicates highly divergent images.

In Table 7, the Frame Image pair column contains frame

combinations 0 and 298 i.e. first and almost the last frame. As

we move from the first frame to the last frame, similar frames

start coming closer. As a result, it can be understood that those

frames are identical. Therefore, it can be seen in the table that

the value of SSIM for frames 0-298 is small while for frames

14-284 it is large. Therefore, if we continue increasing like

this, we will get a large value for the same frame, which will

show their similarity.

Table 7. Mean structural similarity index (MSSIM)

Frame Image Pair MSSIM of Each Pixel SSIM Map

0-298 0.17571

1-297 0.17214

2-296 0.16710

3-295 0.16790

4-294 0.16827

5-293 0.17451

6-292 0.18944

7-291 0.19132

8-290 0.18631

9-289 0.18430

10-288 0.18287

11-287 0.18577

12-286 0.19124

13-285 0.19253

14-284 0.19271

Table 8. Structural Similarity Index (SSIM) parameters

Frame Image Pair MLS MCS MSS PSNR

0-298 -26.2091 13.15 -137.803 8.20039

1-297 -26.2264 13.75 -136.909 8.29760

2-296 -22.9908 13.92 -136.515 8.34860

3-295 -22.3341 13.94 -136.330 8.36549

4-294 -21.4706 14.23 -135.556 8.49104

5-293 -20.0737 14.88 -135.730 8.63730

6-292 -21.0771 15.25 -136.424 8.73536

7-291 -22.8137 15.81 -137.173 8.79545

8-290 -20.4389 15.45 -136.206 8.95678

9-289 -21.9710 15.97 -136.784 8.94932

10-288 -22.7487 16.24 -136.354 8.94783

11-287 -19.7421 16.27 -135.917 9.11346

12-286 -18.4450 16.87 -136.870 9.20767

13-285 -18.5874 16.82 -137.477 9.24508

14-284 -19.7256 16.99 -137.748 9.27787

In Table 8, the large value of PSNR represents high

similarity and the small value represents low similarity.

Subgraphs (a) and (b) of Figure 21 illustrate the model's

performance by evaluating the running accuracy and loss.

Additionally, Figure 22 illustrates the minimum loss and

validation loss. The model was ultimately saved with a

minimum loss of 0.0816 and an accuracy of 0.9736.

(a)

(b)

Figure 21. Loss and accuracy progression throughout each

iteration in every epoch

208

Figure 22. Minimum loss and validation loss sequentially in

each epoch

The performance of the proposed work in terms of

processing time elapsed/step with validation loss and

validation accuracy is depicted in Table 9 and Table 10. It can

be observed that as epoch increases elapsed time/step

decreases, and the model ultimately achieves its optimum

accuracy at iteration 2.

In addition to the performance showcased in the preceding

figures and tables, the author assessed the effectiveness of the

proposed approach against ten alternative methods. The

comparative analysis of accuracy with these ten approaches is

presented in Table 11 and Figure 23 revealing that the

performance of the proposed work surpasses that of the other

ten methods.

Table 9. Performance in terms of processing time per step

with loss and accuracy in each epoch during Iteration 1

Epoch
Iteration 1

Time / Step Loss Accuracy

Epoch 1 5s 245 ms 0.3186 0.8590

Epoch 2 1s 153 ms 0.1622 0.9736

Epoch 3 1s 156 ms 0.1179 0.9736

Epoch 4 1s 155 ms 0.1055 0.9736

Epoch 5 1s 157 ms 0.1113 0.9736

Epoch 6 1s 159 ms 0.0961 0.9736

Epoch 7 1s 158 ms 0.0922 0.9736

Epoch 8 1s 158 ms 0.0850 0.9736

Epoch 9 1s 155 ms 0.0834 0.9736

Epoch 10 1s 155 ms 0.1305 0.9646

Table 10. Performance in terms of processing time per step

with loss and accuracy in each epoch during Iteration 2

Epoch
Iteration 2

Time / Step Loss Accuracy

Epoch 1 4s 223 ms 0.3274 0.9207

Epoch 2 1s 147 ms 0.1468 0.9736

Epoch 3 1s 145 ms 0.1198 0.9736

Epoch 4 1s 158 ms 0.1047 0.9736

Epoch 5 1s 161 ms 0.1103 0.9736

Epoch 6 1s 160 ms 0.0970 0.9736

Epoch 7 1s 155 ms 0.1028 0.9736

Epoch 8 1s 158 ms 0.0939 0.9736

Epoch 9 1s 166 ms 0.0947 0.9736

Epoch 10 1s 159 ms 0.0844 0.9736

Table 11. Comparison in terms of accuracy with the other ten

approaches

Approach Accuracy

SqueezeNet 96.33%

Random Forest (RF) 94.53%

Support Vector Machine (SVM) 97.89%

Speeded-Up Robust Features (SURF) Detector,

Support Vector Machines
91.70%

Symmetrical SURF Descriptor 91.10%

Partial-Feature based Part-Based Model 92.47%

Bag of Speeded-Up Robust Features (BoSURF) 94.84%

Haar-like Features, AdaBoost, Gabor Wavelet

Transform, Local Binary Pattern Operator, PCA
91.60%

Linear SVM Binary Classifier, HOG Features 94.00%

Harris Corner Strengths 96.00%

Proposed Work 97.36%

Figure 23. Performance of proposed work as compared to

other approaches

5.2 Discussion

The use of a contour-based detection approach in the

proposed methodology is justifiable for several reasons,

despite the availability of state-of-the-art object detection

algorithms. The choice of the proposed approach aligns with

the specific objectives, dataset characteristics, and the

challenges addressed in the research, particularly in the

context of handling varying lighting conditions. The

algorithms may exhibit sensitivity to certain conditions,

adaptability, robustness to complex scenes, ability to handle

occlusions, and computational efficiency. Moreover, they

serve as a foundational step, paving the way for subsequent

more specialized vehicle analyses and monitoring.

During the study, the author observed that the proposed

approach is well suited for four-wheelers such as cars. Its

accuracy on commercial vehicles, heavy vehicles such as

trucks, and three-wheelers such as autos may vary because of

their shape and size. Another challenge arises with identical

vehicles, as in some cases, the commercial vehicle belongs to

the same company, which is why they may be identical.

Moreover, since a brand-new vehicle with the same company,

same brand, and same color is identical, this is also a

209

challenge.

Table 12 provides a detailed justification for this choice to

show the performance of the proposed work under different

scenarios.

Table 12. Justification of contour-based detection approach

to perform under different scenarios

Parameters Justification

Robustness to

Complex

Scenarios

Contour-based detection algorithms are

inherently versatile in handling complex

scenarios. Unlike some algorithms that may

rely on predefined patterns or features,

contour-based methods are adaptive and can

identify object edges even in challenging

situations.

Computational

Efficiency

The algorithms are often computationally

efficient, making them suitable for near-real-

time applications. They require fewer

computational resources compared to some

other deep learning-based methods, which

can be advantageous in resource-constrained

environments. This adaptability aligns with

our methodology to detect the optimal

position of the vehicle.

Adaptability to

Lighting

Variations

While it is true that contour-based algorithms

can be sensitive to lighting conditions, they

can still perform effectively with appropriate

preprocessing (image enhancement and

thresholding) and adaptive techniques to

mitigate the impact of lighting variations.

Furthermore, the methods can work well in

scenarios where shadows or changing

illumination patterns are present, which are

common in real-world roadside traffic areas.

Custom Dataset

Considerations

The custom dataset used in our study

incorporates scenarios encountered in real-

world traffic. Since contour-based detection is

inherently well-suited for such scenarios, its

selection was deliberate.

Handling

Occlusions

The approach offers advantages when dealing

with partial occlusions. In scenarios where

vehicles are partially obscured by other

objects or surroundings (e.g., trees or

buildings), and can often still outline the

visible portions of the vehicle, which is

essential in traffic monitoring applications.

Region of

Interest (ROI)

Extraction

The approach facilitates the extraction of

ROIs containing vehicles. These ROIs can

subsequently be subjected to more focused

and computationally intensive analysis,

allowing for efficient resource allocation.

In roadside traffic area surveillance, the positioning of

vehicles within the camera frame is of utmost significance.

Vehicle detection in roadside traffic monitoring videos plays a

vital role in ITMS. To set up video surveillance at roadside

traffic, locations of cameras, and other equipment, considering

factors such as coverage area, camera angles, and lighting

conditions matter. The widespread equipment of surveillance

cameras has resulted in a vast database of traffic footage for

analysis. Conventional surveillance is often hindered by

distortions resulting from camera angles and lightning.

However, when the cameras are positioned at a prominent

viewing angle, the road appears more distant, which affects the

size of the detected objects. Effectively addressing these

challenges and finding solutions is essential, especially in

complex camera scenes, to enable further practical

applications. To tackle this issue, contour-based detection

methods are utilized. These techniques concentrate on

delineating the silhouette of vehicles, encompassing their

distinctive features.

In summary, by addressing these challenges and finding the

optimal vehicle position, this work not only advances the field

of roadside traffic surveillance but also aligns with the broader

goal of optimizing the smart city framework for enhanced

functionality and contributes to the overall efficiency of smart

city traffic management systems. These advancements not

only address the specific challenges of road-side traffic

surveillance but also contribute to the broader goal of creating

more intelligent, efficient, and secure urban environments.

6. CONCLUSIONS

This manuscript introduces a lightweight CNN based on

contour detection, specifically designed to contribute to

transport development and integration. The proposed

architecture focuses on vehicle detection and the extraction of

crucial features, leveraging a custom dataset for maximum

effectiveness. The analysis includes the evaluation and

visualization of pixel distribution, pixel intensity, and video

density through various plots and charts. The Structural

Similarity Index (SSIM) is employed to compare frames in

different positions, calculating parameters such as MSSIM,

ssim_map, MLS, MCS, and MSS, along with PSNR for frame

pairs (from frame 0 to 298), presented in tables and figures.

The SSIM metric is used to assess how similar two images are

to one another; it ranges in value from -1 to +1. The number

+1 denotes that the two images are identical or extremely

similar, whereas a value of -1 denotes that the two images are

highly dissimilar. These numbers are frequently modified to

fall inside the range [0, 1], where the extremes have the same

significance. However, human visual perception excels at

identifying structural details in a scene and discerning

differences between the information extracted from reference

and sample images. In the realm of practical real-life scenarios,

the two different vehicles can look the same or the same

vehicle can look different in different positions, illumination,

and light intensity. Therefore, metrics that replicate this

behavior tend to be more effective. Beyond assessing the

proposed work's performance, a systematic literature survey

incorporates comparisons with various models and approaches

through tables, aligning with the goals of transport

development and integration. The results demonstrate the

efficacy of the proposed work under challenging conditions,

including partial occlusions, poor visibility, varying light

intensities, and diverse recording angles.

Despite outperforming previous works and approaches,

there is still room for further improvement. Expanding the

dataset and including a wider variety of vehicles could be

beneficial for future research in this area. Future research in

this area could benefit from incorporating a wider variety of

vehicles to enhance the applicability of the proposed

methodology in the context of transport development and

integration.

210

ACKNOWLEDGMENT

This research was supported by Technosys Security System

Pvt. Ltd. Bhopal, (Madhya Pradesh) India, under a research

collaboration.

REFERENCES

[1] Khanna, A., Goyal, R., Verma, M., Joshi, D. (2019).

Intelligent traffic management system for smart cities. In:

Singh, P., Paprzycki, M., Bhargava, B., Chhabra, J.,

Kaushal, N., Kumar, Y. (eds) Futuristic Trends in

Network and Communication Technologies. FTNCT

2018. Communications in Computer and Information

Science, 958: 152-164. Springer, Singapore.

https://doi.org/10.1007/978-981-13-3804-5_12

[2] Yazici, A., Koyuncu, M., Sert, S.A., Yilmaz, T. (2019).

A Fusion-based framework for wireless multimedia

sensor networks in surveillance applications. IEEE

Access, 7: 88418-88434.

https://doi.org/10.1109/ACCESS.2019.2926206

[3] Hilmani, A., Maizate, A., Hassouni, L. (2020).

Automated real-time intelligent traffic control system for

smart cities using wireless sensor networks. Wireless

Communications and Mobile Computing, 2020: 1-28.

https://doi.org/10.1155/2020/8841893

[4] Fernández-Sanjurjo, M., Bosquet, B., Mucientes, M.,

Brea, V.M. (2019). Real-time visual detection and

tracking system for traffic monitoring. Engineering

Applications of Artificial Intelligence, 85: 410-420.

https://doi.org/10.1016/j.engappai.2019.07.005

[5] Sharma, N.K., Rahamatkar, S., Rathore, A.S. (2022).

Role and applications of emerging technologies in smart

city architecture. In: Roy, B.K., Chaturvedi, A., Tsaban,

B., Hasan, S.U. (eds) Cryptology and Network Security

with Machine Learning. ICCNSML 2022. Algorithms

for Intelligent Systems, pp. 2-14. Springer, Singapore.

https://doi.org/10.1007/978-981-99-2229-1_1

[6] Bouhsissin, S., Sael, N., Benabbou, F. (2023). Evaluating

data sources and datasets in intelligent transport systems

through a weighted scoring model. International Journal

of Transport Development and Integration, 7(4): 353-

365. https://doi.org/10.18280/ijtdi.070409

[7] Adeliyi, T.T., Oluwadele, D., Igwe, K., Aroba, O.J.

(2023). Analysis of road traffic accidents severity using

a pruned tree-based model. International Journal of

Transport Development and Integration, 7(2): 131-138.

https://doi.org/10.18280/ijtdi.070208

[8] Di Gangi, M., Belcore, O.M., Polimeni, A. (2023). An

overview on decision support systems for risk

management in emergency conditions: present, past and

future trends. International Journal of Transport

Development and Integration, 7(1): 45-53.

https://doi.org/10.18280/ijtdi.070106

[9] Manikandan, R., Ramakrishnan, R. (2013). Video object

extraction by using background subtraction techniques

for sports applications. Digital Image Processing, 5(9):

435-440.

[10] Liu, Y., Lu, Y., Shi, Q.X., Ding, J.H. (2013). Optical

flow based urban road vehicle tracking. In 2013 Ninth

International Conference on Computational Intelligence

and Security, Emeishan, China, pp. 391-395.

https://doi.org/10.1109/CIS.2013.89

[11] Zeng, J., Zhang, K., Wang, L., Li, J. (2023). FedLVR: A

federated learning-based fine-grained vehicle

recognition scheme in intelligent traffic system.

Multimedia Tools and Applications, 82: 37431-37452.

https://doi.org/10.1007/s11042-023-15004-w

[12] Zhang, Q., Zhuo, L., Zhang, S.Y., Li, J.F., Zhang, H., Li,

X.G. (2018). Fine-grained vehicle recognition using

lightweight convolutional neural network with combined

learning strategy. In 2018 IEEE Fourth International

Conference on Multimedia Big Data (BigMM), Xi'an,

China, pp. 1-5.

https://doi.org/10.1109/BigMM.2018.8499085

[13] Badura, P., Skotnicka, M. (2014). Automatic car make

recognition in low-quality images. Information

Technologies in Biomedicine, 3: 235-246.

[14] Llorca, D.F., Arroyo, R., Sotelo, M.A. (2013). Vehicle

logo recognition in traffic images using HOG features

and SVM. In 16th International IEEE Conference on

Intelligent Transportation Systems (ITSC 2013), The

Hague, Netherlands, pp. 2229-2234.

https://doi.org/10.1109/ITSC.2013.6728559

[15] Baran, R., Glowacz, A., Matiolanski, A. (2015). The

efficient real- and non-real-time make and model

recognition of cars. Multimedia Tools and Applications,

74: 4269-4288. https://doi.org/10.1007/s11042-013-

1545-2

[16] Bhatti, U.A., Yu, Z., Yuan, L., Nawaz, S.A., Aamir, M.,

Bhatti, M.A. (2022). A robust remote sensing image

watermarking algorithm based on region-specific SURF.

In Ullah, A., Anwar, S., Rocha, Á., Gill, S. (eds)

Proceedings of International Conference on Information

Technology and Applications. Lecture Notes in

Networks and Systems, 350: 75-85. Springer, Singapore.

https://doi.org/10.1007/978-981-16-7618-5_7

[17] Jagannathan, P., Rajkumar, S., Frnda, J., Divakarachari,

P. B., Subramani, P. (2021). Moving vehicle detection

and classification using gaussian mixture model and

ensemble deep learning technique. Wireless

Communications and Mobile Computing, 2021: 1-15.

https://doi.org/10.1155/2021/5590894

[18] Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M. (2020).

YOLOv4: Optimal speed and accuracy of object

detection. arXiv preprint arXiv:2004.10934.

https://doi.org/10.48550/arXiv.2004.10934

[19] Redmon, J., Farhadi, A. (2018). YOLOv3: An

incremental improvement. arXiv preprint arXiv:

1804.02767.https://doi.org/10.48550/arXiv.1804.02767

[20] Redmon, J., Farhadi, A. (2017). YOLO9000: Better,

faster, stronger. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI,

USA, pp. 6517-6525.

https://doi.org/10.1109/CVPR.2017.690

[21] Yin, Y.H., Li, H.F., Fu, W. (2020). Faster-YOLO: An

accurate and faster object detection method. Digital

Signal Processing, 102: 102756.

https://doi.org/10.1016/j.dsp.2020.102756

[22] Ahmad, T., Ma, Y., Yahya, M., Ahmad, B., Nazir, S.,

Haq, A. U., Ali, R. (2020). Object detection through

modified YOLO neural network. Scientific

Programming, 2020: 1-10.

https://doi.org/10.1155/2020/8403262

[23] Tao, J., Wang, H.B., Zhang, X.Y., Li, X.Y., Yang, H.W.

(2017). An object detection system based on YOLO in

traffic scene. In 2017 6th International Conference on

211

Computer Science and Network Technology (ICCSNT),

Dalian, China, pp. 315-319.

https://doi.org/10.1109/ICCSNT.2017.8343709

[24] Shaifee, M.J., Chywl, B., Li, F., Wong, A. (2017). Fast

YOLO: A fast you only look once system for real-time

embedded object detection in video. Journal of

Computational Vision and Imaging Systems, 3(1).

https://doi.org/10.15353/vsnl.v3i1.171

[25] Liu, S.H., Zha, J.L., Sun, J., Li, Z., Wang, G. (2023).

EdgeYOLO: An edge-real-time object detector. arXiv

preprint arXiv:2302.07483.

https://doi.org/10.48550/arXiv.2302.0748

[26] Li, S.S., Li, Y.J., Li, Y., Li, M.J., Xu, X.R. (2021).

YOLO-FIRI: Improved YOLOv5 for infrared image

object detection. IEEE Access, 9: 141861-141875.

https://doi.org/10.1109/ACCESS.2021.3120870

[27] Mao, Q.C., Sun, H.M., Liu, Y.B., Jia, R.S. (2019). Mini-

YOLOv3: Real-time object detector for embedded

applications. IEEE Access, 7: 133529-133538.

https://doi.org/10.1109/ACCESS.2019.2941547

[28] Ren, S., He, K., Girshick, R., Sun, J. (2017). Faster R-

CNN: Towards real-time object detection with region

proposal networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(6): 1137-1149.

https://doi.org/10.1109/TPAMI.2016.2577031

[29] Chen, Y.H., Li, W., Sakaridis, C., Dai, D.X., Van Gool,

L. (2018). Domain adaptive faster R-CNN for object

detection in the wild. In 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Salt Lake

City, UT, USA, pp. 3339-3348.

https://doi.org/10.1109/CVPR.2018.00352

[30] Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A.,

Ouni, K. (2019). Car Detection using Unmanned Aerial

Vehicles: Comparison between faster R-CNN and

YOLOv3. In 2019 1st International Conference on

Unmanned Vehicle Systems-Oman (UVS), Muscat,

Oman, pp. 1-6.

https://doi.org/10.1109/UVS.2019.8658300

[31] Maity, M., Banerjee, S., Sinha Chaudhuri, S. (2021).

Faster R-CNN and YOLO based vehicle detection: A

survey. In 2021 5th International Conference on

Computing Methodologies and Communication

(ICCMC), Erode, India, pp. 1442-1447.

https://doi.org/10.1109/ICCMC51019.2021.9418274

[32] Wen, L.W., Ding, J.S., Loffeld, O. (2021). Video SAR

moving target detection using dual faster R-CNN. IEEE

Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 14: 2984-2994.

https://doi.org/10.1109/JSTARS.2021.3062176

[33] Salvador, A., Giro-I-Nieto, X., Marques, F., Satoh, S.

(2016). Faster R-CNN features for instance search. In

2016 IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), Las Vegas, NV,

USA, 394-401.

https://doi.org/10.1109/CVPRW.2016.56

[34] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,

Fu, C.Y., Berg, A.C. (2016). SSD: Single shot multibox

detector. In Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands,

Proceedings, Part I, pp. 21-37.

https://doi.org/10.1007/978-3-319-46448-0_2

[35] Leng, J.X., Liu, Y. (2021). Single-shot augmentation

detector for object detection. Neural Computing and

Applications, 33(8): 3583-3596.

https://doi.org/10.1007/s00521-020-05202-0

[36] Wang, Y.Z., Niu, P.H., Guo, X.Y., Yang, G.W., Chen, J.

(2021). Single shot multibox detector with

deconvolutional region magnification procedure. IEEE

Access, 9: 47767-47776.

https://doi.org/10.1109/ACCESS.2021.3068486

[37] Li, W.Q., Liu, G.Z. (2019). A single-shot object detector

with feature aggregation and enhancement. In 2019 IEEE

International Conference on Image Processing (ICIP),

pp. 3910-3914.

https://doi.org/10.1109/ICIP.2019.8803543

[38] He, K.M., Gkioxari, G., Dollár, P., Girshick, R. (2020).

Mask R-CNN. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 42(2): 386-397.

https://doi.org/10.1109/TPAMI.2018.2844175

[39] Hu, R.H., Dollar, P., He, K.M., Darrell, T., Girshick, R.

(2018). Learning to segment every thing. In 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, pp. 4233-4241.

https://doi.org/10.1109/CVPR.2018.00445

[40] Kirillov, A., Wu, Y.X,, He, K.M.,Girshick, R. (2020).

Pointrend: Image segmentation as rendering. In 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Seattle, WA, USA, pp. 9796-9805.

https://doi.org/10.1109/CVPR42600.2020.00982

[41] Tan, M.X., Pang, R.M., Le, Q. V. (2020). EfficientDet:

Scalable and efficient object detection. In 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Seattle, WA, USA, pp. 10778-

10787. https://doi.org/10.1109/CVPR42600.2020.01079

[42] Jia, J.Q., Fu, M., Liu, X.F., Zheng, B. (2022).

Underwater object detection based on improved

EfficientDet. Remote Sens, 14(18): 4487.

https://doi.org/10.3390/rs14184487

[43] Duan, K.W., Bai, S., Xie, L.X., Qi, H.G., Huang, Q.M.,

Tian, Q. (2019). CenterNet: Keypoint triplets for object

detection. Proceedings of the IEEE International

Conference on Computer Vision, 2019-Octob(Iccv), pp.

6568-6577. https://doi.org/10.1109/ICCV.2019.00667

[44] Anagnostopoulos, C.N.E., Anagnostopoulos, I.E.,

Psoroulas, I.D., Loumos, V., Kayafas, E. (2008). License

plate recognition from still images and video sequences:

A survey. IEEE Transactions on Intelligent

Transportation Systems, 9(3): 377-391.

https://doi.org/10.1109/TITS.2008.922938

[45] Gnanaprakash, V., Kanthimathi, N., Saranya, N. (2021).

Automatic number plate recognition using deep learning.

IOP Conference Series: Materials Science and

Engineering, 1084(1): 012027.

https://doi.org/10.1088/1757-899x/1084/1/012027

[46] Ammar, A., Koubaa, A., Boulila, W., Benjdira, B.,

Alhabashi, Y. (2023). A multi-stage deep-learning-based

vehicle and license plate recognition system with real-

time edge inference. Sensors, 23(4): 2120.

https://doi.org/10.3390/s23042120

[47] Puarungroj, W., Boonsirisumpun, N. (2018). Thai license

plate recognition based on deep learning. Procedia

Computer Science, 135: 214-221.

https://doi.org/10.1016/j.procs.2018.08.168

[48] Ghahremannezhad, H., Shi, H., Liu, C.J. (2023). Object

detection in traffic videos: A survey. IEEE Transactions

on Intelligent Transportation Systems, 24(7): 6780-6799.

https://doi.org/10.1109/TITS.2023.3258683

[49] Song, H.S., Liang, H.X., Li, H.Y., Dai, Z., Yun, X.

212

(2019). Vision-based vehicle detection and counting

system using deep learning in highway scenes. European

Transport Research Review, 11: 51.

https://doi.org/10.1186/s12544-019-0390-4

[50] Mithun, N.C., Munir, S., Guo, K., Shelton, C. (2018).

ODDS: Real-time object detection using depth sensors

on embedded GPUs. In 2018 17th ACM/IEEE

International Conference on Information Processing in

Sensor Networks (IPSN), Porto, pp. 230-241.

https://doi.org/10.1109/IPSN.2018.00051

[51] Jolly, M.P.D., Lakshmanan, S., Jain, A.K. (1996).

Vehicle segmentation and classification using

deformable templates. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18(3): 293-308.

https://doi.org/10.1109/34.485557

[52] Szwoch, G., Dalka, P. (2014). Detection of Vehicles

stopping in restricted zones in? Video from surveillance

cameras. Communications in Computer and Information

Science, 429: 242-253. https://doi.org/10.1007/978-3-

319-07569-3_20

[53] Ali, M.D.H., Kurokawa, S., Shafie, A.A. (2013).

Autonomous road surveillance system: A proposed

model for vehicle detection and traffic signal control.

Procedia Computer Science, 19: 963-970.

https://doi.org/10.1016/j.procs.2013.06.134

[54] Wang, Z.G., Zhan, J., Duan, C.G., Guan, X., Lu, P.P.,

Yang, K. (2022). A Review of vehicle detection

techniques for intelligent vehicles. IEEE Transactions on

Neural Networks and Learning Systems, 34(8): 1-21.

https://doi.org/10.1109/TNNLS.2021.3128968

[55] Lee, H.J., Ullah, I., Wan, W., Gao, Y.B., Fang, Z.J.

(2019). Real-time vehicle make and model recognition

with the residual squeezenet architecture. Sensors, 19(5):

982. https://doi.org/10.3390/s19050982

[56] Siddiqui, A. J., Mammeri, A., Boukerche, A. (2016).

Real-time vehicle make and model recognition based on

a bag of SURF features. IEEE Transactions on Intelligent

Transportation Systems, 17(11): 3205-3219.

https://doi.org/10.1109/TITS.2016.2545640

[57] Chen, L.C., Hsieh, J.W., Yan, Y.L., Chen, D.Y. (2013).

Vehicle make and model recognition using sparse

representation and symmetrical SURFs. In 16th

International IEEE Conference on Intelligent

Transportation Systems (ITSC 2013), The Hague,

Netherlands, pp. 1143-1148.

https://doi.org/10.1109/ITSC.2013.6728386

[58] Ros, G., Alvarez, J.M. (2015). Unsupervised image

transformation for outdoor semantic labelling. In 2015

IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea

(South), pp. 537-542.

https://doi.org/10.1109/IVS.2015.7225740

[59] Ros, G., Ramos, S., Granados, M., Bakhtiary, A.,

Vazquez, D., Lopez, A.M. (2015). Vision-based offline-

online perception paradigm for autonomous driving. In

015 IEEE Winter Conference on Applications of

Computer Vision, Waikoloa, HI, USA, pp. 231-238.

https://doi.org/10.1109/WACV.2015.38

[60] Zhang, R., Candra, S.A., Vetter, K., Zakhor, A. (2015).

Sensor fusion for semantic segmentation of urban scenes.

In 2015 IEEE International Conference on Robotics and

Automation (ICRA), Seattle, WA, USA, pp. 1850-1857.

https://doi.org/10.1109/ICRA.2015.7139439

[61] Sturgess, P., Alahari, K., Ladický, L., Torr, P.H.S.

(2009). Combining appearance and structure from

motion features for road scene understanding. In BMVC

- British Machine Vision Conference, London, United

Kingdom. https://doi.org/10.5244/C.26.127

[62] Brostow, G.J., Fauqueur, J., Cipolla, R. (2009). Semantic

object classes in video: A high-definition ground truth

database. Pattern Recognition Letters, 30(2): 88-97.

https://doi.org/10.1016/j.patrec.2008.04.005

[63] Cordts, M., Omran, M., Ramos, S., Rehfeld, T.,

Enzweiler, M., Benenson, R., Franke, U., Roth, S.,

Schiele, B. (2016). The cityscapes dataset for semantic

urban scene understanding. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las

Vegas, NV, USA, pp. 3213-3223.

https://doi.org/10.1109/CVPR.2016.350

[64] Luo, Z.M., Branchaud-Charron, F., Lemaire, C., Konrad,

J., Li, S.Z., Mishra, A., Achkar, A., Eichel, J., Jodoin,

P.M. (2018). MIO-TCD: A new benchmark dataset for

vehicle classification and localization. IEEE

Transactions on Image Processing, 27(10): 5129-5141.

https://doi.org/10.1109/TIP.2018.2848705

[65] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,

Ramanan, D., … Zitnick, C.L. (2014). Microsoft coco:

Common objects in context. In Computer Vision-ECCV

2014: 13th European Conference, Zurich, Switzerland,

Proceedings, Part V, pp. 740-755.

https://doi.org/10.1007/978-3-319-10602-1_48

[66] Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler,

K. (2015). Motchallenge 2015: Towards a benchmark for

multi-target tracking. arXiv preprint arXiv:1504.01942.

https://doi.org/10.48550/arXiv.1504.01942

[67] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.

(2004). Image quality assessment: From error visibility

to structural similarity. IEEE Transactions on Image

Processing, 13(4): 600-612.

https://doi.org/10.1109/TIP.2003.819861

213

