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In the realm of transport development, the fusion of modern technology and vehicle 

surveillance in roadside areas becomes indispensable. Traditional surveillance demands 

continuous monitoring through closed-circuit television cameras. It results in a huge 

amount of data, which requires high computation. This study delves into the challenges of 

real-time processing of vehicle surveillance within smart cities with quality data. In 

addition to a specific focus on monitoring the roadside traffic region despite technological 

advancements, including target variability, lighting conditions, and occlusion, the 

manuscript introduces a lightweight contour-based convolutional neural network to 

address these challenges. The proposed work aims to gain the maximum features from the 

vehicle via detecting the optimal position and incorporating a Region-Proposal-Network, 

Region-of-Interest-Align and pooling, Non-Maximum-Suppression, Structural-Similarity-

Index, and Peak-Signal-to-Noise-Ratio. The proposed work extracts hierarchical 

information from a custom video dataset and demonstrates superior performance with an 

accuracy rate of 97.36% and a minimum loss of 0.0816 in an elapsed time of 1s 159ms. 

Furthermore, it achieves a validation loss of 0.1506, and a validation accuracy of 96.46%. 

Additionally, manuscripts illustrate different datasets and models through a systematic 

literature review. Moreover, the manuscript also illustrates the Smart-City framework and 

Integrated Traffic Management System architecture. 
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1. INTRODUCTION

In the rapidly expanding era of technology, the systematic 

monitoring of individuals has become pervasive. In smart 

cities, the demand for surveillance extends to roadside traffic 

areas, where video surveillance systems are instrumental in 

analyzing traffic flow, detecting incidents, and enforcing 

traffic laws [1]. The roadside surveillance encompasses 

intricate trending technologies, good-quality and meaningful 

data sources with reliable communication protocols. However, 

the implementation of such type of complex setup and their 

regular maintenance incurs a considerable cost. This cost may 

occur just because of complex software, highly configured 

hardware, and high computation resources. Therefore, striking 

a balance between the advantages and drawbacks of complex 

surveillance systems becomes imperative in addressing the 

multifaceted challenges those are associated with them.  

To collect the data from different road-side traffic areas the 

wireless-sensor network [2, 3] has appeared as the most 

capable technology. In addition, computer vision also plays a 

very crucial role in numerous surveillance applications. It is 

found capable of handling challenges like real-time 

computation amidst many vehicles at peak traffic times and 

occlusions [4]. 

In recent years, the deep-learning techniques have been 

harnessed during vehicle surveillance because of their good 

performance and features. Its adoption is substantiated due to 

its gainful attributes, robustness, generalization, and 

scalability. For the same, the Deep Learning Convolutional-

Neural-Network (CNN) comprises two core components 

namely feature extraction and classification. Feature 

extraction is aimed at the acquisition of relevant features in the 

input data, while classification is responsible for labeling the 

input data based on the ascertained characteristics. This 

architectural configuration is illustrated in Figure 1. 

The feature extractor component typically includes multiple 

convolutional layers, each designed to learn fundamental 

features such as edges and corners, which represent low-level 

features in the context of the data analysis process. These low-

level features are then amalgamated and processed by 

subsequent layers to learn higher-level features such as shapes. 

The classifier encompasses a fully connected layer, which 

takes the extracted features as an input and a probability 
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distribution over the possible vehicle classes as an output. 

Figure 2 depicts the working of CNN to detect the vehicle. 

 

 
 

Figure 1. Convolutional neural network architecture 

 

 
 

Figure 2. Working with CNN to detect vehicle and feature 

extraction 

 

1.1 Smart city framework for transport development and 

integration 

 

The concept of a smart city represents an advanced urban 

environment built on robust data infrastructure and 

sophisticated frameworks, specifically tailored for the 

development and integration of transportation systems. The 

foundational elements of the smart city framework include 

physical infrastructures, networking systems, central 

computing centers, and data storage systems. All elements are 

essential in the context of smart transport management, as 

illustrated in Figure 3 [5].  

 

 
 

Figure 3. The general smart city framework 

 

At the core of this architecture lies the physical 

infrastructure, strategically planned with sensors, devices, and 

cameras. These devices are aimed at capturing and generating 

transportation-related data. This raw data is then transmitted 

through network communication mediums to a central 

computation center, where it undergoes processing to extract 

pertinent details, such as vehicle information during Red-

Light-Violation incidents at roadside zebra crossings. 

The seamless exchange of data between acquisition 

devices and central computing centers is facilitated through 

various communication channels and mediums. The processed 

data then traverses through these communication mediums to 

reach virtual machines, cloud computing devices, and servers 

within the central computing center before being stored. The 

exchange of information is essential; however, the emphasis is 

on confirming the reliability of the data [6]. Reliable 

information is indispensable for making swift decisions and 

generating timely responses within the framework of a smart 

city. The applications within smart cities utilize gathered data 

to forecast outcomes, which depend significantly on a well-

designed network and astute management systems [7]. The 

effectiveness solely relies on a well-designed network and an 

ITMS. They both are essential for the overall functioning of 

the smart city framework. Roadside traffic surveillance takes 

center stage in smart cities as an integral part of an ITMS. 

Video streams act as the predominant medium in surveillance 

with video analytics. Figure 4 depicts a comprehensive 

workflow of a modern surveillance system, outlining the 

intricacies of surveillance within a smart city. 

 

 
 

Figure 4. A comprehensive workflow of the modern video 

surveillance system 

 

The surveillance process initiates with video acquisition, 

where cameras and sensors are strategically deployed as 

acquisition devices. The acquired video data is then 

transmitted to a central processing unit for further analysis, 

where raw video streams are transformed into digital formats 

to enable efficient processing and storage. In the module 

analysis stage, the processed data is fed into dedicated 

software modules for object detection by employing deep-

learning models for accurate results. Following data 

processing and analysis, the information is stored in a 

dedicated unit. These units are either on-site or cloud-based, 

catering specifically to the surveillance of roadside traffic and 

incorporating ITMS.  

 

1.2 Integrated-traffic-management-systems (ITMS) 

 

The ITMS is illustrated by a conjunction of technologies, 

data inputs, and communication protocols. They are aimed at 

enhancing the integration of modern transport development. 

The deployment of such a system demands meticulous 
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planning of acquisition devices and equipment. The intention 

behind this plan is to consider a coverage area, camera angles, 

and lighting conditions. The system incorporates two distinct 

camera types: the Automatic Number Plate Recognition 

(ANPR) camera and the Red-Light Violation Detection 

(RLVD) camera, each serving a specific role as illustrated in 

Figure 5. This setup is implemented across the city and 

establishes a strong interconnected network for efficient 

transmission in capturing real-time information for transport 

management and integration. This setup is aimed to optimize 

the detection and tracking of vehicles during their stationary 

periods, emphasizing safety and security. 

The architectural configuration illustrated in Figure 6 and 

Table 1 provides a comprehensive overview of the smart city 

ITMS architecture. 

 

 
 

Figure 5. Camera set-up of ITMS at road-side traffic area 

 

 
 

Figure 6. ITMS architecture in Smart-City 

These acquisition devices in the combination of RLVD and 

ANPR are situated approximately 20 feet (6.5 meters) above 

the road and 13 meters from the zebra crossline, the cameras 

possess a focal length of 3.2-3.5 meters, strategically focused 

on the zebra crossline. The ANPR camera is committed to 

detecting the vehicle's number plate and capturing a single 

image, while the RLVD camera functions as a surveillance 

camera, capturing four additional images upon detecting a 

violation. The captured data is transformed through a media 

converter and is transmitted back to the Local Processing Unit 

(LPU) via fiber optic cables. The interconnection of devices is 

facilitated through an L-2 switch employing cat-6 cables. 

Subsequently, the LPU transmits this processed data to the 

control room via fiber optic cables, where further processing 

occurs. The control room is equipped with an L-3 switch, a 

storage unit, and a set of 3-4 servers, including the Central 

Server, Data Server, and Media Server. The Central Server, 

serving as the master server, issues instructions to the other 

servers, while the Media Server functions as an aggregation 

point for data from various junctions. It operates as a 

distributed system to reduce server load. Moreover, the data 

are stored here in multiple replicas to ensure reliability. So that 

if one server goes down or is manipulated during a cyberattack, 

the same data can be retrieved from another server. 

 

Table 1. Elements and their uses within an ITMS 

architecture in Smart-City 

 
Key Elements & Uses Description 

Cameras: Data 

collections 

Cameras with high resolution, such as 

Pan-Tilt-Zoom (PTZ) cameras, are 

strategically installed based on 

specific needs to capture live footage 

of traffic.  

Video Analytics: Data 

processing and analysis 

This software utilizes sophisticated 

algorithms to analyze the data, 

identify and assess vehicles, 

recognize license plates, and detect 

incidents. 

Servers: Data storage 

The video data that has undergone 

processing, along with the analytics 

data, is stored either on local servers 

or in the cloud for subsequent 

processing. 

Communication 

network: 

Communication 

infrastructure 

A dependable communication 

network is crucial for the 

transmission of video and data among 

cameras, analytics software, storage 

systems, and end-users.  

User interfaces and 

applications 

An interface that is easy for users to 

navigate enables the supervision and 

management of the system through 

analyzed data and reports. 

Decision support and 

control systems: 

Integration with other 

systems 

Based on the analyzed data and 

processing outcomes, decision 

support systems provide suggestions 

to traffic management authorities and 

control systems. Video surveillance 

of roadside traffic, such as integrated 

traffic management systems, can be 

integrated with additional traffic 

signal control systems and emergency 

response systems [8]. 

 

This manuscript focuses on a cost-efficient model for 

extracting low-level vehicle features for efficient roadside 

traffic surveillance. That can be achieved with the combination 

of the Integrated Traffic Management System (ITMS) with 
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Smart-City transport development. The proposed work 

employs a lightweight contour-based CNN to extract 

hierarchical information from the vehicle by employing a 

custom video dataset while considering real-world scenarios. 

The key contributions of this work include two phases:  

(1) Transforming the acquired vehicle video into 

separate frames. 

(2) Selecting the best vehicle position frame to maximize 

feature extraction. 

The proposed work incorporated a Region Proposal 

Network (RPN), Region of Interest Pooling or Region of 

Interest Align, and Non-Maximum Suppression to optimize 

the entire detection process. Apart from this, the feature 

extraction is enhanced through the utilization of the Structural-

Similarity-Index (SSIM) with thorough parameters 

calculation, including Mean Luminance Similarity (MLS), 

Mean Contrast Similarity (MCS), Mean Structure Similarity 

(MSS), and Peak-Signal-to-Noise-Ratio (PSNR) for each duo 

frame. 

The use of contour-based detection algorithms in the 

proposed methodology is justifiable for several reasons, 

despite the availability of state-of-the-art. The choice of the 

proposed approach aligns with the specific objectives, dataset 

characteristics, and real-world traffic surveillance challenges 

like varying lighting conditions, complex scenes, and 

occlusions. Contour-based detection algorithms are inherently 

versatile for handling complex scenarios. Unlike some 

algorithms that rely on predefined patterns or features, 

contour-based methods are adaptive and can identify object 

edges even in challenging situations. 

Overall, this research contributes to the improvement of 

robust surveillance solutions tailored for smart city transport, 

thereby enhancing shelter and efficiency in urban transport 

systems. 

 

 

2. LITERATURE REVIEW 
 

In the context of transport development and integration, 

vehicle surveillance along the roadside has gained increasing 

prominence in recent times. The identification of vehicles has 

emerged as a substantial focus of research due to its diverse 

and valuable applications, spanning from assisting traffic 

planners to facilitating real-time traffic management. This 

literature review encompasses pertinent research within this 

domain, placing particular emphasis on the comparison of 

various surveillance techniques and technologies. 

Currently, the detection of vehicle objects based on visual 

information is categorized into [9, 10]: state-of-the-art 

machine learning and advanced deep learning algorithms. 

After detection, the recognition of vehicles became an 

emerging technology that has found widespread applications 

in ITMS [11]. The fine-grained-recognition and coarse-

grained recognition [12] are generally the main categories of 

vehicle recognition. Fine-grained-recognition presents a 

confronting due to the subtle differences within the same 

vehicle class and the high similarity between different vehicle 

classes. Coarse-grained recognition focuses on dividing 

vehicles into cars, vans, buses, and truck types. However, the 

main challenges are inter-class and intra-class diversity. 

Various approaches have been proposed that utilize local 

features like Scale-Invariant-Feature-Transform (SIFT) [12, 

13], and Speeded-Up-Robust-Features (SURF) [14-16], along 

with different encoding algorithms, to construct feature 

dictionaries for vehicle recognition. However, these methods 

exhibit limitations in accurately discerning specific vehicle 

attributes. To address these challenges, a novel technique for 

vehicle classification has been discussed in the study [17]. 

Various deep-learning algorithms have been applied to 

video surveillance in recent times, exhibiting diverse levels of 

accuracy and inherent limitations. The subsequent Table 2 

outlines the recent deep learning model employed in video 

surveillance, accompanied by performance and associated 

limitations. 

 

Table 2. Comparative overview of various deep learning 

models 

 
Model Descriptions 

You-Only-

Look-Once 

(YOLO) 

[18-27] 

It is a widely used object detection model for 

vehicle surveillance, renowned for its speed 

and accuracy. It has achieved state-of-the-art 

performance on benchmark datasets including 

the COCO dataset. 

Faster R-CNN 

[28-33] 

It is a prevalent object detection algorithm 

employed during vehicle surveillance. It 

operates in two stages, generating region 

proposals and then classifying objects within 

those regions. The performance is good but 

may be slower than YOLO. 

Single-Shot-

Multi-Box-

Detector (SSD) 

[34-37] 

It is a high-speed and accurate real-time 

object-detection technique, excelling on the 

COCO dataset and various other benchmark 

datasets. 

Mask R-CNN 

[38] 

It is an advanced version of Faster R-CNN 

and identifies instances as well as objects. It 

is an object identification and segmentation 

method, demonstrating proficiency in 

recognizing and segmenting objects in video 

sequences. 

Panoptic 

Feature Pyramid 

Networks 

(PANet) [39] 

It is an extension of Mask R-CNN, and 

introduces a spatial consideration mechanism 

and a feature pyramid attention (FPA) 

module, enhancing performance in instance 

and semantic segmentation tasks. 

PointRend 

[40] 

It is an extension of Mask R-CNN and 

employs a pixel-level rendering approach for 

image segmentation. It utilizes a point-based 

sampling technique and a learnable 

interpolation module, producing high-quality 

instance segmentation results. 

EfficientDet 

[41, 42] 

It is a modern object detection technique. It is 

known for good performance and quick 

response through neural architecture search 

and efficient scaling. It shows promise in 

enhancing surveillance systems but demands 

substantial processing resources. 

CenterNet 

[43] 

It is a contemporary object recognition 

technique predicting object centers and 

offsets using a single heatmap. It requires a 

larger training dataset. Demonstrates good 

performance but may face challenges in 

detecting small objects. 

DeepSORT 

[43] 

It is a contemporary object-tracking 

methodology, that exhibits high tracking 

accuracy on benchmarks like MOTChallenge, 

MOT17, and DukeMTMC. It may face 

challenges with occlusions, necessitating 

additional post-processing approaches to 

enhance tracking effectiveness. 

 

The algorithm functions by analyzing vehicles and 

discerning essential features. Various algorithms are available 
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for extracting features of four-wheeler vehicles for 

surveillance, contingent on the surveillance system type and 

available data. Several common algorithms include the 

License Plate Recognition (LPR) Algorithm [44-47] employs 

image processing techniques to detect and recognize the 

license plates of four-wheeler vehicles. Subsequently, it 

utilized methods like binarization, edge detection, and 

character segmentation to extract characters from the license 

plate. Object Detection and Tracking Algorithms [28, 35, 48-

54] identified the presence of four-wheeler vehicles within a 

given scene. Techniques like Haar Cascades, Histogram-of-

Oriented-Gradients (HOG), and CNN are applied to recognize 

vehicles in the image.  

The Vehicle Make and Model Recognition algorithm [55] 

analyses visual attributes of the car, such as shape, and size, 

utilizing deep learning algorithms to classify the vehicle under 

a specific brand and model for Intelligent Transportation 

Systems (ITSs) [6]. By incorporating deep learning techniques 

a robust real-time system achieves high accuracy. The real-

time approach combines the SURF detector with the Support 

Vector Machines (SVM) and provides a solution for Make and 

Model Recognition (MMR) to recognize car types from single 

images based on the geometry and appearance of car emblems 

in rear-view images. These images are captured by traffic 

cameras. The aim is to learn both the geometry and appearance 

of car emblems for accurate vehicle model recognition. The 

SURF features of vehicles' front- or rear-facing images are 

extracted and stored as codewords in dictionaries. Addressing 

the intricacies of vehicle model recognition, the research [15, 

56, 57] introduced a real-time vehicle make and model 

recognition (VMMR) using a Bag-of-Speeded-Up-Robust-

Features (BoSURF).  

According to the survey, video surveillance systems have 

advanced over three generations, as illustrated in Figure 7. 

 

 
 

Figure 7. Generations of surveillance system 

 

The literature review underscores the versatility of deep 

learning, offering solutions across diverse domains and 

complex problem scenarios. The identified research gaps are 

listed in Table 3. 

In summary, this comprehensive literature review delves 

into the latest research in this field, focusing on diverse 

surveillance methods and technologies. The collective 

findings emphasize that different deep learning models exhibit 

varying performance for different tasks during vehicle video 

surveillance such as detection, tracking, and classification, 

normally it ranges from 90-95%. Consequently, selecting a 

deep learning model for a specific application should be 

guided by the task requirements, computational resources, and 

dataset characteristics.  

Moreover, Deep learning also plays a crucial role in vehicle 

surveillance and provides an automated and hierarchical 

approach to extracting valuable insights from vehicle images 

or video frames. Algorithms such as License Plate Recognition 

(LPR), Object Detection and Tracking, and Vehicle Make and 

Model Recognition are used for feature extraction.. 

 

Table 3. Potential research gaps identified from systematic 

literature review 

 
Parameter Descriptions 

Unnecessary data 

Developing effective techniques to handle 

imbalanced data for vehicle recognition, 

ensuring unbiased model training. 

Real-time 

computation 

Probing methods to enhance the real-time 

processing capabilities of deep learning 

algorithms, especially in resource-

constrained environments. 

Integration of the 

latest models 

Exploring strategies to seamlessly integrate 

modern techniques like EfficientDet, 

CenterNet, and DeepSORT into existing 

surveillance systems for enhanced 

functionality. 

Optimization of 

computational 

resources 

Developing algorithms that optimize 

computational resources, ensuring efficient 

processing on low-power devices without 

compromising accuracy. 

Incorporation of 

multiple 

procedures 

Integration of various algorithms, 

including LPR, Object Detection, and 

VMMR to enhance the overall efficiency 

and accuracy of vehicle surveillance. 

Adaptation to 

circumstances 

Capable algorithms for adapting a diverse 

environmental condition, such as varying 

lighting, weather, and occlusions, to ensure 

consistent and reliable vehicle recognition 

in all situations. 

Improved image 

pre-processing 

techniques 

Finding advanced image preprocessing 

techniques to enhance image quality, 

reduce noise, and improve the clarity of 

captured vehicle images, aiding in more 

accurate recognition processes. 

 

 

3. DATASET  
 

Over the preceding decades, a multitude of datasets have 

been extensively employed in the domain of object detection 

and vehicular surveillance, as comprehensively elucidated in 

the literature review undertaken within this research 

manuscript. The ensuing Table 4 provides prevalent datasets 

employed in the realm of vehicle detection and video 

surveillance, accompanied by descriptive details and rationale 

for their utilization. 

The custom dataset excels in aligning with specific research 

goals for vehicle detection in realistic traffic scenarios. It 

offers diversity, real-world legitimacy, and a deliberate focus 

on the research objectives. Real-world challenges, such as 

partial occlusions, enhance the dataset's complexity, 

addressing unique hurdles during vehicle analysis. While 

benchmark datasets may not precisely match the targeted 

research focus on optimal vehicle position detection. The 

custom dataset stands out for its alignment with specific 

research goals with the ability to capture vehicles from 

multiple angles conducive to comprehensive vehicle analysis. 

The experimental dataset in this study is meticulously 

curated to meet the evolving needs of integration of transport 

development. The target location is the roadside traffic signal 
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area, here vehicles temporarily halt according to signal time. 

Typically, the signal time ranged from 30 seconds to 2 minutes, 

hence accordingly videos were recorded. This bespoke dataset 

features 20 video recordings 5 for each Indian four-wheeler 

vehicle, the duration of the video ranges from 50 seconds to 

1.5 minutes. Each video contains 300 frames. Notably, the 

videos include four distinct vehicle brands: Hyundai i20, 

Maruti-WagonR, Maruti-Swift, and Maruti-Suzuki-Brezza, 

selected to accommodate variations in body length and style. 

All decided vehicles exhibit different colors. The reason for 

selecting different vehicles was to account for variations in 

body length and style across different models, which surely 

prevented the model from being biased during training. 

The videos were captured in the morning, afternoon, and 

evening, with a moving camera. The videos were strategically 

recorded from diverse angles (+15 to -15 degrees relative to 

the scene) to ensure coverage of vehicles from various 

positions and viewpoints. This approach facilitates the 

identification of optimal vehicle positions. The videos also 

consider different meteorological conditions, including sunny 

and opaque scenarios, with some recordings featuring partial 

occlusions caused by shadows from trees and individuals. 

Sample video snippets of the recorded dataset are illustrated in 

Figure 8. 

This comprehensive and diverse custom dataset serves as a 

valuable resource for training and testing vehicle detection, 

providing real-world challenges and scenarios that extend 

beyond the limitations of existing benchmark datasets. 

 

Table 4. Commonly used datasets in vehicle detection 

 
Dataset Description Justification 

KITTI [58-60] 

It is a large size dataset, containing real-world data annotated 2D and 

3D object labels. Data is accumulated from cars driving around the 

city which comprises various cameras and sensors. The dataset 

comprises 323 annotated images categorized into the road, vertical, 

and sky classes, 252 acquisitions with RGB and Velodyne scans, 

divided into 140 for training and 112 for testing. Additionally, there 

are 170 training images and 46 testing images, covering 11 classes. 

The benchmark dataset is for autonomous 

driving research. It proposes real-world 

scenarios but may lack diversity in vehicle 

models and colors. 

CamVid [61, 62] 

It is a moderate-size street scene video dataset annotated with object 

segmentation and classification. It is five video sequences captured by 

a 960×720 resolution camera, annotated in various 32 classes. 

Appropriate for vehicle detection in urban 

contexts nevertheless may not cover diverse 

vehicle types. 

City-Scapes [63] 

It is a large dataset, that recorded urban street scenes in various cities. 

Data is annotated for semantic segmentation and object detection. It 

contains approx 5000 fine annotated and 20,000 coarse annotated 

images. 

Primarily used for semantic segmentation-

related tasks and may be employed for 

vehicle detection in urban environments. 

MIO-TCD [64] 

It is a large-size traffic camera images and video dataset that covers 

various traffic scenarios and vehicle categories. It consists of a 

localization dataset of 1,37,743 full video frames with bounding 

boxes around traffic objects and a classification dataset of 6,48,959 

crops of traffic objects from the 11 classes. 

Offers diversity but may be deficient in 

comprehensive annotations for several tasks. 

COCO [65] 

It is a very large size and large-scale dataset with a diverse collection 

of images with object annotations in various contexts. The dataset 

consists of 328K images of 80 object categories. 

It is a comprehensive dataset for object 

detection. Its diverse context may not align 

precisely with the study's objective. 

MOT-Challenge 

[66] 

It is a moderate to large-size dataset with multiple camera views and 

annotated object tracks. Focuses on multi-object tracking tasks 

Predominantly adapted for tracking tasks and 

may require adaptation for single-frame 

object detection scenarios. 

 

  
 

Figure 8. Recorded video snippets featuring various Indian vehicles captured at different times and under diverse occlusion 

conditions 
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4. METHODOLOGY 

 

This section depicts the entire proposed methodology and 

implementation details.  

 

4.1 Proposed methodology 

 

The contour-based detection approach commonly utilizes 

edge detection. The graphical representation of the proposed 

approach is illustrated in Figure 9.  
 

 
 

Figure 9. Graphical representation of the proposed approach 

 

Initially, the video acquisition camera will record the video. 

This recorded video will be used as an input. The proposed 

work will process the video and generate 300 frames, which 

comprises vehicles only. For the same, the contours will be 

detected, and the contour feature will be computed (as 

illustrated in the algorithm: contour-based detection) in each 

frame to resemble the vehicle only.  

In state-of-the-art, the contour-detection approach uses edge 

detection to identify and detect the contours. This approach 

finds the boundaries between regions of the image with 

different intensity values and gradients. In vehicle detection to 

get the optimal position of the four-wheeler, these boundaries 

can be understood as the outer hood or bonnet, bumper, 

bumper grill, side mirrors, side indicators, front glass, license 

plate, vehicle logo, headlights, etc. It means, the frames which 

contain maximum contours, have maximum features. 

Therefore, the optimal position of the vehicle is one where 

maximum features are present. Once the contours have been 

identified, they can be used to extract features from the frame. 

Later, all processing will performed on these frames only. 

Further processing includes the computation of SSIM with 

parameters and in-depth analysis of the vehicle through pixel 

intensity and distribution. 

Therefore, these methods involve identifying the 

boundaries between areas of the image with different intensity 

values or gradients. The entire suggested methodology is 

segmented into two phases: 

(1) Transforming video into individual frames for 

vehicle detection. 

(2) Identifying and choosing the best vehicle position to 

maximize feature extraction. 

Phase-I: Transforming video into individual frames for 

vehicle detection 

The proposed workflow is initiated by systematically 

processing a sequence of continuous video frames, ensuring 

the careful conversion of each frame into an image 

representation, and storing it in the '𝑓𝑟𝑎𝑚𝑒𝑖𝑚𝑎𝑔𝑒𝑠' list. This 

methodical approach guarantees the seamless capture of every 

frame, laying the foundation for in-depth analysis. Some of the 

sample frames are depicted in Figures 10, 11, and 12. Selected 

50 frames of Figure 10 represent the front view of the vehicle, 

selected 50 frames of Figure 11 represent the partial side view 

of the vehicle, and selected 119 frames of Figure 12 represent 

the total side view of the vehicle. 

To give in-depth clarity to video frames of the front view, 

partial side view, and total side view, a single sample frame is 

picked from Figures 10, 11, and 12, which is illustrated in 

Figure 13. 
 

 
 

Figure 10. Sample 50 frames depicting the front view of the 

vehicle 
 

 
 

Figure 11. Sample 50 frames depicting the partial side view 

of the vehicle 
 

 
 

Figure 12. Sample frames depicting the complete side view 

of the vehicle 
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Figure 13. Sample frame from each view of the vehicle 

 

Contour-based vehicle object detection in a video involves 

detecting the contours of vehicles in each frame of the video 

and tracking them across frames to determine their motion and 

trajectory. The set of all contours can be represented through 

Eq. (1): 

 
Contours = {Ctr1, Ctr2, Ctr3, ..., Ctrn} (1) 

 

In the above Eq. (1) Contours represent the set of contours 

in the image, and Ctr1, Ctr2, Ctr3, ..., Ctrn represents 

individual contours within the set. Each contour can be 

represented as a set of points or a continuous curve that defines 

the boundary of an object in the image, these boundaries can 

be understood as the outer hood or bonnet, bumper, bumper 

grill, side mirrors, side indicators, front glass, license plate, 

vehicle logo, headlights, etc. Let 𝑉_𝑂𝑏𝑗𝑡 be the set of vehicle 

objects in frame t, and 𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠𝑡  be the set of contours 

detected in frame t. The contour-based vehicle object detection 

can be defined via Eqs. (2), (3) and (4): 

 
Contourst = Detect_Contours (frame t) (2) 

 
V_Objt = {Ctri|Ctri∈Contourst, Is_VehicleContour(Ctri)} (3) 

 
V_Objt = Track_Vehicles(V_Objt -1, V_Objt) (4) 

 

The Eqs. (2)-(4) parameters are as follows: 

• Detect_Contours(.) = function detects contours in 

each frame 

• Is_VehicleContour(.) = function that determines 

whether a contour corresponds to a vehicle object based on its 

size, shape, & other features  

• Track_Vehicles(.) = function traces the vehicles 

across the frame 

The algorithm detects and identifies the contours in each 

video frame that correspond to vehicles. This progression is 

repetitive for each video frame.  

 

Algorithm - contour-based-detection 

Inputs: VideoStream 

Outputs: 

V_Obj = {v1, v2, ..., vn} 

C(t) = {c1, c2, ..., cm} 

f(ci) = {f1, f2, ..., fk} 

Procedure: 

Initial set of vehicle objects V_Obj = {} 

for each_frame t in the video: 

a. Extract contours C(t) in the video frame 

b. for each_contour c in C(t): 

i. Calculate the contour features f(c) 

ii. Use a classifier or thresholding technique 

to determine if the contour resembles a 

vehicle. 

iii. If the contour resembles a vehicle object, 

add it to the set of vehicle objects V_Obj. 

c. Track the motion and trajectory of each vehicle 

object in V_Obj over time.  

End 

 

In the proposed algorithm, the Outputs the V_Obj represents 

the set of vehicle objects, C(t) represents the set of contours in 

frame t, ci represents the ith the contour in C(t), f(ci) represents 

the feature vector for contour ci, and k represents the number 

of contour features. 

Utilizing contour detection techniques, the proposed 

method adeptly identifies vehicle contours within a predefined 

detection area. The process meticulously employs filters with 

specific location and size criteria, ensuring that only relevant 

contours are retained for closer examination. To improve 

result visualization, the pipeline enhances its functionality by 

visually overlaying the identified vehicle outlines onto the 

original video frames, providing a clear representation of the 

outcomes.  

In-depth calculations for the same will be conducted in 

phase-II. 

Phase-II: Identifying and choosing the best vehicle position 

to maximize feature extraction 

In addition to vehicle detection, the objective is to determine 

the ideal positioning of vehicles. From the multitude of frames 

produced by the above algorithm (comprising 300 frames 

exclusively showcasing vehicles), the identification of the top 

frames (5 frames) relies on the presence of the highest number 

of features. The author employed a methodology based on 

features to extract specific attributes or characteristics of 

vehicles, which were then utilized to train the model in 

identifying vehicles in the optimal position with the greatest 

number of features. Therefore, a crucial element of this 

process involves selecting the most informative features for 

the given task.  

In computer vision, feature gain denotes the amount of 

information acquired by extracting a particular feature from an 

image or object. Maximum feature gain is attained when the 

feature can effectively distinguish the object of interest from 

other objects in the image. The calculation of maximum 

features is determined through Eq. (5): 

 
G(DataSet, Features)= H(DataSet)-H(DataSet│Features) (5) 

 

In the Eq. (5), the parameters denote: 

• DataSet = Dataset 

• G(DataSet, Features) = represents the maximum 

feature gain in the DataSet 

• H(DataSet) = signifies the entropy of the DataSet  

• H(DataSet|Features) = signifies the conditional 

entropy of the DataSet given Features  
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Let, DataSet be D and Features is F, then the maximum 

feature gain represents the amount of information gained by 

adding feature F to the dataset D. The entropy of the dataset D 

represents the amount of uncertainty in the dataset, while the 

conditional entropy of the dataset given feature F represents 

the amount of uncertainty in the dataset that can be explained 

by feature F. The mathematical expression for maximum 

feature gain from a vehicle object can be represented as 

follows: 

Let V_Obj be the set of vehicle objects in an image, and F 

be the set of features that can be extracted from each object. 

The maximum feature gain can be defined via Eq. (6): 

 

𝑚𝑎𝑥(𝐹𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐹(𝑢, 𝑣) ∗ 𝑙𝑜𝑔(
𝑃(𝑉𝑂𝑏𝑗|𝑢, 𝑣)

𝑃(!𝑉_𝑂𝑏𝑗|𝑢,𝑣)
) (6) 

 

In Eq. (6), the parameters denote: 

• Fi = represents the ith feature in F  

• u,v = represent the coordinates of a pel in the image 

• P(V_Obj|u,v) = probability of a pel being part of a 

vehicle object  

• P(!V_Obj|u,v) = probability of a pel not being part of 

a vehicle object 

It is based on the principle of information gain to measure 

the uncertainty while extracting a particular feature. The 

feature that maximizes this reduction in uncertainty is 

considered the feature that provides the most information 

about the presence or absence of a vehicle object in the image. 

To extract feature maps of a consistent size from the image's 

feature map, Region-of-Interest-Pooling (RoI pooling) or 

Region-of-Interest-Align (RoI align) techniques are 

employed. In RoI pooling, the RoI is divided into a fixed grid, 

and max pooling is performed within each grid cell to obtain 

feature maps of a fixed size. On the other hand, RoI align uses 

bilinear interpolation to align the RoI to a fixed size, ensuring 

more accurate spatial alignment. The resulting RoI feature 

maps are then utilized for localization. Non-maximum 

suppression (NMS) is applied to eliminate redundant 

detections and keep only the most confident ones. TensorFlow 

provides functions, such as tf. image. non_max_suppression, 

to perform NMS efficiently. 

 

4.2 Implementation 

 

Python 3.8 was chosen for implementing the algorithms 

discussed in this manuscript, leveraging its open-source 

nature. Python's extensive collection of robust libraries and 

packages makes it well-suited for the execution of deep 

learning models. The implementation occurred on an Intel 

Core i7 processor with 8 GB of RAM. 

The CNN model, constructed using the Keras library, 

encompasses multiple layers, including convolutional layers 

with ReLU activation functions, max-pooling layers, dropout 

regularization (0.25), and fully connected layers. Tailored for 

vehicle feature extraction and generating a SoftMax output, 

the CNN model undergoes training with the Adam optimizer 

and categorical cross-entropy loss function.  

Accuracy is monitored as a training metric over 10 epochs 

with a batch size of 10. The model incorporates processes like 

frame differencing, contour detection, and classification. 

Notably, the code allows users to specify a video file for 

processing. Table 5 provides a summary of the model 

architecture, detailing layer types, output shapes, and 

parameters, where out of a total of 2,00,174 parameters, 

2,00,168 are trainable, and 6 are non-trainable. 

 

Table 5. The architecture of the proposed CNN with 

parameters 

 

Layer (Type) 
Output 

Shape 
Parameter 

batch_normalization 

(BatchNormalizaton) 

(None, 28, 

28, 3) 
12 

conv2d (Conv2D) 
(None, 26, 

26, 32) 
896 

max_pooling2d (MaxPooling2D) 
(None, 13, 

13, 32) 
0 

conv2d_1 (Conv2D) 
(None, 13, 

13, 64) 
32832 

max_pooling2d_1 

(MaxPooling2D) 

(None, 6, 6, 

64) 
0 

conv2d_2 (Conv2D) 
(None, 6, 6, 

128) 
73856 

max_pooling2d_2 

(MaxPooling2D) 

(None, 3, 3, 

128) 
0 

dropout (Dropout) 
(None, 3, 3, 

128) 
0 

flatten (Flatten) (None, 1152) 0 

dense (Dense) (None, 128) 147584 

dense_1 (Dense) (None, 64) 8256 

dense_2 (Dense) (None, 32) 2080 

dense_3 (Dense) (None, 2) 66 

 

 

5. RESULT AND DISCUSSION 

 

5.1 Result 

 

The proposed workflow is initiated by systematically 

processing a sequence of continuous video frames, ensuring 

the careful conversion of each frame into an image 

representation, and storing it in the '𝑓𝑟𝑎𝑚𝑒𝑖𝑚𝑎𝑔𝑒𝑠' list. This 

methodical approach guarantees the seamless capture of every 

frame, laying the foundation for our in-depth analysis. To 

emphasize specific features within these frames, this 

manuscript explores various plot patterns. Notably, one of the 

simplest yet most insightful ways to visualize these features is 

by presenting the image itself. As illustrated in Figures 10, 11, 

and 12 the author adopts this approach to showcase the series 

of consecutive video frames as individual images, with each 

frame treated as an element in the '𝑓𝑟𝑎𝑚𝑒𝑖𝑚𝑎𝑔𝑒𝑠' list.  

Figure 13 illustrates the front, partial side, and total side 

view of the vehicle. In the continuation, Figure 14 illustrates 

all detected contours in the initial and final frames of the video 

for reference. Here, the dark-colored vehicle is parked in the 

shadow of a tree, which can be seen in Figure 14.  

All detected contours are represented in green to show the 

different intensity values and gradients. In the first image, the 

contours are detected on the front glass, bonnet, bumper grill, 

license plate, and logo. In the second image, the contours are 

detected on the side glass and gate. Which reflects the 

maximum contours available in the first image. Therefore, the 

best vehicle position is illustrated in Figure 15. 

To highlight the maximum information those are detected 

by the contours illustrated by the heatmap. Figure 16 displays 

the magnitude of the phenomenon in a 2-dimensional 

Heatmap. 

In addition, Figure 17 depicts the contours of the white 

Maruti Swift, which has been parked on sunny times without 

any shade. 
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Figure 14. Contours detected in the front and side 

perspectives of an image featuring a Maruti WagonR, taken 

under the shadow of a tree 

 

 
 

Figure 15. Optimal vehicle position, which has maximum 

features 

 

 
 

Figure 16. Heatmap to display the magnitude of the 

phenomenon in 2-dimensional Heatmap 

 
 

Figure 17. Detected contours in the frontal view of a White 

Maruti Swift Vehicle 

 

In Figure 17, all contours are detected on the headlight, 

bonnet, license plate, grill, and logo. Moreover, the contours 

are also highlighting the image that is present on the bonnet. 

All this information may be beneficial for effective 

surveillance and maximum information gain. 

Additionally, the histogram plot can shed light on how the 

pixel values in an image are distributed. Video histogram 

analysis focuses on the quantitative analysis and visualization 

of pixel intensity distributions within images and video 

frames. The analysis can provide details regarding the 

brightness, contrast, and pixel intensity as a whole. A 

histogram is generated using the flattened pixel intensity 

values. It is divided into 256 bins, representing the full range 

of pixel intensities (0 to 255). The following is a representation 

of the histogram plot used for illustrating the distribution of 

features: 

Assume that X = {x1, x2, ..., xn}T is a collection of n 

observations of a particular feature. The feature values xi can 

be discrete or continuous. Let B = [B1, B2, ..., Bk] be the 

collection of k non-overlapping bins. Each of [Bj] symbolizes 

a range of feature values. The observations in each bin are then 

counted in the next step.  

Let C = "c1, c2, ..., cn" be the collection of counts, with cj 

denoting the number of observations that fit into the bin Bj. To 

determine the relative frequencies in each bin, the counts must 

be normalized in the last step. By dividing each count cj by the 

sum of the observations n and the width of the bin Bj, this is 

often accomplished.  

Corresponding to the range and distribution of the feature 

values, each bin can be either uniform or varied. These are 

possible representations for the normalized counts or relative 

frequencies as shown in Eq. (7): 

 

𝑓𝑗 = 
𝑐𝑖

(𝑛 ∗ 𝐵𝑗)
 (7) 

 

Here, in Eq. (7) the fj stands for the relative frequency of 

observations in the bin Bj. 

The relative frequencies fj can be plotted against the bin 

centers or boundaries to get the histogram. Depending on the 

desired level of granularity in the plot, the midpoints or ends 

of the bins can be chosen as the bin centers or limits. The 

resulting plot shows the distribution of the feature values 
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graphically and can be used to spot trends or abnormalities in 

the data. Figure 18 portrays the pixel distribution of 2 different 

frames of video first and last frame sequentially, whereas 

Figure 19 illustrates the intensity of pixels in the video. 

This manuscript also acknowledges the inevitable diversity 

in pixel intensities across the extracted frames. To examine the 

relationship between pixel intensity fluctuations and the 

corresponding video content, it becomes essential to calculate 

the average intensity across all frames, effectively 

representing the mean video intensity. Hence, subgraphs (a) 

and (b) of Figure 20 depict the average intensity of 100 frames 

through a line plot (showing frame-time correlation) and a 

scatter plot (facilitating the comparison of pixel intensities) for 

video analytics. 

 

 
 

Figure 18. Histogram of pixel distribution 

 

 
 

Figure 19. Pixel intensity in video 

 

 
 

Figure 20. (a) Line plot and (b) Scatter plot for visualizing video intensity across 100 frames to observe the correlation between 

pixel intensity changes and corresponding video 
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In the realm of practical real-life scenarios, the two 

different vehicles can look the same or the same vehicle can 

look different in different positions, illumination, and light 

intensity. Therefore, metrics that replicate this behavior tend 

to be more effective. The Structural Similarity Index (SSIM) 

[67] and Scale-Invariant Feature Transform (SIFT) are two 

methodologies for extracting features to compare between two 

images. SSIM serves as a metric to evaluate the similarity 

between two images. The SSIM computed via Eq. (8) and its 

parameter descriptions are listed in Table 6. 

 
𝑆𝑆𝐼𝑀(𝐼1, 𝐼2)

=
((2 ∗ 𝜇𝐼2 ∗ 𝜇𝐼2 + 𝐶𝑜𝑛𝑠𝑡1) ∗  (2𝜎𝐼1𝐼2 + 𝐶𝑜𝑛𝑠𝑡2))

((𝜇𝐼12 + 𝜇𝐼22 + 𝐶𝑜𝑛𝑠𝑡1) ∗ (𝜎𝐼12 + 𝜎𝐼22 + 𝐶𝑜𝑛𝑠𝑡2))
 

(8) 

 

Table 6. Description of Eq. (8) parameters 

 
Parameters Description 

μI1, μI2 Mean: over a window in Image I1 and I2 

σI1, σI2 
Std deviation: over a window in Image I1 

and I2 

σI1I2 
Co-variance: over a window among 

Image I1 and I2 

Const1, Const2, 

Const3 
Constants 

 

Table 7 displays Mean SSIM (MSSIM) and Table 8 

displays various parameters of SSIM including Mean 

Luminance Similarity (MLS), Mean Contrast Similarity 

(MCS), Mean Structure Similarity (MSS), and Peak-Signal-to-

Noise-Ratio (PSNR) for pairs of frames (from frame 0 to 299). 

However, considering the overall similarity of nearly 

consecutive frames, only 15 comparisons were conducted 

between the initial and final frames, gradually transitioning 

between them to compute all parameters. The value ranges 

from -1 to +1, where +1 signifies identical or extremely similar 

images, and -1 indicates highly divergent images.  

In Table 7, the Frame Image pair column contains frame 

combinations 0 and 298 i.e. first and almost the last frame. As 

we move from the first frame to the last frame, similar frames 

start coming closer. As a result, it can be understood that those 

frames are identical. Therefore, it can be seen in the table that 

the value of SSIM for frames 0-298 is small while for frames 

14-284 it is large. Therefore, if we continue increasing like 

this, we will get a large value for the same frame, which will 

show their similarity. 

 

Table 7. Mean structural similarity index (MSSIM) 

 
Frame Image Pair MSSIM of Each Pixel SSIM Map 

0-298 0.17571 

1-297 0.17214 

2-296 0.16710 

3-295 0.16790 

4-294 0.16827 

5-293 0.17451 

6-292 0.18944 

7-291 0.19132 

8-290 0.18631 

9-289 0.18430 

10-288 0.18287 

11-287 0.18577 

12-286 0.19124 

13-285 0.19253 

14-284 0.19271 

 

 

Table 8. Structural Similarity Index (SSIM) parameters 

 
Frame Image Pair MLS MCS MSS PSNR 

0-298 -26.2091 13.15 -137.803 8.20039 

1-297 -26.2264 13.75 -136.909 8.29760 

2-296 -22.9908 13.92 -136.515 8.34860 

3-295 -22.3341 13.94 -136.330 8.36549 

4-294 -21.4706 14.23 -135.556 8.49104 

5-293 -20.0737 14.88 -135.730 8.63730 

6-292 -21.0771 15.25 -136.424 8.73536 

7-291 -22.8137 15.81 -137.173 8.79545 

8-290 -20.4389 15.45 -136.206 8.95678 

9-289 -21.9710 15.97 -136.784 8.94932 

10-288 -22.7487 16.24 -136.354 8.94783 

11-287 -19.7421 16.27 -135.917 9.11346 

12-286 -18.4450 16.87 -136.870 9.20767 

13-285 -18.5874 16.82 -137.477 9.24508 

14-284 -19.7256 16.99 -137.748 9.27787 

 

In Table 8, the large value of PSNR represents high 

similarity and the small value represents low similarity. 

Subgraphs (a) and (b) of Figure 21 illustrate the model's 

performance by evaluating the running accuracy and loss. 

Additionally, Figure 22 illustrates the minimum loss and 

validation loss. The model was ultimately saved with a 

minimum loss of 0.0816 and an accuracy of 0.9736.  

 

 
(a) 

 

 
(b) 

 

Figure 21. Loss and accuracy progression throughout each 

iteration in every epoch 
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Figure 22. Minimum loss and validation loss sequentially in 

each epoch 

 

The performance of the proposed work in terms of 

processing time elapsed/step with validation loss and 

validation accuracy is depicted in Table 9 and Table 10. It can 

be observed that as epoch increases elapsed time/step 

decreases, and the model ultimately achieves its optimum 

accuracy at iteration 2. 

In addition to the performance showcased in the preceding 

figures and tables, the author assessed the effectiveness of the 

proposed approach against ten alternative methods. The 

comparative analysis of accuracy with these ten approaches is 

presented in Table 11 and Figure 23 revealing that the 

performance of the proposed work surpasses that of the other 

ten methods. 

 

Table 9. Performance in terms of processing time per step 

with loss and accuracy in each epoch during Iteration 1 

 

Epoch 
Iteration 1 

Time / Step Loss Accuracy 

Epoch 1 5s 245 ms 0.3186 0.8590 

Epoch 2 1s 153 ms 0.1622 0.9736 

Epoch 3 1s 156 ms 0.1179 0.9736 

Epoch 4 1s 155 ms 0.1055 0.9736 

Epoch 5 1s 157 ms 0.1113 0.9736 

Epoch 6 1s 159 ms 0.0961 0.9736 

Epoch 7 1s 158 ms 0.0922 0.9736 

Epoch 8 1s 158 ms 0.0850 0.9736 

Epoch 9 1s 155 ms 0.0834 0.9736 

Epoch 10 1s 155 ms 0.1305 0.9646 

 

Table 10. Performance in terms of processing time per step 

with loss and accuracy in each epoch during Iteration 2 

 

Epoch 
Iteration 2 

Time / Step Loss Accuracy 

Epoch 1 4s 223 ms 0.3274 0.9207 

Epoch 2 1s 147 ms 0.1468 0.9736 

Epoch 3 1s 145 ms 0.1198 0.9736 

Epoch 4 1s 158 ms 0.1047 0.9736 

Epoch 5 1s 161 ms 0.1103 0.9736 

Epoch 6 1s 160 ms 0.0970 0.9736 

Epoch 7 1s 155 ms 0.1028 0.9736 

Epoch 8 1s 158 ms 0.0939 0.9736 

Epoch 9 1s 166 ms 0.0947 0.9736 

Epoch 10 1s 159 ms 0.0844 0.9736 

 

Table 11. Comparison in terms of accuracy with the other ten 

approaches 

 
Approach Accuracy 

SqueezeNet 96.33% 

Random Forest (RF) 94.53% 

Support Vector Machine (SVM) 97.89% 

Speeded-Up Robust Features (SURF) Detector, 

Support Vector Machines 
91.70% 

Symmetrical SURF Descriptor 91.10% 

Partial-Feature based Part-Based Model 92.47% 

Bag of Speeded-Up Robust Features (BoSURF) 94.84% 

Haar-like Features, AdaBoost, Gabor Wavelet 

Transform, Local Binary Pattern Operator, PCA 
91.60% 

Linear SVM Binary Classifier, HOG Features 94.00% 

Harris Corner Strengths 96.00% 

Proposed Work 97.36% 

 

 
 

Figure 23. Performance of proposed work as compared to 

other approaches 

 

5.2 Discussion 

 

The use of a contour-based detection approach in the 

proposed methodology is justifiable for several reasons, 

despite the availability of state-of-the-art object detection 

algorithms. The choice of the proposed approach aligns with 

the specific objectives, dataset characteristics, and the 

challenges addressed in the research, particularly in the 

context of handling varying lighting conditions. The 

algorithms may exhibit sensitivity to certain conditions, 

adaptability, robustness to complex scenes, ability to handle 

occlusions, and computational efficiency. Moreover, they 

serve as a foundational step, paving the way for subsequent 

more specialized vehicle analyses and monitoring.  

During the study, the author observed that the proposed 

approach is well suited for four-wheelers such as cars. Its 

accuracy on commercial vehicles, heavy vehicles such as 

trucks, and three-wheelers such as autos may vary because of 

their shape and size. Another challenge arises with identical 

vehicles, as in some cases, the commercial vehicle belongs to 

the same company, which is why they may be identical. 

Moreover, since a brand-new vehicle with the same company, 

same brand, and same color is identical, this is also a 
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challenge. 

Table 12 provides a detailed justification for this choice to 

show the performance of the proposed work under different 

scenarios. 

 

Table 12. Justification of contour-based detection approach 

to perform under different scenarios 

 
Parameters Justification 

Robustness to 

Complex 

Scenarios 

Contour-based detection algorithms are 

inherently versatile in handling complex 

scenarios. Unlike some algorithms that may 

rely on predefined patterns or features, 

contour-based methods are adaptive and can 

identify object edges even in challenging 

situations. 

Computational 

Efficiency 

The algorithms are often computationally 

efficient, making them suitable for near-real-

time applications. They require fewer 

computational resources compared to some 

other deep learning-based methods, which 

can be advantageous in resource-constrained 

environments. This adaptability aligns with 

our methodology to detect the optimal 

position of the vehicle. 

Adaptability to 

Lighting 

Variations 

While it is true that contour-based algorithms 

can be sensitive to lighting conditions, they 

can still perform effectively with appropriate 

preprocessing (image enhancement and 

thresholding) and adaptive techniques to 

mitigate the impact of lighting variations. 

Furthermore, the methods can work well in 

scenarios where shadows or changing 

illumination patterns are present, which are 

common in real-world roadside traffic areas. 

Custom Dataset 

Considerations 

The custom dataset used in our study 

incorporates scenarios encountered in real-

world traffic. Since contour-based detection is 

inherently well-suited for such scenarios, its 

selection was deliberate.  

Handling 

Occlusions 

The approach offers advantages when dealing 

with partial occlusions. In scenarios where 

vehicles are partially obscured by other 

objects or surroundings (e.g., trees or 

buildings), and can often still outline the 

visible portions of the vehicle, which is 

essential in traffic monitoring applications. 

Region of 

Interest (ROI) 

Extraction 

The approach facilitates the extraction of 

ROIs containing vehicles. These ROIs can 

subsequently be subjected to more focused 

and computationally intensive analysis, 

allowing for efficient resource allocation. 

 

In roadside traffic area surveillance, the positioning of 

vehicles within the camera frame is of utmost significance. 

Vehicle detection in roadside traffic monitoring videos plays a 

vital role in ITMS. To set up video surveillance at roadside 

traffic, locations of cameras, and other equipment, considering 

factors such as coverage area, camera angles, and lighting 

conditions matter. The widespread equipment of surveillance 

cameras has resulted in a vast database of traffic footage for 

analysis. Conventional surveillance is often hindered by 

distortions resulting from camera angles and lightning. 

However, when the cameras are positioned at a prominent 

viewing angle, the road appears more distant, which affects the 

size of the detected objects. Effectively addressing these 

challenges and finding solutions is essential, especially in 

complex camera scenes, to enable further practical 

applications. To tackle this issue, contour-based detection 

methods are utilized. These techniques concentrate on 

delineating the silhouette of vehicles, encompassing their 

distinctive features. 

In summary, by addressing these challenges and finding the 

optimal vehicle position, this work not only advances the field 

of roadside traffic surveillance but also aligns with the broader 

goal of optimizing the smart city framework for enhanced 

functionality and contributes to the overall efficiency of smart 

city traffic management systems. These advancements not 

only address the specific challenges of road-side traffic 

surveillance but also contribute to the broader goal of creating 

more intelligent, efficient, and secure urban environments. 

 

 

6. CONCLUSIONS 

 

This manuscript introduces a lightweight CNN based on 

contour detection, specifically designed to contribute to 

transport development and integration. The proposed 

architecture focuses on vehicle detection and the extraction of 

crucial features, leveraging a custom dataset for maximum 

effectiveness. The analysis includes the evaluation and 

visualization of pixel distribution, pixel intensity, and video 

density through various plots and charts. The Structural 

Similarity Index (SSIM) is employed to compare frames in 

different positions, calculating parameters such as MSSIM, 

ssim_map, MLS, MCS, and MSS, along with PSNR for frame 

pairs (from frame 0 to 298), presented in tables and figures. 

The SSIM metric is used to assess how similar two images are 

to one another; it ranges in value from -1 to +1. The number 

+1 denotes that the two images are identical or extremely 

similar, whereas a value of -1 denotes that the two images are 

highly dissimilar. These numbers are frequently modified to 

fall inside the range [0, 1], where the extremes have the same 

significance. However, human visual perception excels at 

identifying structural details in a scene and discerning 

differences between the information extracted from reference 

and sample images. In the realm of practical real-life scenarios, 

the two different vehicles can look the same or the same 

vehicle can look different in different positions, illumination, 

and light intensity. Therefore, metrics that replicate this 

behavior tend to be more effective. Beyond assessing the 

proposed work's performance, a systematic literature survey 

incorporates comparisons with various models and approaches 

through tables, aligning with the goals of transport 

development and integration. The results demonstrate the 

efficacy of the proposed work under challenging conditions, 

including partial occlusions, poor visibility, varying light 

intensities, and diverse recording angles.  

Despite outperforming previous works and approaches, 

there is still room for further improvement. Expanding the 

dataset and including a wider variety of vehicles could be 

beneficial for future research in this area. Future research in 

this area could benefit from incorporating a wider variety of 

vehicles to enhance the applicability of the proposed 

methodology in the context of transport development and 

integration. 
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