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In this paper, we introduce a novel approach to obtain approximate numerical solutions 

of linear Fredholm integral equations of the second kind. This method is founded on the 

modified Simpson's quadrature rule. We transform the Fredholm integral equation of 

the second kind into a system of linear equations and provide numerical examples. 

Numerical results were compared and interpreted with tables and graphs and the 

solution was shown to be consistent. Furthermore, we conduct a comparative analysis, 

comparing the absolute error in the solution with existed methods This comparison 

serves to highlight the efficiency and accuracy of our proposed method. 
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1. INTRODUCTION

Fredholm integral equations are a class of mathematical 

equations that arise in various branches of applied 

mathematics and engineering. These equations play a 

significant role in the study of boundary value problems, 

signal processing, quantum mechanics, and many other areas 

[1-3]. So approximate solution of linear Fredholm integral 

equation of the second kind is one of the most important 

subjects discussed in recent years, using different kind of 

methods such as Method of Moments, Variational Iteration 

Method [4]. 

Various methods, including iterative procedures, 
eigenfunction expansions, and numerical quadrature, are 
employed to find solutions to these equations. Many authors 
have extensively explored the approximate solutions of linear 
Fredholm integral equations of the second kind, utilizing a 
variety of quadrature methods. Such that Haar wavelets [5], 
hybrid functions [6], sinc-Galerkin method [7], sinc-
collocation method [8], collocation methods based on cubic 
spline quadrature [9], collocation methods based on B-cubic 
spline quadrature [10], repeated modified trapezoid quadrature 

method [11, 12], Numerical solution of the Fredholm integral 

equations with a quadrature method [13], Bernoulli wavelet 

based numerical method for solving Fredholm integral 
equations of the second kind [14]. Malmir [15] used the 
numerical solution method based on Chebyshev and Legendre 
polynomials to solve the Fredholm integral equation of the 
Second kind. 

Each of these approaches offers unique advantages and has 

contributed to our understanding and practical implementation 

of approximate solutions for such integral equations. 

In this study, we introduce a novel approach to obtain an 

approximate numerical solution of linear Fredholm integral 

equation of the second kind, which is given by the equation: 

𝜙(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎

= 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 (1) 

where, the function f(x) and the kernel k(x, t) are known, but 

ϕ(x) the exact solution is unknown and to be determined. We 

assume that the integral equation (1) has a unique solution. To 

find this solution numerically, we employ a modified 

numerical technique based on the quadrature Simpson's rule, 

this method is first proposed by Nadir and Rahmoune [16], for 

solving Volterra integral equations. The idea is to approximate 

the solution of the linear Fredholm integral equations in even 

number of equally spaced points. This technique will enable 

us to approximate the solution ϕ(x) efficiently and accurately. 

The paper is organized into six sections. The second section 

presents the existence and uniqueness of a solution. In the third 

section, we delve into the algorithm used in our research 

method, providing a detailed explanation of its workings. A 

study of convergence is conducted in the fourth section. 

Section 5 is devoted to presenting a series of diverse examples 

that serve as practical tests for evaluating the method's 

performance and applicability. Finally, in the last section, 

conclusion of the proposed method is discussed. 

2. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we give some conditions which ensure the 

existence and uniqueness of solutions of linear Fredholm 

integral equations. 

Definition 

Let f:[a, b]→ℝ, and k:[a, b]×[a, b]→ℝ be both continuous 

functions, and ϕ0:[a, b]→ℝ, is an arbitrary continuous function, 

we define the sequence of functions by: 𝜙𝑛(𝑥) =

∫ 𝑘(𝑥, 𝑡)𝜙𝑛−1(𝑡)𝑑𝑡
𝑏

𝑎
+ 𝑓(𝑥), 𝑛 ≥ 1, 𝑥 ∈ [𝑎, 𝑏].
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This sequence called Fredholm sequence. 

Lemma 

If ϕ0: [a, b]→ℝ  is an arbitrary continuous function and 

𝜙𝑛(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝜙𝑛−1(𝑡)𝑑𝑡
𝑏

𝑎
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1, 𝑥 ∈ [𝑎, 𝑏]. 

Then: 

1. |𝜙𝑛(𝑥)| ≤ 𝑀𝑛 𝑚𝑎𝑥
𝑎≤𝑥≤𝑏

|𝜙0(𝑥)|  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1, 𝑥 ∈ [𝑎, 𝑏],

where, 𝑀 = max
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)|𝑑𝑡
𝑏

𝑎
. 

2. If M<1, then the sequence (ϕn) uniformly converges to the

zero function for all 𝑥 ∈ [𝑎, 𝑏]. 
Proof: Application the inductive proof [17]. 

Theorem 1 

Let f: [a, b]→ℝ, and k:[a, b]×[a, b]→ℝ be both continuous 

functions, and 𝑀 = max
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)|𝑑𝑡
𝑏

𝑎
. If M<1, then: 

1. ϕ=0 is the unique solution to homogeneous equation

𝜙(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
. 

2. The equation 𝜙(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥) has at 

most one solution. 

3. Let ϕ0=f, and define the sequence of functions by

𝜙𝑛(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝜙𝑛−1(𝑡)𝑑𝑡
𝑏

𝑎
+ 𝑓(𝑥), 𝑛 ≥ 1.

The sequence (ϕn) converges to the unique solution of the 

equation 𝜙(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥). 

Proof: The proof for this theorem can be found in reference 

[18]. 

Theorem 2 (Fredholm Alternative Theorem) 

Consider the linear Fredholm integral equation of the 

second kind 𝜙(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥). 

If the homogeneous Fredholm integral equation of the 

second kind 𝜙(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
 has only the trivial 

solution ϕ(x)=0, then the corresponding non-homogeneous 

Fredholm integral equation of the second kind 𝜙(𝑥) −

∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥) has a unique solution for any right-

hand side f. 

3. DEVELOPMENT OF THE METHOD

Consider the linear Fredholm integral equation of the 

second kind with regular kernels (non- singular): 

𝜙(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎

= 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 (2) 

where, 𝑎, 𝑏 ∈ ℝ, f(x) is a known continuous function on the 

finite interval [a, b], the kernel k(x, t) is known and continuous 

function in [a, b]×[a, b] but ϕ(x) the exact solution of the 

equation (1) is an unknown continuous function in [a, b] to be 

determined. 

Let 𝑎 = 𝑥0 < 𝑥1 <. . . < 𝑥2𝑖−1 < 𝑥2𝑖 <. . . < 𝑥2𝑛 = 𝑏 , be a

subdivision of the interval [a, b], with  ℎ =
𝑏−𝑎

2𝑛
. 

We approximate the right-hand integral (1) at the even point 

(x2i) with the Simpson's quadrature rule, we have: 

𝜙(𝑥2𝑖) − ∫ 𝑘(𝑥2𝑖 , 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥2𝑖)

𝜙(𝑥2𝑖) − ∑ ∫ 𝑘(𝑥2𝑖 , 𝑡)𝜙(𝑡)𝑑𝑡
𝑥2𝑗+2

𝑥2𝑗

𝑗=𝑛−1
𝑗=0 = 𝑓(𝑥2𝑖),

i=0, 1, ..., n 

𝜙2𝑖 −
ℎ

3
∑ (𝑘2𝑖,2𝑗𝜙2𝑗 + 4𝑘2𝑖,2𝑗+1𝜙2𝑗+1 +

𝑗=𝑛−1
𝑗=0

𝑘2𝑖,2𝑗+2𝜙2𝑗+2) = 𝑓2𝑖

For a smaller step h, an approximation to ϕ2i can be 

computed by replacing ϕ2j+1 by the average 
𝜙2𝑗+𝜙2𝑗+2

2
. 

𝜙2𝑖 −
ℎ

3
∑ (𝑘2𝑖,2𝑗𝜙2𝑗 + 4𝑘2𝑖,2𝑗+1

𝜙2𝑗+𝜙2𝑗+2

2
+

𝑗=𝑛−1
𝑗=0

𝑘2𝑖,2𝑗+2𝜙2𝑗+2) = 𝑓2𝑖

or 

𝜙2𝑖 −
ℎ

3
∑ [(𝑘2𝑖,2𝑗 + 2𝑘2𝑖,2𝑗+1)𝜙2𝑗 + (𝑘2𝑖,2𝑗+2 +

𝑗=𝑛−1
𝑗=0

2𝑘2𝑖,2𝑗+1)𝜙2𝑗+2] = 𝑓2𝑖  

then 

𝜙2𝑖 −
ℎ

3
∑ (𝑘2𝑖,2𝑗 + 2𝑘2𝑖,2𝑗+1)𝜙2𝑗

𝑗=𝑛−1
𝑗=0 −

ℎ

3
∑ (𝑘2𝑖,2𝑗+2 +

𝑗=𝑛−1
𝑗=0

2𝑘2𝑖,2𝑗+1)𝜙2𝑗+2 = 𝑓2𝑖

𝜙2𝑖 −
ℎ

3
∑ (𝑘2𝑖,2𝑗 + 2𝑘2𝑖,2𝑗+1)𝜙2𝑗

𝑗=𝑛−1
𝑗=0 −

ℎ

3
∑ (𝑘2𝑖,2𝑗 +

𝑗=𝑛
𝑗=1

2𝑘2𝑖,2𝑗−1)𝜙2𝑗 = 𝑓2𝑖

for i=0, ..., n, we get the following system: 

𝜙2𝑖 −
ℎ

3
(𝑘2𝑖,0 + 2𝑘2𝑖,1)𝜙0 −

2ℎ

3
∑ (𝑘2𝑖,2𝑗−1 + 𝑘2𝑖,2𝑗 +

𝑗=𝑛−1
𝑗=1

𝑘2𝑖,2𝑗+1)𝜙2𝑗 −
ℎ

3
(2𝑘2𝑖,2𝑛−1 + 𝑘2𝑖,2𝑛)𝜙2𝑛 = 𝑓2𝑖

With 2n+1 equation, and 2n+1 unknowns . 

4. ERROR ESTIMATION

In the subinterval [x, x+2h]. we have: 

∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑠+2ℎ

𝑠
=

ℎ

3
(𝑘(𝑥, 𝑠)𝜙(𝑠) + 4𝑘(𝑥, 𝑠 + ℎ)𝜙(𝑠 +

ℎ) + 𝑘(𝑥, 𝑠 + 2ℎ)𝜙(𝑠 + 2ℎ)) +
ℎ5

90
(𝑘(𝑥, 𝜉)𝜙(𝜉)), so 

∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡
𝑏

𝑎
= ∑ ∫ 𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡

𝑥2(𝑖+1)

𝑥2𝑖

𝑛
𝑖=0 =

ℎ

3
∑ (𝑘(𝑥, 𝑥2𝑖)𝜙(𝑥2𝑖) + 4𝑘(𝑥, 𝑥2𝑖+1)𝜙(𝑥𝑖+1) +𝑛

𝑖=0

𝑘(𝑥, 𝑥2𝑖)𝜙(𝑥2𝑖)) + 𝑛 (
ℎ5

90
(𝑘(𝑥, 𝜉)𝜙(𝜉))) 

=
ℎ

3
∑ (𝑘(𝑥, 𝑥2𝑖)𝜙(𝑥2𝑖) + 4𝑘(𝑥, 𝑥2𝑖+1)𝜙(𝑥𝑖+1) +𝑛

𝑖=0

𝑘(𝑥, 𝑥2𝑖)𝜙(𝑥2𝑖)) + (𝑏 − 𝑎)
ℎ4

180
(𝑘(𝑥, 𝜉)𝜙(𝜉))) 

Also, noting that, if the segment width h is halved to h/2, 

then: 

𝐸(ℎ/2) = 2((𝑏 − 𝑎)
(ℎ/2)4

180
𝑘(𝑥, 𝜉)𝜙(𝜉)) =

1

16
((𝑏 −

𝑎)
(ℎ)4

90
𝑘(𝑥, 𝜉)𝜙(𝜉)) =

1

8
𝐸(ℎ) 

5. ILLUSTRATING EXAMPLES

The objective of this section is to demonstrate the efficacy 

of the method outlined in the paper through a series of 

818



numerical experiments. 

Example 1.  

Let us consider the Fredholm integral equation of the second 

kind 𝜙(𝑥) − ∫ 2 𝑒𝑥𝑝( 𝑥 + 𝑡)𝜙(𝑡)𝑑𝑡
1

0
= 𝑒𝑥𝑝( 𝑥), 0 ≤ 𝑥 ≤ 1, 

the exact solution ϕex(x) is given by 𝜙𝑒𝑥(𝑥) =
𝑒𝑥𝑝(𝑥)

2−𝑒𝑥𝑝(2)
. 

Table 1 and Figure 1 present the exact, approximate 

solutions and the absolute error |ϕapp-ϕex(x)| for n=10 of the 

equation in the Example 1 obtained by the modified Simpson's 

rule, in some arbitrary points. 

Table 1. Numerical results for n=10 in example 1 

Val. of x Ex.sol App.sol Error 

0.00 -0.185561 -0.185378 1.830029e-04

0.10 -0.205077 -0.204875 2.022495e-04

0.20 -0.226645 -0.226422 2.235202e-04

0.30 -0.250481 -0.250234 2.470281e-04

0.40 -0.276825 -0.276552 2.730082e-04

0.50 -0.305939 -0.305637 3.017207e-04

0.60 -0.338115 -0.337781 3.334530e-04

0.70 -0.373674 -0.373306 3.685226e-04

0.80 -0.412974 -0.412567 4.072804e-04

0.90 -0.456407 -0.455957 4.501145e-04

1.00 -0.504408 -0.503910 4.974534e-04

Figure 1. Exact, approximate solutions and absolute error 

(n=10) for example 1 

Table 2 and Figure 2 present the exact, approximate 

solutions and the absolute error |ϕapp-ϕex(x)| for n=20 of the 

equation in the Example 1 obtained by the modified Simpson’s 

rule, in some arbitrary points. 

Table 2. Numerical results for n=20 in example 1 

Val. of x Ex.sol App.sol Error 

0.00 -0.185561 -0.185515 4.581175e-05

0.10 -0.205077 -0.205026 5.062981e-05

0.20 -0.226645 -0.226589 5.595460e-05

0.30 -0.250481 -0.250420 6.183939e-05

0.40 -0.276825 -0.276757 6.834310e-05

0.50 -0.305939 -0.305863 7.553081e-05

0.60 -0.338115 -0.338031 8.347445e-05

0.70 -0.373674 -0.373582 9.225354e-05

0.80 -0.412974 -0.412872 1.019559e-04

0.90 -0.456407 -0.456294 1.126787e-04

1.00 -0.479808 -0.504283 1.245292e-04

Figure 2. Exact, approximate solutions and absolute error 

(n=20) for example 1 

Example 2. 

Consider the linear Fredholm integral equation of the 

second kind 𝜙(𝑥) − ∫ (𝑥𝑡 + 𝑥2𝑡2)𝜙(𝑡)𝑑𝑡
1

−1
= 1, −1 ≤ 𝑥 ≤

91.  The exact solution ϕex(x) is given by 𝜙𝑒𝑥(𝑥) = 1 + 10 
𝑥2.

Table 3 and Figure 3 present the exact, approximate 

solutions and the absolute error |ϕapp-ϕex(x)| for n=10 of the 

equation in the Example 2 obtained by the modified Simpson's 

rule, in some arbitrary points. 

Table 3. Numerical results for n=10 in example 2 

Values of x Ex.sol App.sol Error 

-1.00 2.111111 2.119370 8.258460e-03 

-0.80 1.711111 1.716397 5.285414e-03 

-0.60 1.400000 1.402973 2.973046e-03 

-0.40 1.177778 1.179099 1.321354e-03 

-0.20 1.044444 1.044775 3.303384e-04 

0.00 1.000000 1.000000 0.000000e+00 

0.20 1.044444 1.044775 3.303384e-04 

0.40 1.177778 1.179099 1.321354e-03 

0.60 1.400000 1.402973 2.973046e-03 

0.80 1.711111 1.716397 5.285414e-03 

1.00 2.111111 2.119370 8.258460e-03 

Figure 3. Exact, approximate solutions and absolute error 

(n=10) for example 2 
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Table 4 and Figure 4 present the exact, approximate 

solutions and the absolute error |ϕapp-ϕex(x)| for n=20 of the 

equation in the Example 2 obtained by the modified Simpson's 

rule, in some arbitrary points. 

Table 4. Numerical results for n=20 in example 2 

Val. of x Ex.sol App.sol Error 

-1.00 2.111111 2.113170 2.059365e-03 

-0.80 1.711111 1.712429 1.317994e-03 

-0.60 1.400000 1.400741 7.413715e-04 

-0.40 1.177778 1.178107 3.294985e-04 

-0.20 1.044444 1.044527 8.237462e-05 

0.00 1.000000 1.000000 0.000000e+00 

0.20 1.044444 1.044527 8.237462e-05 

0.40 1.177778 1.178107 3.294985e-04 

0.60 1.400000 1.400741 7.413715e-04 

0.80 1.711111 1.712429 1.317994e-03 

1.00 2.111111 2.113170 2.059365e-03 

Figure 4. Exact, approximate solutions and absolute error 

(n=20) for example 2 

Example 3. 

Consider the linear Fredholm integral equation of the 

second kind 𝜙(𝑥) − ∫
4

𝜋
𝑐𝑜𝑠( 𝑥 − 𝑡)𝜙(𝑡)𝑑𝑡

𝜋

2
0

= −
2

𝜋
𝑐𝑜𝑠( 𝑥)  , 

0 ≤ 𝑥 ≤
𝜋

2
, the exact solution ϕex(x) is given by ϕex(x)=sin(x). 

Table 5 and Figure 5 present the exact, approximate 

solutions and the absolute error |ϕapp-ϕex(x)| for n=10 of the 

equation in the Example 3 obtained by the modified Simpson's 

rule, in some arbitrary points. 

Table 5. Numerical results for n=10 in example 3 

Val. of x Ex.sol App.sol Error 

0.00 0.000000 0.003242 3.241537e-03 

0.157 0.156434 0.159961 3.526219e-03 

0.314 0.309017 0.312741 3.724075e-03 

0.471 0.453990 0.457821 3.830231e-03 

0.628 0.587785 0.591627 3.842074e-03 

0.785 0.707107 0.710866 3.759312e-03 

0.942 0.809017 0.812601 3.583984e-03 

1.100 0.891007 0.894327 3.320406e-03 

1.257 0.951057 0.954032 2.975069e-03 

1.414 0.987688 0.990245 2.556476e-03 

1.571 1.000000 1.002075 2.074933e-03 

Figure 5. Exact, approximate solutions and absolute error 

(n=10) for example 3 

Table 6 and Figure 6 present the exact, approximate 

solutions and the absolute error |ϕapp-ϕex(x)| for n=20 of the 

equation in the Example 3 obtained by the modified Simpson's 

rule, in some arbitrary points. 

Table 6. Numerical results for n=20 in example 3 

Val. of x Ex.sol App.sol Error 

0.00 0.000000 0.000808 8.081830e-04 

0.157 0.156434 0.157313 8.788296e-04 

0.314 0.309017 0.309945 9.278365e-04 

0.471 0.453990 0.454944 9.539970e-04 

0.628 0.587785 0.588742 9.566669e-04 

0.785 0.707107 0.708043 9.357805e-04 

0.942 0.809017 0.809909 8.918521e-04 

1.100 0.891007 0.891832 8.259633e-04 

1.257 0.951057 0.951796 7.397366e-04 

1.414 0.987688 0.988324 6.352951e-04 

1.571 1.000000 1.000515 5.152105e-04 

Figure 6. Exact, approximate solutions and absolute error 

(n=20) for example 3 

In the following examples, a comparison with the least-

squares and polynomial method [19] is done. 
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Example 4. 

Consider the linear Fredholm integral equation of the 

second kind [19] 𝜙(𝑥) − ∫ (√𝑥 + √𝑡)𝜙(𝑡)𝑑𝑡
1

0
= 1 + 𝑥, 0 ≤

𝑥 ≤ 1, the exact solution ϕex(x) is given by 𝜙𝑒𝑥(𝑥) =
−129

70
−

141

35
√𝑥 + 𝑥.

Numerical results for n=16 of the equation in the Example 

4 obtained by the modified Simpson's method, in some 

arbitrary points are presented in Table 7 and Figure 7, a 

comparison of obtained results with ones obtained by least-

squares [19], is given in Table 7. 

Table 7. Comparison of results for n=16 in example 4 

Values of x Error |ϕ-ϕ1| [19] 

0.000 6.571721e-03 6.848e-01 

0.125 8.801403e-03 

0.250 9.724968e-03 9.31e-02 

0.375 1.043364e-02 

0.500 1.103109e-02 2.15e-02 

0.625 1.155744e-02 

0.750 1.203330e-02 4.26e-02 

0.875 1.247091e-02 

1.000 1.287821e-02 1.233e-01 

Figure 7. Exact, approximate solutions and absolute error 

(n=16) for example 4 

Numerical results for n=32 of the equation in the Example 

4 obtained by the modified Simpson's method, in some 

arbitrary points are presented in Table 8 and Figure 8, a 

comparison of obtained results with ones obtained by 

polynomial method |ϕ-ϕ2| [19], is given in Table 8. 

Table 8. Comparison of results for n=32 in example 4 

Values of x Error Error [19] 

0.000 6.571721e-03 6.927e-01 

0.125 8.801403e-03 

0.250 9.724968e-03 8.20e-02 

0.375 1.043364e-02 

0.500 1.103109e-02 3.69e-02 

0.625 1.155744e-02 

0.750 1.203330e-02 6.38e-02 

0.875 1.247091e-02 

1.000 1.287821e-02 9.50e-02 

Figure 8. Exact, approximate solutions and absolute error 

(n=32) for example 4 

Example 5. 

In the final example, we apply our approach to the integral 

equation [19] 𝜙(𝑥) − ∫ ( cos(𝑥) + cos(𝑡))𝜙(𝑡)𝑑𝑡
π

0
=

sin(𝑥), 0 ≤ 𝑥 ≤ π  to approximate the unique solution 

𝜙𝑒𝑥(𝑥) = sin(𝑥) +
4

2−𝜋²
cos(𝑥) +

2𝜋

2−𝜋²
. 

Numerical results for n=16 of the equation in the Example 

5 obtained by the modified Simpson's method, in some 

arbitrary points are presented in Table 9 and Figure 9, a 

comparison of obtained results with ones obtained by least-

squares [19], is given in Table 9. 

Table 9. Comparison of results for n=16 in example 5 

Values of x Error Error [19] 

0.00 1.500861e-03 5.228e-01 

π/8 1.532374e-03 

π/4 1.622115e-03 2.88e-02 

3π/8 1.756422e-03 

π/2 1.914847e-03 3.619e-01 

5π/8 2.073273e-03 

3π/4 2.207580e-03 1.166e-01 

7π/8 2.297321e-03 

π 2.328833e-03 7.548e-01 

Figure 9. Exact, approximate solutions and absolute error 

(n=16) for example 5 
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Numerical results for n=32 of the equation in the Example 

5 obtained by the modified Simpson's method, in some 

arbitrary points are presented in Table 10 and Figure 10, a 

comparison of obtained results with ones obtained by 

polynomial method |ϕ-ϕ2| [19], is given in Table 10. 

Table 10. Comparison of results for n=32 in example 5 

Values of x Error Error [19] 

0.00 3.747142e-04 5.125e-01 

π/8 3.826071e-04 

π/4 4.050841e-04 2.88e-02 

3π/8 4.387234e-04 

π/2 4.784037e-04 3.664e-01 

5π/8 5.180839e-04 

3π/4 5.517233e-04 1.182e-01 

7π/8 5.742003e-04 

π 5.820932e-04 7.548e-01 

Figure 10. Exact, approximate solutions and absolute error 

(n=32) for example 5 

6. CONCLUSIONS

A modified method for solving linear Fredholm integral 

equation of second kind with regular kernel based on the 

quadrature Simpson's rule was presented. After some 

experiments, using different forms of kernels, as it was shown 

in the previous section, when we had mentioned three 

examples with n=10 then n=20, and n=16 then n=32 for the 

two last examples. The comparison of the two last examples 

with the least-squares and polynomial methods [19] shows the 

efficiency of this technical for each example we conclude that 

the method is effective and accurate for solving such kind of 

equations specially when we increase the value of n. 

Apparently, in order to have the convergence of the present 

method, both kernel functions k(x, t) and f(x) have to be 

continuous. 
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