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The main method for determining the vibration characteristics of engineering 

constructions is modal analysis. It's a way of analyzing a system's mode shapes, natural 

frequencies, and damping factor. The dynamic response of cantilever beams is 

determined in this work with different cross-sectional shapes to find the effect of 

eccentricity on the dynamic response of the cantilever beam. The main goal of this 

research is to find and detect the natural frequencies and mode shapes of a Structural 

Steel cantilever beam with different eccentricities and to identify flexural or torsional 

natural frequencies, as well as their mode shapes that could be confused with transverse 

natural frequencies, and to compare the results with analytical and experimental 

methodologies. Results showed that torsional natural frequencies remained within the 

transverse natural frequency. It can be shown that, the increase of eccentricity in the 

cross section decreases the natural frequencies and especially the torsional natural 

frequencies. The results were compared experimentally and numerically using ANSYS 

16.1 software. There is a strong link between the mathematical, FEA, and experimental 

results. The latest results can be used to calculate failure loads in a variety of situations. 

The mathematical application of Euler's Bernoulli's beam concept was applied. The 

results of the three ways have been declared satisfactory. 
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1. INTRODUCTION

The cross-sectional shapes affect the static and dynamic 

responses of the beam as they change the moment of inertia 

and the eccentricities which lead beam to show torsional 

frequencies in addition to the transverse frequencies, and 

natural frequencies may shift due to eccentricities. The goal of 

this research is to predict the influence of eccentricity on the 

dynamic response when the center of gravity for different 

cross-sectional area shapes of a cantilever is shifted from the 

vertical and horizontal paths of vibration. This study is done 

by changing the ratio of the height to the base dimensions of 

the beam cross-sectional area. A deep understanding of modal 

properties is the base for effective design. The significance of 

this paper is to help in selecting the appropriate cross-sectional 

shape of cantilever in structure design according to the 

function of the structure, as the natural frequencies and mode 

shapes change with each cross-sectional shape. In this study, a 

finite element modal analysis was employed for three cases 

with various cross-sectional shapes and eccentricities as 

shown in Figure 1. It was used to investigate the complicated 

properties of various materials such as natural frequencies, and 

mode shapes. The first methodology was established on the 

Euler–Bernoulli beam principle, which is a mathematical 

model. Then, the finite-element procedure was implemented. 

The natural frequencies and mode shapes were predicted using 

ANSYS 16.1 program. Following these two analyses, an 

experimental modal analysis was done to match the results and 

interpret them for validity. To achieve natural frequencies and 

mode shapes, The 107 VF Vibration Analyzer is used to 

establish an experimental setup. 

Modal analysis can be used to determine the structures' 

modal parameters. The modal parameters, which comprise 

natural frequencies and mode shapes, are the essential 

elements that characterize a structure's reaction to free 

vibration. An experimental modal analysis was done after 

these two analyses in order to compare the data and assess 

them for validity. The topics have been covered in few 

research papers and case studies. Lee and Lee [1] used an 

axially functionally graded material with rectangular and 

elliptical cross-sections. A uniform rectangular cross-section 

cantilever beam with finite lengths was the subject of Ali's 

research [2]. The dynamic response of the cantilever was 

examined in three different scenarios: rigid root, resilient root, 

and resilient root combined with a range of ambient 

temperatures. 

The FEM model was used in FEM kit ABAQUS by 

Satpathy and Dash [3]. The results were investigated and 

compared experimentally. The theoretical and numerical 

modal analysis of cantilever beams was used by Du and Shi 

[4]. They used ANSYS 14.5 to generate the numerical data. 

The numerical and theoretical results were shown to be highly 

correlated. Bouamama et al. [5] explained the precise Euler 

Bernoulli theory solution for the free-vibration analysis of 
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beams in material gradients subjected to various support 

circumstances. It is assumed that the exponential function 

governs the continuous change in material properties along the 

length of the beam. Fundamental frequencies are discovered 

by resolving the equations governing the eigenvalue issues, 

and the equations of motion are produced by using the 

principle of virtual works on beams. For various state 

boundaries, numerical results are presented to explain how the 

material affects the beam's fundamental frequencies. 

Gautam et al. [6] investigated long, thin cantilever beams 

and developed a beam vibration equation. The Euler–

Bernoulli beam principle is used. Ghaemdoust et al. [7] used 

the analytical and the finite element method to determine the 

fundamental natural frequency of unbonded pre-stressed 

beams. Adair and Jaeger [8] calculated non-uniform cantilever 

beams with a free transverse vibration caused by an axially and 

transversely eccentric tip mass. Here, the effects of the varying 

axial force are considered. To solve the equations for the 

transverse vibrations of a cantilever beam with an eccentric tip 

mass, Matt [9] used an integral transform method based on 

Eigen function expansion and an implicit filter pattern. The 

modal function and natural frequency of a beam with an 

arbitrarily variable section are obtained by Feng et al. [10] 

utilizing an all-encompassing analytical technique based on 

segmentation analysis and iteration computation. In order to 

investigate the coupled torsional free vibration of circular, 

horizontally curved beams. Using ABAQUS software, He [11] 

numerically studied the dynamic reaction of a single thin 

rectangular plate, and the results were compared 

experimentally. Abdulsahib and Atiyah [12] have examined 

the vibration of double beams using an elastic connecting layer. 

The beam has been considered to be a Bernoulli-Euler beam. 

At various boundary conditions, the symmetric double beam's 

natural frequencies equations have been calculated. 

Investigations on the behavior of certain frequencies have 

been conducted with changes in the connected layer's stiffness, 

the beam's elasticity modulus, its length, its mass density, and 

its thickness. 

 

 

2. MATHEMATICAL MODEL 

 

A cantilever beam's natural frequency can be established by 

applying the Euler-Bernoulli beam theory. Consider a 

structural steel (S. St.) beam Euler-Bernoulli case 1 in (Figure 

1) undergoes transverse vibration. The dimensions and 

mechanical properties for all the cases are listed in Table 1. 

The eccentricity of the geometric center from the path of 

transverse vibration for the three cross-sectional area shapes 

are shown in Figure 2, and their values for each case have been 

calculated and specified in Table 2. 

 

 
 

Figure 1. Cantilever beam with three different cross-sectional shape cases 

 

Table 1. Mechanical properties and dimensions for the (S. St.) cantilever 

 

Cross Section 

Types and Cases 

Dimensions 

[mm] 

Density 

ρ 

[kg/m3] 

Modulus of 

Elasticity E [N/m2] 

Polar Moment of 

Inertia J [mm4] 

Shear Modulus G 

[N/m2] 

Moment of 

Inertia 

Ip [mm4] b h L 

Rectangle 

Case 1 
50 4 500 7850 200×109 41933 7.6923×1010 267 

Triangle 

Case 2 
20 20 500 7850 200×109 8889 7.6923×1010 4444 

Triangle 

Case 3 
50 8 500 7850 200×109 28489 7.6923×1010 711 

 
 

Figure 2. Eccentricities between the oscillating path and the 

center of gravity of the cross-sectional area shapes of the 

cantilever 

Table 2. Eccentricities of the geometric center from the path 

of transverse vibration for the three cross-sectional area 

shapes 

 
Cross Section Type Eccentricity x Eccentricity y 

Rectangle Case 1 0 0 

Triangle Case 2 3.34 3.34 

Triangle Case 3 8.34 1.34 

 

Using Euler-Bernoulli Beam equation: 

 

E I
  𝑑4𝑦

 𝑑𝑥4  + ρ A 
𝑑2 𝑦

𝑑𝑡 2
 =0. (1) 

 

where, E is modulus of elasticity, I is moment of inertia, ρ is 

density, and A is the cross-sectional area. 
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From Eq. (1) 

 

Y (x,t) =X (x) T(t). (2) 

 

The equation becomes: 

 
𝐸𝐼

𝜌𝐴
 
𝑑4 𝑋

𝑑𝑥 4
 T (t) + X (x)  

𝑑 2𝑇

𝑑𝑡2  =0. (3) 

 

C 2 
𝑑4𝑦

𝑑𝑥4 + 
𝑑2𝑦

𝑑𝑡2  =0. (4) 

 

where, 

 

C =√
𝐸𝐼

𝜌𝐴
. (5) 

 

β4 =
𝜔2

𝐶2  =
𝜌𝐴𝜔𝑛

2

𝐸𝐼
 (6) 

 

ωn =(βL2) √
𝐸𝐼

𝜌𝐴𝐿4. (7) 

 

where, ωn is angular frequency in radian / second, and L is the 

length. 

But fn =
𝜔𝑛

2 𝜋
. 

fn is the natural frequency in hertz, and ωn is the natural 

angular frequency. 

 

fn =
(𝛽𝐿 )2

2𝜋
 √

𝐸𝐼

𝜌𝐴𝐿4 Hz. (8) 

 

where, βL =k =
𝜋

2
 
3𝜋

2
 , 

5𝜋

2
 , 

7𝜋

2
 …. =(1.875, 4.693, 7.854, 10.995, 

14.142, 17.285, 20.428…. etc.) [13-15]. 

 

I = 
𝑏ℎ3

12
, A =b × h. 

 

To find the natural frequencies for the first six modes of a 

(S. St.) cantilever, use the following formula:  

(1) 1st Natural Frequency using Eq. (8): 

 

f n =
(𝛽 𝐿 )2

2 𝜋
 √

𝐸 𝐼

𝜌𝐴𝐿4. 

 

f1 =
1.875 2

2𝜋
√

200× 109 × 50 × 43

 7850 ×12 ×4 × 50 × 10−6 × 5004. 

 

f1 =12.767 Hz. 

 

(2) 2nd Natural Frequency using the same equation: 

 

f2 =
4.694 2

2 𝜋
√

200 × 109 × 50 × 43

 4 × 12 × 7850 × 50 × 4 × 10−6 × 5004. 

 

f2 =81.755 Hz. 

 

Table 3 shows the first six natural frequencies obtained 

analytically. 

Using the equation below, the torsional natural frequencies 

for the (S. St.) cantilever were also determined [16, 17]. 

 

ωn =
𝐷𝑛

𝐿
 √

𝐺 𝐽

𝜌 𝐼
. (9) 

where, G is Shear Modulus, and J is Polar moment of inertia, 

ρ is density, L is length, I is moment of inertia. 

D1 =
𝜋

2
, D2 =

3𝜋

2
, D3 =

5𝜋

2
, D4 =

7𝜋

2
, D5 =

9𝜋

2
, D6 =

11𝜋

2
, …. etc. 

[18, 19]. 

(1) 1st Torsional Natural Frequency:  

 

f1 =
𝜋

2 × 0.5× 2 𝜋
√

7.6923 × 50 × 1010  × 43× 12

  3× 7850×4× 503 
.  

 

f1 =250.41 Hz. 

 

(2) 2nd Torsional Natural Frequency: 

 

f2 =
3 𝜋

2×0.5× 2 𝜋
√

7.6923 × 1010 × 50× 12 × 43

3× 4× 7850× 503  
. 

 

f2 =751.21 Hz. 

 

Table 4 shows the results of the same computations for 

various upper Torsional Natural Frequencies. 

The horizontal natural frequencies were obtained by the 

same formula for vertical natural frequencies. The dimensions 

for the cantilever were just replaced in calculations, i.e. h 

became b and b became h. The same calculation was done for 

case 2 and case 3 to obtain the effect of eccentricity. 
 

Table 3. Natural frequencies of the (S. St.) cantilever 

investigated analytically case 1 (no eccentricity) 
 

Mode Shapes Natural Frequencies [Hz] 

1 12.767 

2 81.755 

3 228.94 

4 448.641 

5 742.186 

6 1108.712 

 

Table 4. Analytical torsional natural frequencies for (S. St.) 

cantilever case 1 
 

Mode Shapes Torsional Natural Frequencies [Hz] 

1 250.4 

2 751.2 

3 1552 

4 1752.8 

5 2253.6 

6 2754.4 
 

 

3. FINITE ELEMENT MODELLING 
 

A model was drawn in ANSYS 16.1 program. Case 1 was 

represented by a single cantilever beam model. The modal 

analysis technique involves the following steps: 

1) Select the modal operation from the analysis system in 

the tool box. 

2) Use the material properties tool. 

3) Create a model of a cantilever beam. 

4) For finite element calculations, use a suitable mesh. The 

element has a 0.5 mm edge length. 

5) The boundary condition is established by restricting all 

degrees of freedom at one end while leaving the other free. 

6) Calculate first six mode shapes. 

7) Solve the model. 

8) Examine the results. 

Figures 3-6 show the mode shapes and natural frequencies 
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for case 1. The mode shape will be denoted in figures titles as 

(M.S) and the natural frequency as (N.F). All the steps that 

done for case 1 was repeated for case 2 and case 3, Figures 7-

10 are for case 2, and Figures 11-14 are for case 3. Figure 15 

shows the natural frequency values for each mode shape, for 

the three cases obtained numerically using ANSYS 16.1. 

 

 
 

Figure 3. First M.S and N.F for (S. St.) cantilever case 1 

 

 
 

Figure 4. Second M.S and N.F for (S. St.) cantilever case 1 

 

 
 

Figure 5. Third M.S and N.F for (S. St.) cantilever case 1 

 

 
 

Figure 6. Fourth M.S and N.F for (S. St.) cantilever case 1 
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Figure 7. First M.S and N.F for (S. St.) cantilever case 2 

 

 
 

Figure 8. Second M.S and N.F for (S. St.) cantilever case 2 

 

 
 

Figure 9. Third M.S and N.F for (S. St.) cantilever case 2 

 

 
 

Figure 10. Fourth M.S and N.F for (S. St.) cantilever case 2 
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Figure 11. First M.S and N.F for (S. St.) cantilever case 3 

 

 
 

Figure 12. Second M.S and N.F for (S. St.) cantilever case 3 

 

 
 

Figure 13. Third M.S and N.F for (S. St.) cantilever case 3 

 

 
 

Figure 14. Fourth M.S and N.F for (S. St.) cantilever case 3 
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Figure 15. Natural frequencies for the three cases obtained 

numerically using ANSYS 16.1 

 

 

4. EXPERIMENTAL WORK 

 

A structural steel beam with the specified dimensions 

(L=500 mm plus 100 mm for beam clamping, (a=4 mm, b=50 

mm)) which represents case 1, was investigated to determine 

the natural frequencies. Figure 16 shows the experimental 

operation. The location of the accelerometer and the point of 

impact are specified in points that the natural frequencies 

could be found easily. The cantilever beam was set free at one 

end and fastened at the other end. An accelerometer was 

located at the free end with the help of a magnetic to measure 

the vibration, and the accelerometer’s signal was sent to the 

107 VF Vibration Analyzer to convert it from time domain to 

frequency domain and assign the natural frequencies. A small 

knock at the free end to begin the free oscillation. The test was 

carried out a total of ten times. Tables 5 and 6 illustrate the 

data that was collected. 

 

 
 

Figure 16. Experimental set up 

 

Table 5. Experimental mode shape and natural frequencies 

for (S. St.) cantilever 

 
Mode Shapes Natural Frequencies [Hz] 

1 15.12 

2 89.53 

3 153.2 

4 211.6 

5 225.1 

6 489.2 

7 723.5 

8 745.9 

9 910.2 

10 1216.2 

11 1475.3 

12 1354.3 

 

 

Table 6. Natural frequencies and mode shapes for three methods (analytical, numerical, and experimental) for the (S. St.) 

rectangular cross-sectional shape cantilever beam (case 1) 

 

Mode Shapes 
Natural Frequency [Hz] 

Standard Deviation 
ANSYS Analytical Experimental Mean Value 

1 13.141 12.767 15.12 13.676 1.264445 

2 82.309 81.755 89.53 84.531 4.337826 

3 H* 162.06 166.34 153.2 160.533 6.701711 

4 230.52 228.94 211.6 223.687 10.49713 

5 T** 250.07 250.4 225.1 241.857 14.51264 

6 452.06 448.641 489.2 463.300 22.49482 

7 748.01 742.186 723.5 737.898 12.80511 

8 T 754.2 751.2 745.9 750.334 4.202777 

9 H 972.19 1002.631 910.2 961.673 47.10432 

10 1118.5 1108.712 1216.2 1147.804 59.43451 

11 T 1270.1 1552 1475.3 1432.467 145.7495 

12 1563.6 1548.545 1354.3 1448.815 116.7364 
* Horizontal natural frequency is denoted by the blue letter H. 

** Torsional natural frequency is denoted by the red letter T. 

 

 

5. RESULTS AND DISCUSSION 

 

Three cases were investigated in this paper with different 

eccentricities between the center of gravities of the cross-

section area shape of a cantilever beam and path of oscillation 

to find the effect of eccentricity on the dynamic response of a 

cantilever. Case 1 was a rectangular cross-sectional shape 

cantilever beam, case 2 was a triangular shape cross-sectional 

shape cantilever with a ratio of h/b=1, case 3 was a triangular 

cross-sectional shape with a ratio of h/b =8/50. These ratios 

were chosen to maintain the area of the cross section for the 

three cases equal to 200 mm2. This study used numerical 

modal analysis to find natural frequencies for each mode shape 

of a single cantilever beam with different cross sections. The 
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natural frequencies of torsional (flexural) and horizontal 

vibrations were found and separated from the transverse 

vertical vibration. Table 4 demonstrates that the first two mode 

shapes for the three cases have vertical oscillation. The third 

mode shape was different among the three cases, while the 

third mode of case two with the ratio of h/b=1 is still vertical, 

the other cases have horizontal oscillation. The horizontal 

oscillation in case 1 was the fourth natural frequency. The 

torsional natural frequency appeared at the fifth mode shape 

for both case 1 and case 2, while it appeared as the sixth mode 

shape in case 2. The vertical natural frequencies were collected 

together in Figure 17, The first three mode shapes were 

selected, it can be shown that the fundamental natural 

frequency for the rectangular shape was the lower one, while 

the higher fundamental natural frequency was in case 2. The 

torsional natural frequencies were collected together in Figure 

18. The first three mode shapes were selected, it can be shown 

that the first torsional natural frequency for the rectangular 

shape was the lower one. The second and third torsional 

natural frequencies for case 2 was not shown in the figure, 

because they did not appear within the first 12 mode shapes 

that been studied in this paper. It means that their values are 

higher than expected. The horizontal natural frequencies were 

collected in Figure 19. The first two horizontal natural 

frequencies that appeared within the first 12 mode shapes were 

selected. Case 3 has the lower horizontal natural frequency, 

while case 2 had the higher one. From all this, it appeared that 

case 2 with h/b=1 undergoes a diagonal path vibration, but it 

was the more stable from the other two cases. 

 

 
 

Figure 17. Differences between first three set of vertical 

natural frequencies for the three cases 

 

To verify these results, the mathematical method was used 

to determine the natural frequencies and mode shapes for case 

1, the rectangular cross section cantilever. In addition to that, 

an experimental method was used to verify the two methods. 

The natural frequencies and mode shapes are shown in Figure 

15. A comparison was done between the three methods for the 

rectangular cross section cantilever beam. Table 5 shows the 

natural frequencies and mode shapes for the three methods, the 

mean values, and the standard deviations. It can be shown 

from Figure 20 for natural frequencies of the Structural Steel 

rectangular cantilever that there is a good match for the first 

three natural frequencies, and other natural frequency values 

are still acceptable. The first natural frequencies have a 

standard deviation of 1.26, whereas the twelfth natural 

frequencies have a standard deviation of 116.73. 

 

 
 

Figure 18. Differences between first three set of torsional 

natural frequencies for the three cases 

 

 
 

Figure 19. Differences between first three set of horizontal 

natural frequencies for the three cases 

 

 
 

Figure 20. First six natural frequencies and mode shapes of 

(S. St.) rectangular cantilever by three methods 

 

 

6. CONCLUSIONS 

 

The analytical, numerical, and experimental modal analysis 

of a cantilever beam has been completed in this research. The 

effect of the shape of the cross-sectional shape cantilever beam 

was studied in this paper. It can be shown that the shape of the 

cross section and the ratio of its height to the base affects the 

dynamic response for the cantilever beam due to the 

eccentricity. ANSYS and experiment were used to compare 

the Euler-Bernoulli analysis method and estimate the natural 
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frequencies for a variety of mode shapes. The three 

approaches' outcomes were found to be closely connected. The 

results of numerical method and experimental test were found 

to be very similar. For long beams with no shear deformation 

features, the Euler-Bernoulli equation is proved to be effective. 

Even though the cantilever beam has no eccentricities between 

the center of gravity and centroid, torsional natural frequencies 

were visible inside the transverse natural frequency.  
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