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This work presents a new metaheuristic called treble opposite algorithm (TOA). It 

consists of three phases. There are two searches that are opposite to each other 

performed in each phase. In the first phase, the search toward and away from the best 

solution is carried out. In the second phase, the search toward and away from the middle 

between two randomly picked solutions is carried out. In the third phase, a 

neighborhood search around the narrow and large space is carried out. A candidate is 

selected among the two searches in every phase. TOA is challenged to solve theoretical 

and practical problems. The 23 functions represent theoretical problems, while the 

portfolio optimization of stocks in the banking sector listed in IDX30 represents the 

practical problem. TOA is compared with five metaheuristics: grey wolf optimization 

(GWO), golden search optimization (GSO), average subtraction-based optimization 

(ASBO), zebra optimization algorithm (ZOA), and coati optimization algorithm 

(COA). The result indicates that TOA is superior to its competitors as it is better than 
GWO, GSO, ZOA, ASBO, and COA in 22, 23, 19, 20, and 19 functions respectively, 

in handling 23 functions and produces the highest total capital gain in handling portfolio 

optimization problem. In the future, TOA can be utilized to handle many other real-

world optimization problems. Moreover, TOA can be hybridized with other 

metaheuristics to improve its performance. 
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1. INTRODUCTION

Optimization becomes an integral part of the wide range of 

practical works, especially in engineering. The examples are 

as follows. In the multi-energy system, optimization is needed 

to minimize the operational expenditures consisting of the 

energy purchasing cost reduced by energy sales and added 

with setup cost [1]. In the energy sector, optimization is 

implemented into wind-based energy systems to minimize the 

total electricity shortage [2]. Optimization is also used in the 

battery energy storage system to maximize revenue and 

minimize long-term capacity fading [3]. In the 

telecommunication sector, optimization is used in the 

vehicular ad hoc network (VANET) to increase throughput 

and reduce delay, packet loss rate, and cost of service [4]. In 

the manufacturing system, optimization is implemented into 

production scheduling with objectives such as tardiness, 

earliness, make-span, number of tardy and early jobs [5]. 

Optimization plays an important role in engineering 

because many practical engineering problems need to be 

solved based on certain objectives. It works by finding the best 

solution within the solution space or possible solutions [6] and 

working within the constraints or solution boundaries. 

Metaheuristics is a long decade tool for optimization. Its 

popularity comes from its superiority in producing acceptable 

or high-quality solutions with a limited computational 

resource. Moreover, metaheuristic is flexible in handling 

various optimization problems because it abstracts the 

problem and focus on its objectives and constraints [7]. As a 

trial-and-error approach, its stochastic-based method does not 

guarantee finding the real optimal solution [8].  

There are a lot of metaheuristics that already exist in the 

recent years. Most of them are swarm-based metaheuristics. 

Many of them use metaphors as the inspiration of their strategy. 

Many swarm-based metaheuristics imitate animal behavior, 

such as grey wolf optimization (GWO) [9], marine predator 

algorithm (MPA) [10], slime mold algorithm (SMA) [11], 

pelican optimization algorithm (POA) [12], zebra 

optimization algorithm (ZOA) [13], coati optimization 

algorithm (COA) [14], butterfly optimization algorithm (BOA) 

[15], northern goshawk optimization (NGO) [16], guided 

pelican algorithm (GPA) [17], clouded leopard optimization 

(CLO) [18], Komodo mlipir algorithm (KMA) [19], cheetah 

optimizer (CO) [20], cat and mouse based optimizer (CMBO) 

[21], remora optimization algorithm (ROA) [22], and so on. 

Certain number of metaheuristics imitate human or social 

activities, such as modified social force (MSFA) [23], chef-

based optimization algorithm (CBOA) [24], driving training-

based optimizer (DTBO) [25], election-based optimization 

algorithm (EBOA) [26], and so on. Some metaheuristics do 

not use metaphor but directly use their main strategy for their 

name, such as average and subtraction-based optimization 
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(ASBO) [27], golden search optimization (GSO) [28], total 

interaction algorithm (TIA) [29], and so on.  

In almost all swarm-based metaheuristics, guided search 

becomes the primary strategy, while random or neighborhood 

search becomes the complementary one. In general, the 

solution will get closer to the better solution. This better 

solution can be the global, local, and some best solutions, or a 

mixture among them. In some metaheuristics, a solution 

interacts with other solution that is selected randomly. Then, 

the quality of this randomly selected solution is compared with 

the corresponding solution. The corresponding solution moves 

closer to the selected solution if the selected solution is better 

than the corresponding solution. Otherwise, the corresponding 

solution chooses to move away. Several metaheuristics also 

perform the guided search by moving away from the worst 

solution. This strategy is rational because improvement 

becomes more probable by moving closer to the better solution 

or moving away from the worse one. 

Unfortunately, in the trial-and-error approach implemented 

in metaheuristic, getting closer to the better solution never 

guarantees improvement. Besides, performing neither narrow 

nor large local search space guarantees improvement too. 

Getting closer to a better solution may lead to the local optimal 

entrapment. Neighborhood search with a narrow local search 

space may lead to stagnation when the current solution is not 

in the area where the global optimal solution exists. On the 

other hand, neighborhood search with large local search space 

may throw away the current solution to the worse area. 

The primary objective of this work to introduce a new 

swarm-based metaheuristic called the treble opposite 

algorithm (TOA). As its name suggests, TOA consists of three 

phases that are performed sequentially. The guided searches 

are performed in the first and second phases, while 

neighborhood search is performed in the third phase. There are 

two searches or walks that are opposites to each other. 

Meanwhile, there are two secondary objectives in this work. 

The first secondary objective is to evaluate the performance of 

TOA to solve both theoretical and practical problems. The 

second secondary objective is to promote the portfolio 

optimization problem representing the discrete problem as a 

use case rather than the common mechanical design problem. 

The scientific contributions of this work can be described as 

follows: 

(1) This paper introduces a new swarm-based metaheuristic 

that performs both getting closer to and away from the 

reference. 

(2) This new metaheuristic also performs neighborhood 

searches with both narrow and wide local search space. 

(3) This work evaluates the proposed metaheuristic through 

simulation to solve the set of 23 classic functions. 

(4) The assessment is also taken by competing the proposed 

metaheuristic with five new swarm-based metaheuristics: 

GWO, GSO, ZOA, ASBO, and COA. 

This work is carried out based on certain methodology. First, 

certain number of new swarm-based metaheuristics is 

reviewed, especially their fundamental strategy. Second, these 

existing metaheuristics are mapped and then the position of the 

proposed metaheuristic is investigated and introduced to make 

clear position to fill the gap in the recent development of 

metaheuristics. Third, the formal model includes the algorithm 

and mathematical representation of TOA constructed. Fourth, 

the assessment of the performance of TOA is carried out by 

challenging TOA to solve both theoretical and practical 

problems and its comparison with several latest metaheuristics. 

Fifth, the in-depth investigation regarding the assessment 

result and the drawback to the theoretical aspect is carried out 

to develop a comprehensive assessment of the proposed TOA, 

including its strength, weakness, limitation, complexity, and 

proposal for future studies. 

The arrangement of the rest of this paper is as follows. The 

review regarding new swarm-based metaheuristics, especially 

related to their metaphor, mechanics, and the use case for 

assessment, is presented and summarized in section 2. A 

detailed description of the proposed metaheuristic, which 

consists of the fundamentals, algorithm, and formalization, is 

presented in section 3. The assessment of the proposed 

metaheuristic and its result is presented in section 4. The in-

depth analysis regarding the result, findings, linkage to the 

theoretical basis, and the limitation of this work are discussed 

in section 5. In the end, the concluding remark and the 

potential for future works or developments are summarized in 

section 6. 

 

 

2. RELATED WORKS 

 

The no-free-lunch (NFL) theory has been becoming one 

important reason for the massive development of 

metaheuristics. As stated in NFL theory, there is not any 

metaheuristic that powerful and superior to solve all kinds of 

optimization problems [16]. A metaheuristic can perform well 

in handling some problems but end with mediocre results in 

handling other ones [16]. On the other hand, there are various 

problems, especially in engineering, needing to be optimized. 

Through decades, there is an evolution in the development 

of metaheuristics. In the beginning, a lot of metaheuristics 

were single agent-based ones performing neighborhood 

searches, such as tabu search, simulated annealing, and so on. 

The single agent-based metaheuristic can be defined as a 

metaheuristic that consists of one active agent searching for 

the optimal solution. Then, population-based metaheuristics 

were introduced to boost the convergence and improve the 

exploration effort as in genetic algorithm (GA), invasive weed 

optimization (IWO), artificial bee colony (ABC), and so on. In 

the population-based metaheuristic, there are certain number 

of solutions that are tried to improve in every iteration. Later, 

metaheuristics developed based on swarm intelligence became 

more popular because of its nature in improving solutions 

through interaction among solutions within the population. 

In general, swarm intelligence performs the searching 

process through information sharing among autonomous 

agents within the population. Regarding their autonomy, each 

agent searches for improvement independently without any 

control from a central command. Every agent moves toward 

the reference with a certain degree of randomness. PSO, as the 

early version of the swarm-based metaheuristic, utilizes the 

global and local best solutions as the reference of the guided 

search performed by each agent [30]. Then, the development 

of a later swarm-based metaheuristic was performed in various 

ways, such as in determining the reference, the walk relative 

to the reference, and the random search enriching the guided 

search. Some metaheuristics perform single-phase search, 

such as in BOA [15] or KMA [19], while some others perform 

multiple-phase searches, such as in NGO [16] or EBOA [26]. 

Some metaheuristics perform a single strategy while others 

deploy multiple strategies performed in a single phase or 

multiple phases. Some metaheuristics perform segregation of 

roles while others do not. In the metaheuristic that deploys 
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segregation of roles, the mechanism of one agent or some 

agents may be different from the others. Some metaheuristics 

implement a rigid acceptance approach, while others do not. 

In the rigid acceptance approach, a new solution replaces the 

current solution only if this new solution is better than the 

current one. The list of new swarm-based metaheuristics, 

including the strategy implemented by them, is presented in 

Table 1. Meanwhile, the strategy implemented in the proposed 

metaheuristic is presented in the last row of Table 1.  

Due to the large number of new metaheuristics already 

exists and were developed in the recent years, it is impossible 

to accommodate all of them in a single table. Therefore, 

metaheuristics selected in Table 1 represents the variety of 

them. The summarized strategy of each metaheuristic 

presented in Table 1 is also designed to show that despite the 

use of any metaphors, in general, there are several common 

searches, references, and directions implemented in these 

metaheuristics. 

Table 1. Summary of several metaheuristics 

No. Metaheuristic Metaphor Strategy 
Rigid 

Acceptance 

1 GWO [9] grey wolf guided search toward the three best solutions in every iteration no 

2 KMA [19] komodo 

guided search toward the resultant of some better solutions, guided search to avoid 

the resultant of some better solutions but worse than the corresponding solution, 

crossover with the best solution, and full random search 

no 

3 CLO [18] 
clouded 

leopard 

guided search relative to randomly selected other solution, neighbourhood search 

within large but decreased local space 
yes 

4 BOA [15] butterfly guided search toward the best solution among population, neighbourhood search no 

5 COA [14] coati 

guided search toward the best solution among population, guided search relative to 

a randomized solution within the space, neighbourhood search within the large but 

decreased space 

yes 

6 ZOA [13] zebra 

guided search toward the global best solution, guided search toward a randomly 

selected solution, and neighbourhood search within narrow and decreased local 

space. 

yes 

7 NGO [16] 
northern 

goshawk 

guided search relative to a randomly selected solution, neighbourhood search 

within narrow and decreased local space. 
yes 

8 EBOA [26] voting 

guided search relative to the best solution or a randomly selected solution among 

some best solutions, neighbourhood search within narrow and decreased local 

space 

yes 

9 TIA [29] - guided search relative to all other solutions yes 

10 ASBO [27] - 

guided search relative to the average of best and worst solutions, guided search 

toward the subtraction of the best solution with the worst solution, guided search to 

avoid the best solution 

yes 

11 GSO [28] - guided search toward the global best solution and local best solution no 

12 this work - 

guided search toward and avoid the global best solution, guided search toward and 

avoid the middle between two randomly selected solutions among population, 

neighbourhood search within the large and narrow but decreased local space 

yes 

Based on Table 1, it is shown that almost all swarm-based 

metaheuristics move closer to the better reference and move 

away from the worse reference. In many cases, the 

corresponding solutions will move closer to the global best 

solution, the local best solution, the best solution among the 

population in the current iteration, the resultant of some best 

solutions, and so on. In these cases, the references are assumed 

to be better than the corresponding solution. Meanwhile, when 

the quality of the reference is unknown, such as a randomized 

solution within the search space or a randomly selected 

solution among the population, quality checking is performed 

first. Then, this reference is compared with the corresponding 

solution based on its quality. The corresponding solution 

moves closer to the reference if it is better than the 

corresponding solution. Otherwise, the corresponding solution 

chooses to move away.  

On the other hand, a metaheuristic may choose to perform a 

neighborhood search or a full random search. Each 

metaheuristic chooses its own strategy. But a metaheuristic 

that performs multiple random searches is rare to find. 

 These circumstances become the reasoning and 

background to develop a new metaheuristic in this work. The 

distinct positioning of the proposed metaheuristic among the 

others is that it performs both getting closer and getting away 

without considering the quality of the reference. Moreover, it 

performs two opposite random searches. The first uses a 

narrow local search space, while the second uses a large local 

search space. 

3. PROPOSED MODEL

The proposed treble opposite algorithm (TOA) is developed 

as a metaphor-free swarm-based metaheuristic. As a 

metaphor-free metaheuristic, TOA uses its main strategy for 

its name. Meanwhile, as a swarm-based metaheuristic, TOA 

uses guided search as its core search and random search as 

complementary. TOA consists of three phases performed 

sequentially. A guided search relative to the global best 

solution is performed in the first phase. A guided search 

relative to a target between two randomly selected solutions is 

performed in the second phase. A random search is performed 

in the third phase. Each phase consists of two searches where 

each search generates a candidate. Then, the better candidate 

between these two candidates will be assessed to replace the 

current solution. The rigid acceptance approach is 

implemented in TOA. 

There are several reasons behind this concept. First, there is 

not any guarantee that moving toward a better solution 

guarantees improvement, especially in handling multimodal 

problems. Besides, the walk toward the best or better solution 

may end with the circumstance where the optimization process 
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is entrapped within the region of the local optimal. Meanwhile, 

moving toward any direction without any certain guidance is 

far from wise. Second, the multiple search approach becomes 

more important as each has its advantages and disadvantages. 

Meanwhile, there is not any metaheuristic can accommodate 

all kinds of searches. Third, the walk should not rely only on 

the global best solution or the best solution among the 

population. Fourth, swarm-based metaheuristic should be 

enriched with random search. A rigid acceptance approach is 

needed to prevent the agent from moving toward a worse 

solution. 

As a swarm-based metaheuristic, TOA is also a population-

based metaheuristic. It means that TOA consists of a certain 

number of solutions. In general, as with other metaheuristics, 

TOA consists of two steps. The first step is initialization while 

the second step is iteration. In the initialization, all solutions 

are generated uniformly within the search space. It means all 

solutions within the search space have an equal opportunity to 

become the initial solution. 

The first phase consists of a guided search relative to the 

global best solution. There are two walks in this phase. The 

first walk is the walk toward the global best solution. The 

second walk is the walk to avoid the global best solution. The 

first walk is common in many swarm-based metaheuristics 

because the improvement is more probable by getting closer 

to the global best solution. But moving toward the global best 

solution does not guarantee improvement, especially in 

handling multimodal problems. On the other hand, avoiding 

the global best solution can be seen as the exploration to 

anticipate if moving toward the global best solution may lead 

to stagnation or local optimal entrapment. This process is 

illustrated in Figure 1. 

Figure 1. Guided search toward and opposite the global best 

solution 

The second guided search consists of the guided search 

relative to the solution in the middle between two randomly 

selected solutions. This process can be viewed as a guided 

exploration. In many metaheuristics where there is an 

interaction between the corresponding solution and other 

solutions within the population, the reference is the randomly 

selected solution. Meanwhile, in TOA, there are two solutions 

that are selected randomly. Then, the target is not one of the 

selected solutions but the average of two random solutions. 

The reasoning is that the walk toward the existing solution is 

unnecessary because the quality of these solutions is already 

known. Meanwhile, it is important to search for someplace 

between two found solutions. There are two walks performed 

in this search. The first walk is a walk toward the target while 

the second walk is a walk to avoid the target. This strategy is 

different from many shortcoming metaheuristics regarding the 

interaction among solutions where the corresponding solution 

moves toward a randomly selected solution if this randomly 

selected solution is better than the corresponding solution and 

moves in the opposite way when the opposite circumstance 

takes place. This process is illustrated in Figure 2. 

Figure 2. Guided search toward and opposite the middle 

between two randomly selected solutions 

The third phase consists of two random searches, i.e., 

neighborhood searches. As neighborhood searches, these 

searches try to find better solutions around the corresponding 

solution. Meanwhile, there are differences between these two 

neighborhood searches. The first search is performed within a 

narrow local search space, while the second search is 

performed within the large local search space. The similarity 

among them is that the local search space declines linearly 

through iteration. This process is illustrated in Figure 3. 

Figure 3. Neighbourhood search within the large and narrow 

local space 

Figure 4. Flowchart of TSO 
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The rigid acceptance approach is performed for all solutions 

and the global best solution. The new solution or candidate 

replaces the previous solution only if the improvement 

happens. Otherwise, this candidate will be rejected. Moreover, 

each time there is a new solution or replacement, the global 

best solution will be updated. The rigid acceptance approach 

is also performed to update the global best solution.  

This concept is then formalized in pseudocode presented 

in algorithm 1. xb becomes the final solution. The initialization 

step is presented from line 2 to line 5. Meanwhile, the iteration 

step is presented from line 6 to line 15. Moreover, the 

illustration of the overall process of TOA is presented in the 

flowchart in Figure 4. The more detailed procedure in each 

process is mathematically presented using Eq. (1) to Eq. (15). 

Algorithm 1: Treble opposite algorithm 

1 begin 

2   for all x in X 

3     initialize xi using Eq. (2) 

4     update xb using Eq. (4) 

5   end for 

6   for t=1:tm 

7     for all x in X 

8       perform 1st guided search using Eq. (5) to Eq. (7) 

9       update xi using Eq. (3) and xb using Eq. (4) 

10       perform 2nd guided search using Eq. (8) to Eq. (12) 

11       update xi using Eq. (3) and xb using Eq. (4) 

12       perform random search using Eq. (13) to Eq. (15) 

13       update xi using Eq. (3) and xb using Eq. (4) 

14     end for 

15   end for 

16 end 

17 output xb 

This population is formalized by using Eq. (1), where this 

population is presented with a set of solutions. x denotes the 

solution, X denotes the set of solutions, and n denotes the 

population size. 

𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} (1) 

The initialization is formalized by using Eq. (1). In Eq. (2), 

xi,j denotes the solution i at dimension j, xl,j denotes the lower 

boundary of dimension j and xu,j denotes the upper boundary 

of dimension j. U represents the uniform random generator. 

𝑥𝑖,𝑗 = 𝑈(𝑥𝑙,𝑗, 𝑥𝑢,𝑗) (2) 

The updating process of the current solution and the global 

best solution processes is formalized using Eq. (3) and Eq. (4). 

The improvement is measured based on the objective function 

f. In this work, the context of optimization is minimization. It

means the lower objective score means this solution is better.

xb denotes the global best solution representing the best

solution so far.

𝑥𝑖
′ = {

𝑥𝑐 , 𝑓(𝑥𝑐) < 𝑓(𝑥𝑖)

𝑥𝑖 , 𝑒𝑙𝑠𝑒
(3) 

𝑥𝑏
′ = {

𝑥𝑖 , 𝑓(𝑥𝑖) < 𝑓(𝑥𝑏)

𝑥𝑏 , 𝑒𝑙𝑠𝑒
(4) 

The first guided search procedure is formalized by using Eq. 

(5) to Eq. (7), where xc11 and xc12 denote the first and second

walks in the first phase. Meanwhile, xc1 denotes the candidate 

of the first phase.  

𝑥𝑐11,𝑗 = 𝑥𝑖,𝑗 + 𝑈(0,1). (𝑥𝑏,𝑗 − 2𝑥𝑖,𝑗) (5) 

𝑥𝑐12,𝑗 = 𝑥𝑖,𝑗 + 𝑈(0,1). (𝑥𝑖,𝑗 − 2𝑥𝑏,𝑗) (6) 

𝑥𝑐1 = {
𝑥𝑐11, 𝑓(𝑥𝑐11) < 𝑓(𝑥𝑐12)

𝑥𝑐12, 𝑒𝑙𝑠𝑒
(7) 

Processes in the second phase are formalized by using Eq. 

(8) to Eq. (12). Eq. (8) states that two randomly selected

solutions are picked from the population uniformly where xs

denotes the selected solution. Eq. (9) states that the target (xt)

is determined in the middle between these two solutions. Eq.

(10) represents the walk toward the target, while Eq. (11)

represents the walk to avoid the target. xc21,j and xc22,j denotes

the first and second candidates generated in the second phase

at dimension j. xc2 denotes the final candidate of the second

phase.

𝑥𝑠1, 𝑥𝑠2 = 𝑈(𝑋) (8) 

𝑥𝑡,𝑗 =
𝑥𝑠1,𝑗 + 𝑥𝑠2,𝑗

2
(9) 

𝑥𝑐21,𝑗 = 𝑥𝑖,𝑗 + 𝑈(0,1). (𝑥𝑡,𝑗 − 2𝑥𝑖,𝑗) (10) 

𝑥𝑐22,𝑗 = 𝑥𝑖,𝑗 + 𝑈(0,1). (𝑥𝑖,𝑗 − 2𝑥𝑡,𝑗) (11) 

𝑥𝑐2 = {
𝑥𝑐21, 𝑓(𝑥𝑐21) < 𝑓(𝑥𝑐22)

𝑐22, 𝑒𝑙𝑠𝑒
(12) 

The processes in the third phase are formalized using Eq. 

(13) to Eq. (15). t denotes the iteration while tm denotes the

maximum iteration. xc31,j and xc32,j denotes the first and second

candidates generated in the third phase at dimension j. xc3

denotes the final candidate of the second phase.

𝑥𝑐31,𝑗 = 𝑥𝑖,𝑗 + 0.1𝑈(−1,1). (1 −
𝑡

𝑡𝑚
) . (𝑥𝑢,𝑗 − 𝑥𝑙,𝑗) (13) 

𝑥𝑐32,𝑗 = 𝑥𝑖,𝑗 + 𝑈(−1,1). (1 −
𝑡

𝑡𝑚
) . (𝑥𝑢,𝑗 − 𝑥𝑙,𝑗) (14) 

𝑥𝑐3 = {
𝑥𝑐31, 𝑓(𝑥𝑐31) < 𝑓(𝑥𝑐32)

𝑐32, 𝑒𝑙𝑠𝑒
(15) 

4. RESULT

In this section, the performance of TOA is assessed through 

simulation. There are two assessments regarding the proposed 

metaheuristic. In the first assessment, TOA is challenged to 

solve a set of 23 classic functions that can be split into three 

groups: seven high dimension unimodal functions, six high 

dimension multimodal functions, and ten fixed dimension 

multimodal functions. A detailed description of these 23 

functions is presented in Table 2. In the second assessment, 

TOA is challenged to solve the portfolio optimization problem. 

The set of 23 functions represents the theoretical problem 

while the portfolio optimization problem represents the 

practical problem. 
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Table 2. List of 23 functions 

No. Function Dim Space Target 

1 Sphere 50 [-100, 100] 0 

2 Schwefel 2.22 50 [-100, 100] 0 

3 Schwefel 1.2 50 [-100, 100] 0 

4 Schwefel 2.21 50 [-100, 100] 0 

5 Rosenbrock 50 [-30, 30] 0 

6 Step 50 [-100, 100] 0 

7 Quartic 50 [-1.28, 1.28] 0 

8 Schwefel 50 [-500, 500] -20,948

9 Ratsrigin 50 [-5.12, 5.12] 0

10 Ackley 50 [-32, 32] 0 

11 Griewank 50 [-600, 600] 0 

12 Penalized 50 [-50, 50] 0 

13 Penalized 2 50 [-50, 50] 0 

14 Shekel Foxholes 2 [-65, 65] 1 

15 Kowalik 4 [-5, 5] 0.0003 

16 Six Hump Camel 2 [-5, 5] -1.0316

17 Branin 2 [-5, 5] 0.398

18 Goldstein-Price 2 [-2, 2] 3 

19 Hartman 3 3 [1, 3] -3.86

20 Hartman 6 6 [0, 1] -3.32

21 Shekel 5 4 [0, 10] -10.153

22 Shekel 7 4 [0, 10] -10.402

23 Shekel 10 4 [0, 10] -10.536

There are several reasons for choosing the 23 functions and 

the portfolio optimization problem as the use cases for the 

assessment. First, these functions cover the variety of the 

optimization problems so that it can be used to investigate the 

performance of any metaheuristics. This set of functions 

contains both unimodal functions and the multimodal ones. 

This set also contains functions with various problem spaces, 

from the very narrow ones, moderate, to the very large ones. 

In several functions, the global optimal solution is right in the 

middle of the space while some others are distributed 

anywhere in the problem space. Some functions have smooth 

shapes so that a better solution can be identified easily. 

Meanwhile, some functions have ambiguous shape, such as 

very curly or dominant with the flat shape with vary narrow 

slope. Second, this set of functions is popular enough and it is 

used in many studies proposing metaheuristics, such as KMA, 

GSO, TIA, and so on. 

The portfolio optimization problem is chosen due to its 

rarity in studies proposing a new metaheuristic. This problem 

is far less popular than the mechanical design problem or the 

optimal power flow problem. Meanwhile, the portfolio 

optimization problem gives another kind of challenge where 

the solution space is discrete which is different from the 

floating point-based optimization problem in the mechanical 

design or the theoretical problems, such as the set of 23 

functions. 

In this assessment, TOA is compared with five other 

metaheuristics: GWO, GSO, ZOA, ASBO, and COA. The 

several reasons of choosing these metaheuristics as 

competitors is as follows. First, all these metaheuristics do not 

have any adjusted parameters except the common ones which 

are the population size and maximum iteration. These 

metaheuristics are new although GWO is the oldest among 

them. On the other hand, COA is the newest one. GWO and 

GSO represent the metaheuristics that do not deploy rigid 

acceptance approach. ZOA, ASBO, and COA represent 

metaheuristics that deploy rigid acceptance approach. GWO 

and GSO perform single phase search while ZOA, ASBO, and 

COA perform multiple phase search. 

In the first assessment, the population size is set 5 while the 

maximum iteration is set 20. On the other hand, the dimension 

for the high dimension functions is set to 50. It means TOA 

and all these competitors are challenged to solve high 

dimension problems with low population size and low 

maximum iteration. The result of the first, second, and third 

result is presented in Table 3, Table 4 and Table 5 respectively. 

The information regarding each function consists of the mean 

score, standard deviation, and mean rank. The result with 

decimal point less than 10-4 is rounded to 0.0000. 

Table 3 indicates that TOA performs superiorly in handling 

the high dimension unimodal functions. In this group, TOA 

becomes the best performer in handling five functions and the 

second best in handling one function (Step). Fortunately, the 

gap between TOA and ZOA as the best performer in handling 

Step function is very narrow. Moreover, TOA can find the 

global optimal solution in handling four functions (Sphere, 

Schwefel 2.22, Schwefel 1.2, and Schwefel 2.21). 

Table 3. Evaluation result in solving high-dimension unimodal functions 

F Parameter GWO GSO ZOA ASBO COA TOA 

1 

mean 1.2804×104 5.8594×104 0.0005 1.7053 3.8420 0.0000 

std dev 7.6652×103 1.3382×104 0.0004 0.9249 2.7363 0.0000 

mean rank 5 6 2 3 4 1 

2 

mean 0.0000 1.4018×1067 0.0000 0.0000 0.0000 0.0000 

std dev 0.0000 5.6933×1067 0.0000 0.0000 0.0000 0.0000 

mean rank 1 6 1 1 1 1 

3 

mean 3.4079×105 2.0564×105 9.0720×101 6.9451×103 8.4605×103 0.0000 

std dev 4.4531×105 1.0905×105 1.2367×102 4.0960×103 8.4154×103 0.0000 

mean rank 6 5 2 3 4 1 

4 

mean 7.2948×101 6.2390×101 0.0604 1.7270 3.7789 0.0000 

std dev 2.1715×101 6.7105 0.0304 0.6480 1.5287 0.0000 

mean rank 6 5 2 3 4 1 

5 

mean 5.1738×107 1.4096×108 4.8951×101 6.8074×101 1.1414×102 4.8951×101 

std dev 4.9234×107 6.2870×107 0.0345 1.8070×101 6.4230×101 0.0187 

mean rank 5 6 1 3 4 1 

6 

mean 1.1610×104 6.0576×104 1.0730×101 1.1222×101 1.4394×101 1.1071×101 

std dev 7.3676×103 1.1716×104 0.5848 1.5504 2.4375 0.3448 

mean rank 5 6 1 3 4 2 

7 

mean 4.3895×101 1.0465×102 0.0270 0.0681 0.0754 0.0059 

std dev 6.2312×101 3.9674×101 0.0154 0.0354 0.0452 0.0037 

mean rank 5 6 2 3 4 1 
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Table 4 indicates that TOA also performs superiorly in 

handling high dimension multimodal functions. In this group, 

TOA becomes the best performer in handling five functions 

and the second best in handling one function (Penalized). 

Moreover, TOA can find the global optimal solution in 

handling three functions (Rastrigin, Ackley, and Griewank). 

This result also splits these six metaheuristics into two clusters 

based on their performance. The first cluster consists of GWO 

and GSO. On the other hand, the second cluster consists of 

ZOA, ASBO, COA, and TOA. The performance gap between 

these two clusters is wide. 

Table 4. Evaluation result in solving high-dimension multimodal functions 

F Parameter GWO GSO ZOA ASBO COA TOA 

8 

mean -7.1601×101 -3.2981×103 -2.8693×103 -3.9086×103 -4.5522×103 -4.7660×103

std dev 3.9837×102 9.3244×102 6.6108×102 5.7547×102 5.0252×102 5.1712×102

mean rank 6 4 5 3 2 1 

9 

mean 1.5507×102 5.2199×102 0.0019 2.1274×101 8.2210 0.0000 

std dev 4.7037×101 5.3209×101 0.0018 3.7314 7.9341 0.0000 

mean rank 5 6 2 4 3 1 

10 

mean 1.2446×101 1.9139×101 0.0050 2.8705 0.4925 0.0000 

std dev 2.6049 0.5420 0.0025 0.4190 0.2094 0.0000 

mean rank 5 6 2 4 3 1 

11 

mean 1.2748×102 5.2380×102 0.0087 0.6766 0.5505 0.0000 

std dev 7.6051×101 1.1741×102 0.0283 0.2142 0.3137 0.0000 

mean rank 5 6 2 4 3 1 

12 

mean 2.3014×108 2.0093×108 1.0471 0.1638 1.1589 0.9533 

std dev 2.1350×108 1.0902×107 0.1561 0.0827 0.2134 0.1490 

mean rank 6 5 3 1 4 2 

13 

mean 2.5432×108 5.5124×108 3.1386 1.1350×101 4.0352 3.1279 

std dev 2.4953×108 3.9614×108 0.0389 1.7262 0.3895 0.0158 

mean rank 5 6 2 4 3 1 

Table 5. Evaluation result in solving fixed-dimension multimodal functions 

F Parameter GWO GSO ZOA ASBO COA TOA 

14 

mean 1.4891×102 1.1792×101 8.1578 4.5056 5.7096 4.4929 

std dev 2.0891×102 5.4872 3.3760 3.5496 3.1420 2.8173 

mean rank 6 5 4 2 3 1 

15 

mean 0.8900 0.0333 0.0079 0.1256 0.0067 0.0013 

std dev 2.1766 0.0225 0.0122 0.0327 0.0085 0.0007 

mean rank 6 4 3 5 2 1 

16 

mean 1.1195×102 -0.8298 -0.8800 -0.0049 -1.0298 -1.0302

std dev 5.1121×102 0.4097 0.2193 0.0205 0.0026 0.0016

mean rank 6 4 3 5 2 1 

17 

mean 5.5672×101 1.5696 4.8955 2.0446 0.4095 0.4031 

std dev 1.1630×101 3.4805 6.1640 4.6518 0.0223 0.0090 

mean rank 6 3 5 4 2 1 

18 

mean 1.7159×103 1.9956×101 4.0241×101 1.5500×101 1.2322×101 3.0993 

std dev 4.8681×103 2.7394×101 5.2763×101 5.8630×101 2.1838×101 0.1895 

mean rank 4 5 6 3 2 1 

19 

mean -0.0026 -0.0151 -0.0495 -0.0495 -0.0495 -0.0495

std dev 0.0070 0.0168 0.0000 0.0000 0.0000 0.0000

mean rank 6 5 1 1 1 1 

20 

mean -0.0053 -1.9786 -2.0295 -0.7399 -3.0412 -2.8111

std dev 0.0010 0.7019 0.5996 0.5286 0.1877 0.6573

mean rank 6 4 3 5 1 2 

21 

mean -0.2731 -1.4029 -2.0139 -3.3757 -4.3245 -4.3152

std dev 0.0000 1.2351 1.2025 3.3023 1.7608 0.4108

mean rank 6 5 4 3 1 2 

22 

mean -0.2936 -2.4186 -2.5916 -3.4876 -4.3249 -4.8074

std dev 0.0000 1.9652 1.5957 3.1984 1.7673 1.0910

mean rank 6 5 4 3 2 1 

23 

mean -0.3217 -2.1062 -2.0959 -4.6137 -3.6712 -4.6240

std dev 0.0000 1.4188 1.0323 3.6199 1.5581 0.5674

mean rank 6 4 5 2 3 1 

Table 5 indicates that TOA is still superior in handling the 

fixed-dimension multimodal functions. Among the ten 

functions in this group, TOA becomes the best performer in 

handling eight functions and the second best one in handling 

two functions (Hartman 6 and Shekel 5). Different from the 

circumstance in the first and second groups, fierce competition 

takes place in handling functions in the third group. The 

performance gap among metaheuristics is narrow. On the other 

hand, there is no discrimination between GSO and GWO on 

one side and TOA, ASBO, ZOA, and COA on the other side. 

It means that GWO and GSO are competitive enough in 

handling fixed-dimension multimodal functions. 
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The result in Tables 3-5 is then summarized in Table 6 

which presents the superiority of TOA to other metaheuristics 

in handling functions based on the groups. Table 6 strengthens 

the fact that TOA is superior to these five competitors in all 

groups of functions. Moreover, TOA is superior to GSO in 

handling all 23 functions. Overall, TOA is better than GWO, 

GSO, ZOA, ASBO, and COA in handling 22, 23, 19, 20, and 

19 functions, respectively. 

Table 6. Number of functions in every group where TOA is 

better 

Cluster 
Number of Functions 

GWO GSO ZOA ASBO COA 

1 6 7 4 6 6 

2 6 6 6 5 6 

3 10 10 9 9 7 

Total 22 23 19 20 19 

The second assessment is the portfolio optimization 

problem. In this assessment, TOA is challenged to solve the 

stock arrangement that should be purchased in the investment 

action. The stocks of the banking company listed IDX30 

represent the decision variables. IDX30 index is the index or 

list of Indonesian stock exchange that consists of stocks 

provided by companies that have high liquidity, high 

capitalization, and strong corporate fundamentals. There are 

four stocks from the banking sector listed in IDX30. The list 

contains the detailed information regarding these four stocks 

which is presented in Table 7. There are three pieces of 

information regarding the list: stock index, current stock price, 

and year-on-year capital gain. The data is obtained from 

Google on 12 February 2023. The stock price and capital gain 

are presented in rupiah per share. 

Table 7. List of stocks in IDX30 

No. Stock 
Price 

(Rp) 

Capital Gain 

(Rp) 

1 BBCA 8,450 375 

2 BBNI 9,025 925 

3 BBRI 4,820 300 

4 BMRI 10,375 2,625 

Table 8. Result in solving a portfolio optimization problem 

No. Metaheuristic Total Capital Gain (Rp) 

1 TOA 354,561,190 

2 COA 348,783,068 

3 ASBO 349,709,880 

4 ZOA 323,643,854 

5 GSO 331,220,113 

6 GWO 173,173,409 

The objective of this portfolio optimization is to maximize 

the total capital gain through the arrangement of stock. As 

there are four stocks that should be arranged and all stocks 

provide positive capital gain, this problem can be seen as low 

dimension unimodal functions. The stock quantity should be 

purchased for each stock ranging from 200 to 1,000 lots. One 

lot consists of 100 shares. Meanwhile, the total investment 

should not surpass two billion rupiahs. In this assessment, the 

maximum iteration is set to 20 while the population size is set 

to 5. The result is presented in Table 8. 

Table 8 indicates that the proposed TOA is superior 

compared to all these five competitors in handling the portfolio 

optimization problem. Overall, the gap in total capital gain 

among TOA, COA, ASBO, ZOA, and GSO is narrow. On the 

other hand, the gap between these metaheuristics and GWO is 

wide.  

5. DISCUSSION

In general, the performance of any metaheuristics can be 

drawn back to their exploration and exploitation capabilities. 

Exploration represents the ability of the metaheuristic in 

tracing solution within the search space [26]. Exploration is 

needed to find the area where the global optimal solution exists 

and to avoid the local optimal entrapment. In this context, 

exploration capability is usually linked to multimodal 

problems where these problems consist of multiple optimal 

solutions. In many cases, there are a lot of optimal solutions in 

one multimodal problem which means a metaheuristic will be 

easily trapped in the local optimal so that the area of global 

optimal solution will never be found. Exploitation represents 

the ability to improve the current solution by tracing possible 

solution near the current solution [26]. Exploitation can also 

be viewed as the ability to conduct the local search. The other 

issue is related to the condition when the agent is thrown away 

from the area where the global optimal solution. Based on 

these issues, in this section, the capability of TOA in handling 

exploration, exploitation, and avoiding being thrown away 

from the area of the global optimal solution will be discussed. 

The main difference of TOA from other swarm-based 

metaheuristics is that TOA performs not just moving closer 

but also moving away. It means that without considering the 

quality of its reference, whether it is the global best solution or 

the randomly selected solution. It is different from GSO [28] 

and GWO [9] where these two metaheuristics performs 

moving closer only. This approach is also different from 

ASBO [27], COA [14], and ZOA [13] where the direction of 

the walk relative to other solutions is performed conditionally. 

The getting closer walk is performed only if the reference is 

better than the corresponding solution and choose to get away 

when the opposite circumstance takes place. As mentioned 

previously there is not any guarantee that getting closer to the 

better solution will end with improvement. Tracing both 

directions as implemented in TOA is proven better than 

implementing getting closer only or the optional direction. 

The exploration capability of TOA is also enriched with the 

walk relative to the middle between two randomly selected 

solutions. It provides additional exploration because this 

location may not be traced yet. This concept is like GWO 

where the target is the resultant of the three best solutions in 

the current iteration or ASBO where one of the targets is the 

middle between the best and worst solutions in the current 

iteration. 

Neighborhood searches performed in the third phase 

represent both exploration and exploitation capabilities. The 

neighborhood search with wide local search space represents 

the exploration while the neighborhood search with narrow 

local search space represents the exploitation. Although the 

local search space width of both neighborhood searches 

decreases linearly, the width of the second neighborhood 

search is still ten times than the first one. 

The effort to avoid the agent moving to a worse solution or 

being thrown away from the current area is facilitated mainly 

by the rigid acceptance approach. This approach is important 

due to the result in handling the high-dimensional functions. It 

is shown that metaheuristics that implement rigid-acceptance 
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approaches are far better than those that do not. The second 

protection comes from the local search space that is reduced 

linearly through iteration. This second approach gives more 

flexibility in the early iteration, and this flexibility becomes 

harder as the iteration goes. Simulated annealing is the early 

metaheuristic that introduces iteration-controlled flexibility. 

Meanwhile, MPA is the famous swarm-based metaheuristic 

that uses this approach by reducing the local search space 

through iteration. This approach is then adopted and modified 

by the later metaheuristics, such as POA, ZOA, COA, etc. 

The superiority of TOA does not mean it has become the 

perfect metaheuristic. TOA is a metaheuristic that performs 

better than GWO, GSO, ZOA, COA, and ASBO in handling 

almost all functions in the set of 23 functions. Meanwhile, 

ZOA is better than TOA in handling Step, ASBO is better than 

TOA in handling Penalized, and COA is better than TOA in 

handling Hartman 6 and Shekel 5. Moreover, the final solution 

of TOA is still far from the global optimal in handling 

Rosenbrock, Step, Schwefel, Hartman 3, Shekel 5, Shekel 7, 

and Shekel 10. 

The superiority of TOA in handling the portfolio 

optimization problem also does not guarantee that TOA is 

superior in handling all practical optimization problems. This 

portfolio optimization problem is generally an integer-based 

optimization problem because the decision variables are 

presented in integer format. The objective function is also 

simple accumulating the capital gain of all shares. Moreover, 

there is no stock in which the capital gain is negative. 

Meanwhile, this problem is more unique than the set of 23 

functions because the quantity of stocks that should be 

purchased is limited by not only the maximum range but also 

the total investment. Meanwhile, there are various practical 

optimization problems in engineering where the decision 

variables are presented in floating point, and the objective 

function is more complex. Besides, there are various 

combinatorial optimization problems that can be explored to 

evaluate the effectiveness of TOA rather than numerical 

optimization problems as in this work.  

This result motivates the modification and improvement of 

TOA in future work. Besides, there are a huge number of 

optimization problems spanning the wide area of engineering. 

These problems have their own characteristics, such as the 

objective and constraints. The objective can be a single 

objective or multiple objectives. Meanwhile, in many 

problems, some constraints may depend on other constraints, 

making these problems more difficult to solve. Many problems 

are combinatorial rather than numerical.  

Moreover, future studies can be carried out based on the 

advantages and limitations of this current work. In regard that 

the searching in both opposite directions is better than 

searching in a single direction, this approach can be 

maintained in future development. Meanwhile, this TOA uses 

only two references: the best solution, and two randomly 

picked solutions. On the other hand, there are existing 

metaheuristics that use a better solution in the swarm or a 

collection of better solutions in the swarm as reference. This 

approach can be hybridized into the current TOA as 

improvement. Besides, the investigation of hybridizing TOA 

as a swarm-based metaheuristic with any evolution-based 

metaheuristic is also challenging. In the end, the modification 

or improvement can also be performed by implementing other 

stochastic distributions, such as exponential, Poisson, normal, 

Brownian, and so on. 

6. CONCLUSIONS

This paper has presented the new swarm-based 

metaheuristic called treble opposite algorithm (TOA). The 

main concept of this metaheuristic is implementing a multiple 

phase strategy where there are two searches that is opposite to 

each other in every phase. This strategy is designed to improve 

the exploration capability while maintaining the exploitation 

capability. Getting closer to the reference is designed to 

maintain the exploitation while getting away from the 

reference improves the exploration. This approach is different 

from many existing swarm-based metaheuristics where the 

swarm members move toward their reference. The result 

indicates that TOA is superior to five other metaheuristics. In 

handling the set of 23 functions, TOA is better than GWO, 

GSO, ZOA, ASBO, and COA in 22, 23, 19, 20, and 19 

functions, respectively. Moreover, TOA produces the highest 

total capital gain in handling portfolio optimization problems. 

This result proofs that searching in two opposite directions is 

better than searching only in a single direction. 

Future studies can be performed through many tracks. First, 

there is not any guarantee that TOA is superior in handling all 

kinds of problems. It means that more tests can be performed 

to evaluate the performance of TOA more comprehensively. 

The use cases may come from the wide range of engineering 

problems, whether they are numerical or combinatorial ones. 

Implementing TOA to solve large scale problems that consist 

of hundreds of decision variables is also challenging. Second, 

it is challenging to hybridize the proposed TOA with other 

metaheuristics, especially the evolution-based ones. 
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