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Schizophrenia is a severe mental illness, the main symptoms of which include 

delusions, hallucinations, and cognitive disturbances. This disease can affect the quality 

of human life. Schizophrenia affects around 24 million people worldwide. This study 

involved 14 patients with paranoid schizophrenia and 14 healthy controls with 19 

channels. This study aims to apply the Long Short-Term Memory (LSTM) method to 

Electroencephalography (EEG) signals for classifying people with schizophrenia. EEG 

signal analysis uses a bandpass filter with an interval frequency of 0.5 – 45 Hz with a 

maximum EEG segment duration of 5 seconds with an overlap of 1 second. Feature 

extraction used is based on Frequency-Domain Features. The data is standardized with 

a scaler by dividing training, validation, and testing data by 80%, 15%, and 15%, with 

a random state 42. The dense layer uses one layer LSTM, Dropout of 0.25, and 

Activation ReLu and Adam optimization. Therefore, the model accuracy is 99.94%. 

The K-Fold Cross Validation evaluation matrix results for the validation dataset are 

98.18%. From the selected model, predictions were made using data testing to obtain 

an evaluation matrix for the diagnosis of schizophrenia, including a precision of 95%, 

recall of 93%, F1-score of 94%, and accuracy of 94%. Hence, in this study, it is evident 

that LSTM demonstrates effectiveness in accurately classifying schizophrenia patients 

using their brainwave data. 
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1. INTRODUCTION

Schizophrenia is a complex mental disorder characterized 

by abnormal thoughts, perceptions, and behaviors. An early 

and accurate diagnosis of schizophrenia is crucial for effective 

treatment and management. Electroencephalography (EEG) 

signals provide valuable insights into the brain activity of 

individuals, offering a potential avenue for understanding and 

classifying schizophrenia.  

An EEG is a device that examines images of recorded 

electrical activity in the brain, explaining its functionality and 

interpretation [1]. The recording of EEG signals affixed to the 

scalp provides information about brain wave patterns 

associated with various mental states and psychiatric disorders. 

This non-invasive technique is performed by placing 

conductive electrodes on the scalp, usually using an electrode 

cap for multichannel recording. These electrodes read the 

brain’s electrical signals from the surface of the head, which 

are amplified from microvolt magnitudes to a range in which 

they can be digitized and accurately stored [2]. 

The motivation behind utilizing Long Short-Term Memory 

(LSTM) for schizophrenia patient classification through EEG 

signal analysis lies in LSTM networks’ ability to capture 

temporal dependencies and patterns in sequential data. EEG 

signals are time-varying and exhibit complex temporal 

dynamics, making LSTM suitable for modeling and analyzing 

these signals. Previous research has demonstrated the potential 

of LSTM and related deep learning techniques in various 

mental health applications and EEG analysis applications. For 

instance, Liu et al. introduced a classification technique for 

schizophrenia using individual hierarchical brain networks 

derived from structural MRI images. They demonstrated the 

effectiveness of incorporating hierarchical network structures 

and correlations between regions of interest in improving 

classification accuracy [3]. 

Furthermore, Prabhakar et al. explored the classification of 

schizophrenia EEG signals using swarm intelligence 

computing and optimization algorithms. They achieved 

promising results in accurately distinguishing between typical 

and schizophrenia cases, highlighting the potential of 

advanced computational techniques in EEG-based 

classification [4]. In addition, brain activity and EEG signal 

analysis have been widely used in studying various mental 

disorders, including stress [5]. The classification of stress 

using brain signals based on LSTM networks demonstrates the 

potential of LSTM in capturing and analyzing complex brain 

patterns associated with mental health conditions [5]. 

In this study, we used LSTM to analyze EEG signals to 

classify patients effectively. The LSTM model excels in 

interpreting the processed EEG signal data, facilitating 

accurate patient classification. This research incorporates 

feature extraction techniques and bandpass filtering to 
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improve EEG signal quality and ensure reliability. This 

approach carefully filters out noise, ensuring that the EEG 

waveforms used in the LSTM analysis have the highest 

precision and accuracy. 

By leveraging the capabilities of LSTM networks, this 

research aims to contribute to developing a reliable and 

accurate classification model for schizophrenia using EEG 

signals. Analyzing EEG signals with LSTM can provide 

insights into the temporal dynamics and patterns associated 

with schizophrenia, enabling improved diagnosis and 

understanding of the disorder. 

This study mainly used basic frequency domain features for 

feature extraction from EEG signals. However, it is worth 

considering the application of more advanced feature 

extraction techniques, such as wavelet transform and Fast 

Fourier Transform (FFT), which may offer deeper insights or 

better performance. 

In addition, the segmentation process of the EEG signal 

plays a vital role in the model’s effectiveness. In particular, 

decisions about the degree of overlap and the duration of the 

signal segments significantly impact the model’s accuracy. 

Higher overlap values in signal segments improve model 

performance, allowing for more comprehensive data 

utilization. Conversely, shorter signal segment lengths are 

generally more effective, as they provide better resolution and 

capture more detailed features of the EEG signal. These 

segmentation parameters must be carefully optimized to 

balance the trade-offs and achieve the best model performance. 
 

 

2. MATERIALS 
 

This study uses a dataset provided in 2017, which the public 

can access on the RepOD website. There are two categories: 

patients with paranoid schizophrenia and healthy patients as a 

control group. The study sample consisted of 14 patients with 

paranoid schizophrenia (seven men and seven women aged 

24-32) from the Institute of Psychiatry and Neurology in 

Warsaw, Poland, and 14 healthy controls (seven men aged 23-

30 and seven women aged 25-32). 

The patients meet the criteria for paranoid schizophrenia 

(ICD-10 category F20.0). The Institute of Psychiatry and 

Neurology Ethics Committee approved the study plan in 

Warsaw. All participants received a written explanation of the 

protocol and gave written informed consent to participate in 

the study. The inclusion criteria were a minimum age of 18 

years, a diagnosis of F20.0 according to ICD-10, and a seven-

day withdrawal period. Exclusion criteria included pregnancy, 

organic brain pathology, severe neurological diseases (such as 

epilepsy, Alzheimer’s, or Parkinson’s), general medical 

disorders, and early-stage schizophrenia (first episode of 

schizophrenia). Fourteen patients who finished the study were 

paired based on gender and age in the control group [6]. 

The dataset accessed from this website consists of files in 

the European Data Format (EDF), a widely recognized 

standard for storing and exchanging medical time series data. 

Each file in this collection is carefully labeled to distinguish 

between control subjects and schizophrenia patients, thus 

facilitating clear and organized analysis. 

However, it is essential to note that this website lacks 

specific information regarding the demographic matching of 

the two groups, especially regarding gender and age. This 

absence of detailed demographic matching may affect the 

findings of the study. In addition, this website adheres to strict 

privacy protection protocols, ensuring that all patient data 

remains confidential and secure under privacy standards. This 

aspect underscores the ethical consideration given to patient 

information while still providing valuable data for research 

purposes. 

Each subject had their eyes closed at rest while fifteen 

minutes of EEG data were recorded. The data was collected at 

a sampling rate of 250 Hz utilizing a conventional 10-20 EEG 

configuration with 19 EEG channels: Fp1, Fp2, F7, F3, Fz, F4, 

F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2. The 

reference electrode is positioned at FCz, as depicted in Figure 

1. 

 
 

Figure 1. EEG channel [7] 

 

EEG data analysis involves artifact-free segments lasting 

over thirty seconds, excluding eye movements, cardiac activity, 

and muscle contractions. Each EEG channel’s signal was 

filtered using a second-order Butterworth filter within a 

specific physiological frequency range. The frequency ranges 

are as follows: The frequency ranges for different brain waves 

are as follows: delta waves 2-4 Hz, theta waves 4.5-7.5 Hz, 

alpha waves 8-12.5 Hz, beta waves 13-30 Hz, and gamma 

waves 30-45 Hz [8]. 

 

 

3. METHODS 

 

3.1 EEG segmentation process 

 

The fluctuation of statistical properties of the EEG signal 

over time intervals causes it to be non-stationary [9]. The 

solution to this difficulty is to break long EEG signal 

sequences into short-duration segments considered pseudo-

stationary with identical statistical temporal and frequency 

properties [10]. This study utilizes a method that segments the 

EEG data from different psychotic intervals into shorter 

duration segments ranging from 5 to 50 seconds with no 

overlap. 

Although the CHB-MIT dataset contains EEG signals with 

lengths ranging from a few minutes to several hours, this study 

only analyzes a maximum EEG segment duration of 5 seconds. 

This is because increasing segment duration further results in 

a small number of EEG samples, which needs to be improved 

for adequate training, testing, and validation of the suggested 

categorization. In addition, this shorter time segment benefits 

from reduced computational power, transmission bandwidth, 
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and storage requirements [11]. 

 

3.2 Feature extraction 

 

The most significant aspect of the study, particularly in EEG 

signals analysis, is feature extraction. This is because feature 

selection determines how the data distribution pattern is 

described, and this model influences the classification 

technique utilized. Feature extraction primarily aims to reduce 

complex EEG data to a more compact representation while 

maintaining crucial information for subsequent analysis or 

categorization. Different feature extraction techniques are 

utilized depending on needs, including time-domain features, 

frequency-domain features, time-frequency features, and 

nonlinear features. 

Statistical measures such as mean, median, variance, 

standard deviation, skewness, and kurtosis are components of 

the frequency-domain [12]. 

(1) Mean 

The mean is the average value of each data channel for each 

participant. This study computes the mean to symbolize the 

value of each channel. 

 

𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 (1) 

 

(2) Variance 

The measurement of variance shows how far the spread of 

a set of data of each channel is. 

 

𝜎2 =
∑  (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛 − 1
 (2) 

 

(3) Standard deviation 

The standard deviation (STD) quantifies the amount of 

dispersion or variation in each channel from its mean. 

 

𝑆𝑇𝐷 = √
∑  (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛 − 1
 (3) 

 

(4) Minimum 

Each channel can be analyzed to determine the minimum or 

value. 

(5) Maximum 

The maximum value for each channel is the most significant 

value that can be represented in that channel. 

(6) Kurtosis 

Kurtosis is the statistical measure that describes the 

peakedness or flatness of a distribution of values in each 

channel [13]. 

 

𝐾 =

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)4 𝑛
𝑖=1

(
1
𝑛

∑ (𝑥𝑖 − 𝑥̅)2 𝑁
𝑖=1 )

2 − 3 (4) 

 

(7) Skewness 

Skewness is a metric that indicates the degree of similarity 

or asymmetry in each channel’s distribution [13]. 

 

𝐾 =

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)3 𝑁
𝑖=1

(
1

𝑛 − 1
∑ (𝑥𝑖 − 𝑥̅)2 𝑁

𝑖=1 )
2/3 

− 3 (5) 

 

(8) Root Mean Square (RMS) 

RMS is a standard EEG signal analysis method. RMS is a 

mathematical calculation that measures the amplitude or 

overall power of a time series signal, in this case, an EEG 

signal. The RMS value measures the overall energy or 

amplitude of the EEG signal. This can be useful in various 

EEG applications, such as identifying specific patterns of brain 

activity, detecting anomalies, or monitoring changes in brain 

activity over time. 

 

𝑅𝑀𝑆 = √
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛
 (6) 

 

3.3 Long-Short Term Memory (LSTM) 

 

LSTM is a Recurrent Neural Network (RNN) capable of 

capturing long-term dependencies within data sequences by 

retaining information for an extended duration, thus mitigating 

the issue of vanishing gradients commonly found in RNNs 

[14]. Hochreiter and Schmidhuber pioneered the LSTM 

network [15]. This network is commonly used to classify time 

sequence data, speech data, audio, text, and biological signals, 

among other things [16, 17]. 

 

 

 
 

Figure 2. LSTM basic architecture [11] 
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According to Figure 2, the LSTM architecture is 

characterized by a primary LSTM cell composed of three gates 

that control the flow of information from one cell state to the 

next. There are forget, input, and output gates [15, 18]. The 

three gates employ sigmoid activation to regulate the 

information flow. The forget gate determines whether the 

information in each data sample should be kept or discarded. 

The gate considers the current input signal xt and the previous 

output sequence yt-1 in cell Ct-1 to generate an output ft ranging 

from 0 to 1, whereas 0 signifies a complete information forget 

gate, while 1 indicates a complete information storage gate. 

The input gate determines whether to retain information in 

the current cell Ct by multiplying its output with the tanh 

activation layer 𝐶̃𝑡 . The output gate regulates the flow of 

specific information yt in Ct at the LSTM cell’s output by 

merging its output 𝑜𝑡 with another tanh activation layer. The

action of the three LSTM cell gates creates the output yt in cell 

Ct, which is stated mathematically by the following equations 

[18]: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
(7) 

tanh(𝑥) = 2 𝜎(2𝑥) − 1 (8) 

(9) 

(10) 

𝐶̃ (11) 

(12) 

(13) 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 )

𝑡 = tanh(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh 𝐶𝑡 (14) 

𝑅𝑒𝐿𝑈 = max(0, 𝑥) = {
𝛼𝑥 if 𝑥 ≤ 0
𝑥 if 𝑥 ≥ 0

(15) 

where, σ is the sigmoid function, ft is the forget gate, it is the 

input gate, ot is the output gate, W and b are the weight matrix 

and bias factor for different gates in the LSTM cell. Moreover, 

ht-1 is the output value before the 𝑡 order, Ct-1 is the cell state 

before the t order (initial value for ht-1=0 and Ct-1=0 [19]), the 

value of tanh(x) between the interval -1 to 1, α is 0 for ReLU 

[20]. 

4. RESULTS AND DISCUSSIONS

4.1 Data overview 

Fourteen patients with paranoid schizophrenia were 

compared to 14 healthy individuals in this study. Data was 

gathered at a sampling frequency of 250 Hz utilizing a 

traditional 10-20 EEG setup with 19 channels. Figure 3. 

illustrates the EEG signals of healthy individuals and patients 

with schizophrenia. 

Figure 3 shows that the data of healthy controls and 

schizophrenia patients at each frequency shows a difference 

where the decrease in the value of Power Spectral Density 

(PSD) drastically decreases at specific frequencies such as 

when the frequency is from 100 Hz to 120 Hz. Then as an 

example of the waves for each channel it is shown in Figure 4. 

From Figure 4, there are abnormalities in schizophrenia 

patients. In the EEG wave signals of schizophrenia patients, 

brain activity tends to show regular and coordinated patterns. 

Whereas in the EEG signal waves of healthy control patients, 

brain activity patterns often show significant changes due to 

electrical activity in the brain. This shows that the activity of 

the structure and function of the brain in patients with 

schizophrenia is not regular.

Figure 3. EEG signal data for healthy and schizophrenia patients 
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Figure 4. EEG signal data at 300–305 second 

 

4.2 Bandpass filtering, EEG segmentation, and feature 

extraction 

 

The EEG signal data collected by the instrument from 

schizophrenia patients and healthy controls must be free of 

artifacts and noise before being processed for schizophrenia 

prediction, necessitating precise filters. We apply a 

Butterworth bandpass filter to multichannel EEG signals with 

a frequency range of 0 Hz to 45 Hz. This method is preferred 

in biomedical signal analysis because of its flat and wave-free 

frequency response. Figure 5 shows an example of EEG signal 

data processed using bandpass filtering. 

 

 
 

Figure 5. EEG data before and after bandpass filter 

 

In Figure 5, the EEG signal with a bandpass filter of 0.5–45 

Hz shows a difference in the resulting wave pattern. The 

waveforms are generated at diverse frequencies in the EEG 

signal before the bandpass filter is performed. In contrast, 

when the bandpass filter is applied, the signal wave is more 

tenuous, where the frequencies outside 0.5–45 Hz are removed. 

Then after the bandpass filter is carried out, it will enter the 

epoching or EEG segmentation process. 

Since the statistical properties of the EEG signal vary, it is 

non-stationary [9]. Extended EEG signals are segmented into 

brief sections assumed to be pseudo-stationary, displaying 

comparable statistical temporal and frequency characteristics 

[10]. This study also uses this method, which divides the EEG 

signals from distinct schizophrenic intervals into shorter 

segments. This study solely considers the maximal EEG 

segment duration of 5 seconds with a 1 second overlap. This 
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is because increasing the segment time further results in a 

limited sample of the EEG data, which needs to be improved 

for adequate training, testing, and validation of the suggested 

categorization. Moreover, this shorter segment benefits from 

decreased processing computational power needs, reduced 

transmission bandwidth needs, and lower storage demands on 

local or cloud-based storage. The signal length is 1,250 points 

and total sample is 7,201 based on the bandpass filter and EEG 

segmentation results. 

Eight statistical features were extracted for each channel, 

meaning 19 channels for each experiment; 152 features were 

extracted for each experiment in the EEG signal.  

4.3 Classification using LSTM 

When classifying EEG signals with the LSTM, the data is 

standardized on a scaler by splitting training and testing data 

by 80% training, 15% validation, and 15% testing with random 

state 42. The sequential LSTM model is utilized. In the 

sequential model, each layer is created individually, one after 

the other. The model sequentially processes data from input to 

output via a predetermined sequence of layers. 

In the case of LSTM, we added an LSTM layer and other 

layers such as Dense of 1 (which employs one layer of LSTM), 

Dropout of 0.25, and Activation ReLu to the model. The 

LSTM model is optimized using binary cross entropy as the 

loss function. Adam’s optimizer integrates momentum method 

and adaptive learning rate and it adjusts the weights and biases 

of the model according to the gradient of the loss function. 

With a batch size of 32, the LSTM model was trained for 50 

epochs. Figure 6 depicts the LSTM architectural model. 

The LSTM model’s architecture in Figure 6 involves 

bandpass filtering 19 wave channels based on specific 

frequency ranges: 2–4 Hz (delta), 4.5–7.5 Hz (theta), 8–12.5 

Hz (alpha), 13–30 Hz (beta), and 30–45 Hz (gamma). EEG 

segmentation is performed based on available data. The data 

input layer is 5,761 data, the LSTM layer is 128 units, the 

Dropout is 128, and the classification results are 0 which 

means healthy control and 1, for schizophrenia patients. The 

results of the LTSM model are shown in Table 1. 

Figure 6. LSTM architecture 

Table 1. LSTM results 

Layer (type) Output Shape Parameter 

LSTM (None, 128) 143,872 

Dense (None, 1) 129 

Dropout (None, 128) 0 

According to Table 1, the LSTM model was chosen with the 

output shape (None, 128) and a total model parameter of 

143,872 in LSTM modeling, which includes weight and bias. 

Then dense is one layer used in neural networks to conduct 

mathematical operations such as multiplication matrices 

between inputs and weights and bias addition. A dense layer 

is fully or partially linked to all neurons in the previous and 

subsequent layers. The dense layer in this study has 1 unit 

neuron, a dropout of 0.25, and employs the sigmoid activation 

function to create an output between 0 and 1. 

The model accuracy of the LSTM model utilized is 99.94%. 

The accuracy value for the validation dataset in the evaluation 

matrix using the K-Fold Cross Validation method with a K=5 

is 98.18%. The accuracy and loss plots for each epoch up to 

epoch 50 are then examined, and the accuracy and loss results 

for the training and validation data LTSM model are obtained, 

as shown in Figure 7. 

From Figure 7, there are several accuracy peaks, but the 

model we use is obtained by storing the model weights at the 

most significant peaks. 

After we get the best model, we test the model for the 

predictive value of the testing data to get a confusion matrix 

which aims to be an evaluation tool used to measure the 

performance of a classification model. 

From the confusion matrix, we perform a classification 

report to evaluate the method used to analyze and report the 

predicted results of a classification model. We get the 

precision of 95%, recall of 93%, F1-score of 94%, 581 support, 

and accuracy of 94% as shown in Figure 8. 

804



Figure 7. Accuracy and loss plot on the LSTM model 

Figure 8. Confusion matrix for testing data 

5. CONCLUSION

The approach method employed in studying EEG signals to 

diagnose schizophrenia patients entails multiple steps. First, a 

bandpass filter in the 0.5–45 Hz frequency range filters out the 

delta, theta, alpha, beta, and gamma waves in the EEG data. 

The EEG signal is then segmented into shorter segments with 

a maximum duration of 5 seconds and an overlap of 1 second 

using the EEG segmentation procedure. Max, min, kurtosis, 

skewness, root mean square, mean, variance, and standard 

deviation are statistical features retrieved from EEG data. In 

each experiment, 152 characteristics were collected from 19 

channels of EEG signals. This approach, which gets a 

classification accuracy of 94%, serves as the foundation for 

further EEG data analysis to identify schizophrenic patients. 
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