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This article explores a M/M/m unreliable retrial queue with reneging and diverse 

outgoing services. Incoming calls that arrive and discover all servers occupied join the 

orbit. The buffering incomings from the orbit retry their request after a while or leave 

the system without receiving service. When the orbit becomes empty, the idle server 

provides outgoing services. It is assumed that there are two categories of outgoing 

services. Due to unexpected circumstances, the server may breakdown. When a server 

undergoes breakdown, immediate repair process begins. Post-server breakdown, 

incoming calls go into orbit and retry service randomly, whereas the two variants of 

outgoing calls leave the system. The study utilizes a quasi-birth-death (QBD) process 

to analyse the stationary system size distribution. The steady state probabilities and the 

rate matrix are obtained through the matrix geometric method (MGM). Various 

performance metrics are evaluated for the proposed model. The study examines the 

impact of various system-based parameters on efficiency metrics with the help of 

numerical results. 
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1. INTRODUCTION

A queue is formed when all available servers are busy, 

consisting of customers waiting for service. During the wait, 

customers can observe the status of the servers. Queues can be 

found in various settings such as supermarkets, ticket counters, 

hospitals and etc. Dutta and Choudhury [1] utilized simulation 

methods to analyse a M/M/1 queues’ performance.  

A retrial queue is a queuing system where customers who 

arrive for service but are unable to get prompt service due to 

occupied servers are directed to an orbit. In the orbit, they 

cannot observe the status of the servers and must randomly re-

arrive for service after some time has elapsed. In a classical 

retrial queue, the re-arrival times of customers are independent 

of other customers. For example, in a packet-switched network, 

packets being sent by the router are temporarily stored in a 

buffer while they wait for their turn to be transmitted. Kim and 

Kim [2] have made a comprehensive survey of retrial queueing 

systems, covering their various aspects and recent 

developments. Zhang et al. [3] investigated a retrial queue with 

varying service provision rates based on the server status and 

proposes an optimal model for the same. Moiseev et al. [4] 

presented an asymptotic diffusion for a retrial queue with 

multiple servers, where the service time followed a hyper-

exponential distribution, providing a valuable tool for 

analysing and optimizing such systems. Fiems [5] reviewed 

retrial queueing models with varying retry durations, using 

mathematical and probabilistic techniques to understand their 

performance and behaviour in practical applications. 

Arivudainambi and Godhandaraman [6] established the 

steady-state likelihoods and system effectiveness metrics of a 

retrial queue, including the anticipated count of customers in 

the queueing system and the anticipated waiting time.  

Reneging is a phenomenon in queuing theory where 

customers in a queue anticipate a delay in receiving service 

and subsequently decide to leave the queue without being 

served. For example, a customer facing an issue on mobile 

connectivity network may lodge a complaint to the customer 

care centre. Customers can await service, when all the servers 

become busy, they may leave the system without getting 

service. Ding et al. [7] have investigated M/M/1 queues with 

reneging. Singh et al. [8] have considered finite M/M/1/K with 

reneging considering fast and slow working phases. Wang and 

Zhang [9] have investigated the busy period of a queue 

structure with discouragement of customers.  

In the context of service facilities, it is acknowledged that 

unexpected server interruptions may be encountered due to 

various reasons like excessive usage, improper handling, and 

other unforeseen reasons. This unforeseen event may result in 

the temporary cessation of service delivery. After an effective 

repair of the inoperable server, the system resumes its normal 

service operation. Chang and Wang [10] studied a single 

server retrial queue with unreliable server and set-up duration 

for service resumption of off server. Kuki et al. [11] discussed 

a retrial queue with customer conflicts and server breakdowns. 

Atencia and Galán-García [12] analysed the time spent within 
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a queueing system that incorporates breakdowns and varied 

retrial durations. Liu et al. [13] discussed an optimization 

model for a retrial queueing system involving servers that are 

not consistently reliable due to incomplete coverage and a 

delay in restarting after a shutdown. Poongothai et al. [14] and 

Saravanan et al. [15] analysed a two heterogeneous unreliable 

retrial queue with servers prone to customer discouragement. 

Yiming and Guo [16] analysed the behaviour of M/M/1 queue 

with unreliable servers. Saravanan et al. [17] established 

M/M/1 retrial queue with server breakdown, optional service, 

bakling and feedback.  

Queueing theory distinguishes between two types of multi-

server systems based on the similarity of their service rates. 

Specifically, a system is known as homogeneous if each server 

within the system provides service at the same rate. On the 

other hand, a system is termed as heterogeneous if the servers 

within the system have different service rates. Yang et al. [18] 

explored a multi-server retrial queue considering likely 

starting failures of servers and Bernoulli feedback. Chang et al. 

[19] and Ke et al. [20] analysed unreliable multi-server retrial 

queues subject to customer impatience with feedback. 

Saravanan et al. [21] discussed a multi server unreliable retrial 

queue involving factors like balking, reneging and 

synchronised vacation. 

Most queueing models are only subject to serving the 

incoming demands from the customer end. However, for more 

effective performance and for boosting the system revenue, 

outgoing service provision from the serving end is highly 

appreciable during idle times. This phenomenon where the 

server not only provides service to the incoming demands but 

also makes outgoing services is known as two way 

communication. The servers can avail different modes of 

outgoing service provision like providing service through calls, 

emails, chats, etc. Artalejo and Phung-Duc [22] analysed a 

M/M/1 retrial queueing system with two-way communication 

between customers and the server. Phung-Duc et al. [23] 

analysed a retrial queue with two-way communication, 

applicable to call centers with call blending, for both single 

and multi server cases. Sakurai and Phung-Duc [24] analysed 

M/M/1 retrial queues with two-way communication. Further 

under intense situations like high congestion, slow paced 

retrials and immediate connections to outgoing calls. Kumar 

et al. [25] considered a retrial queue where a single server 

engages incoming calls and outgoing calls only when free, and 

is prone to active failures.  

Utilising the available idle time effectively will have a 

significant impact on the financial capital from revenue 

perspective. With this aim in view, a study on effective use of 

idle time is extremely important. This need motivates the study 

of outgoing services from servers’ end during idle period. 

Further, an investigation of different types of outgoing 

services to achieve a significant hike in a company’s revenue 

is due. However, in real life practice, many service systems are 

providing service through multiple servers. It is essential to 

probe the effectiveness of several types of outgoing services 

in multi-server retrial service systems. Moreover, systems are 

often subject to technical interruptions owing to reasons 

varying from long exposure to faulty components. 

Furthermore, customers can also lose their patience being 

exposed to long waiting in queues. This necessitates a probe 

into multi-server retrial queues by considering all the 

discussed phenomena. 

However, the existing literature on multi-server retrial 

queues is currently limited, despite the practical need for such 

systems in today’s technological landscape. Additionally, the 

few existing multi-server queueing models that incorporate 

two-way communication have only considered a single type of 

outgoing service. Moreover, real-world scenarios often require 

the consideration of unreliable systems with various technical 

fallbacks. To address these gaps, this article presents an 

analysis on multiple server retrial queues with two-way 

communication that accounts for different modes of outgoing 

service and varying technical fault rates. 

The paper is organized into several sections. Section 2 

elucidates the practical reasoning behind the conceptual model. 

Section 3 introduces a QBD model, establishing stability 

criteria and deriving stationary probabilities for diverse server 

states using the MGM. Evaluation metrics of the model are 

accomplished in Section 4. Section 5 presents the numerical 

analysis results on efficiency measures. Finally, Section 6 

offers conclusive remarks. 

 

 
2. PRACTICAL IMPLEMENTATION OF MODEL 

 
Fiber optic customer care is a feasible implementation of the 

conceptual model as portrayed in Figure 1. Fiber optic 

customer care system facilitates communication services for 

individuals through telecommunications. Potential customers 

seeking services ranging from placing order for new 

connection to reporting issues regarding router network, cable 

damages, network issues, etc., from fiber optic customer care 

via calls to the concerned customer care. 

 

 
 

Figure 1. Fiber optic customer care centre 
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When the agents at the serving end are available to take calls, 

the customer immediately gets service. If each of the serving 

agents is engaged in providing service, the incoming calls are 

confined to stay in a buffer (virtual orbit) before hitting the call. 

Calls buffering in the virtual orbit retries seeking connection. 

A prolonged wait in the buffer may lead to possible reneging 

of likely calls. 

In the absence of calls, the customer care agents provide 

outgoing service likely providing information on new updates, 

offers, etc., to the users through calls or via emails. When a 

technical issue arises in the servers end, the ongoing incoming 

service is stopped and prompted to join the buffer. From the 

buffer, these calls may retry their attempts for service. The 

active outgoing service gets disconnected with the occurrence 

of a technical issue on the servers end and the potential 

customer leave the system. 

 

 

3. MODEL DESCRIPTION  

 

This paper presents a study of a multiple server retrial queue 

involving factors like reneging and two types of outgoing 

service, taking into account server failures. The arrival of 

incoming calls is modeled as a Poisson process with rate λ, and 

waiting calls in the orbit can retry their request after an 

independent exponential distribution having parameter γ. The 

orbital calls attempting service and encountering all busy 

servers may either depart from the system with probability �̅� 
or retry service with probability r. The system has m identical 

servers, and the service duration for incoming calls follows an 

exponential distribution with rate μ1. 

When a server is available, it offers either a type 1 or type 2 

outgoing service, following an exponentially distributed 

duration at rates η1 and η2, respectively. The outgoing service 

times of type 1 and type 2 services also follow exponential 

distribution with rate μ2 and μ3, respectively. During server 

operation, a breakdown may occur at any time, with 

exponential distribution rates α1, α2 and α3 for incoming 

service, outgoing type-1 service and outgoing type-2 service, 

respectively. 

Once a server breaks down, it is promptly sent for repair. If 

a server fails while attending to a customer, that customer will 

transition to a waiting area and attempt their service again after 

a random interval. During the outgoing service, if a server fails, 

the customers receiving service will leave the system. The 

repair time for a failed server for incoming service, outgoing 

type-1 and type-2 service follows exponential distributions 

with parameters β1, β2 and β3 respectively. Furthermore, the 

model functions based on the assumption that the time 

between arrivals, the incoming and outgoing service times, 

retrial time and the incoming and outgoing breakdown and 

repair times being independent of one another. 

 

3.1 Mathematical model 

 

Let η1(t) represent the count of service outlets currently busy 

handling incoming calls, η2(t) represent the count of service 

outlets currently busy handling outgoing type-1 calls, η3(t) 

represent the count of service outlets currently busy handling 

outgoing type-2 calls, η4(t) represent the count of service 

outlets that have failed and are currently unavailable, and η5(t) 

represent the count of orbital customers at time t. Then, the 

system can be described as a continuous Markov chain {η1(t), 

η2(t), η3(t), η4(t), η5(t); t≥0} with state space Θ =

{(𝑖, 𝑝, 𝑞, 𝑙, 𝑗); 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑝 ≤ 𝑚 − 𝑖, 0 ≤ 𝑞 ≤ 𝑚 − 𝑖, 0 ≤
𝑙 ≤ 𝑚 − (𝑖 + 𝑝 + 𝑞) and 𝑗 ≥ 0}. The system is referred to be 

in the state (i, p, q, l, j) at time t when η1(t)=i, η2(t)=p, η3(t)=q, 

η4(t)=l and η5(t)=j.  

The steady state probability of the queueing model is 

expressed as 𝑃𝑝,𝑞
𝑖,𝑙 (𝑗) = lim

𝑡→∞
 𝑃{𝜂1(𝑡)= 𝑖, 𝜂2(𝑡) = 𝑝, 𝜂3(𝑡) =

𝑞, 𝜂4(𝑡) = 𝑙, 𝜂5(𝑡) = 𝑗} , where 0≤i+p+q+l≤m and j≥0. The 

model can be investigated as a QBD process considered on the 

state space Θ = {(𝑖, 𝑝, 𝑞, 𝑙, 𝑗);  0 ≤ 𝑖 + 𝑝 + 𝑞 + 𝑙 ≤ 𝑚, 𝑗 ≥ 0}. 
The infinitesimal generator Q of the structured form: 

 

𝑄 =

[
 
 
 
 
 
 
 
𝑋0 𝑌

𝑍1 𝑋1 𝑌

𝑍2 𝑋2 𝑌

⋱ ⋱ ⋱
𝑍𝑁 𝑋𝑁 𝑌

𝑍𝑁 𝑋𝑁 𝑌

⋱ ⋱ ⋱ ]
 
 
 
 
 
 
 

 (1) 

 

where, the entries Xn, n≥0, Y and Zn, n≥1 are sub-matrices of 

order (m+1)(m+2)(m+3)(m+4)/24 square matrices with 

elements. 

 

𝑋𝑛 = [

𝑥1 𝑐1 𝑤1 0
𝑎1 𝑥2 0 𝑤2
𝑏1 0 𝑥3 𝑐2
0 𝑏2 𝑎2 𝑥4

], 

𝑌 = [

𝑦1 0 0 0
0 𝑦2 0 0
0 0 𝑦3 0
0 0 0 𝑦4

],  

𝑍𝑛 = [

𝑧1 0 0 0
0 𝑧2 0 0
0 0 𝑧3 0
0 0 0 𝑧4

]  

 

x1 is a (m+1)(m+2)/2 sub-matrix expressed as: 

 

𝑥1 =

[
 
 
 
 
 
𝑥0,0
0

𝑒0,0
1 𝑥0,0

1

⋱ ⋱
𝑒0,0
𝑚−1 𝑥0,0

𝑚−1

𝑒0,0
𝑚 𝑥0,0

𝑚 ]
 
 
 
 
 

  

 

x2 is a m(m+1)(m+2)/6 square matrix given by: 

 

𝑥2 =

[
 
 
 
 
 
 
 
𝑥1
1 𝑐1

1

𝑎2
1 𝑥2

1 𝑐2
1

𝑎3
1 𝑥3

1 𝑐3
1

⋱ ⋱ ⋱
𝑎𝑚−1
1 𝑥𝑚−1

1 𝑐𝑚−1
1

𝑎𝑚
1 𝑥𝑚

1

]
 
 
 
 
 
 
 

  

 

where, 

𝑥𝑖
1 =

[
 
 
 
 
 
𝑥𝑖,0
0

𝑒𝑖,0
1 𝑥𝑖,0

1

⋱ ⋱
𝑒𝑖,0
𝑚−1−𝑖 𝑥𝑖,0

𝑚−1−𝑖

𝑒𝑖,0
𝑚−𝑖 𝑥𝑖,0

𝑚−𝑖
]
 
 
 
 
 

, 
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𝑎𝑗
1 =

[
 
 
 
 
𝑎𝑗,0
0 𝑓𝑗,0

0

𝑎𝑗,0
1 𝑓𝑗,0

1

⋱ ⋱

𝑎𝑗,0
𝑚−1−𝑗

𝑓𝑗,0
𝑚−1−𝑗

]
 
 
 
 

, 

𝑐𝑘
1 =

[
 
 
 
 
 
𝑐𝑘,0
0

𝑐𝑘,0
1

⋱
𝑐𝑘,0
𝑚−1−𝑘

0 ]
 
 
 
 
 

, 

 

for 1≤i≤m, 2≤j≤m and 1≤k≤m-1. 

x3 is a m(m+1)(m+2)/6 square matrix given by: 

 

𝑥3 =

[
 
 
 
 
 
 
 
𝑥1
1 𝑤1

1

𝑏2
1 𝑥2

1 𝑤2
1

𝑏3
1 𝑥3

1 𝑤3
1

⋱ ⋱ ⋱
𝑏𝑚−1
1 𝑥𝑚−1

1 𝑤𝑚−1
1

𝑏𝑚
1 𝑥𝑚

1

]
 
 
 
 
 
 
 

  

 

where, 

𝑥𝑖
1 =

[
 
 
 
 
 
𝑥0,𝑖
0

𝑒0,𝑖
1 𝑥0,𝑖

1

⋱ ⋱
𝑒0,𝑖
𝑚−1−𝑖 𝑥0,𝑖

𝑚−1−𝑖

𝑒0,𝑖
𝑚−𝑖 𝑥0,𝑖

𝑚−𝑖
]
 
 
 
 
 

, 

𝑏𝑗
1 =

[
 
 
 
 
𝑏0,𝑗
0 𝑔0,𝑗

0

𝑏0,𝑗
1 𝑔0,𝑗

1

⋱ ⋱

𝑏0,𝑗
𝑚−1−𝑗

𝑔0,𝑗
𝑚−1−𝑗

]
 
 
 
 

, 

𝑤𝑘
1 =

[
 
 
 
 
 
𝑤0,𝑘
0

𝑤0,𝑘
1

⋱
𝑤0,𝑘
𝑚−1−𝑘

0 ]
 
 
 
 
 

, 

for 1≤i≤m, 2≤j≤m and 1≤k≤m-1. 

x4 is a m(m+1)(m2+m-2)/24 square matrix given by: 

 

𝑥4 =

[
 
 
 
 
 
 
𝐴1 𝐶1
𝐵2 𝐴2 𝐶2

𝐵2 𝐴2 𝐶2
⋱ ⋱ ⋱

𝐵𝑚−2 𝐴𝑚−2 𝐶𝑚−2
𝐵𝑚−1 𝐴𝑚−1]

 
 
 
 
 
 

  

 

where,  

𝐴𝑖 =

[
 
 
 
 
 
𝑥1
𝑖 𝑤1

𝑖

𝑏2
𝑖 𝑥2

𝑖 𝑤2
𝑖

⋱ ⋱ ⋱
𝑏𝑚−1−𝑖
𝑖 𝑥𝑚−1−𝑖

𝑖 𝑤𝑚−1−𝑖
𝑖

𝑏𝑚−𝑖
𝑖 𝑥𝑚−𝑖

𝑖 ]
 
 
 
 
 

, 

𝐵𝑗 =

[
 
 
 
 𝑎1
𝑗

𝑎2
𝑗

⋱

𝑎𝑚−𝑗
𝑗

0 ]
 
 
 
 

, 

𝐶𝑘 =

[
 
 
 
 
𝑐1
𝑘

𝑐2
𝑘

⋱
𝑐𝑚−1−𝑘
𝑘

0 ]
 
 
 
 

, 

 

for 1≤i≤m-1, 2≤j≤m-1 and 1≤k≤m-2. 

 

where,  

𝑥𝑗
𝑖 =

[
 
 
 
 
𝑥𝑖,𝑗
0

𝑒𝑖,𝑗
1 𝑥𝑖,𝑗

1

⋱ ⋱

𝑒𝑖,𝑗
𝑚−𝑖−𝑗

𝑥𝑖,𝑗
𝑚−𝑖−𝑗

]
 
 
 
 

, 

𝑏𝑘
𝑖 =

[
 
 
 
 
𝑏𝑖,𝑘
0 𝑔𝑖,𝑘

0

𝑏𝑖,𝑘
1 𝑔𝑖,𝑘

1

⋱ ⋱
𝑏𝑖,𝑘
𝑚−𝑖−𝑘 𝑔𝑖,𝑘

𝑚−𝑖−𝑘
]
 
 
 
 

, 

𝑤𝑙
𝑖 =

[
 
 
 
 
 
𝑤𝑖,𝑙
0

𝑤𝑖,𝑙
1

⋱
𝑤𝑖,𝑙
𝑚−1−𝑖−𝑙

0 ]
 
 
 
 
 

, 

𝑎𝑠
𝑗
=

[
 
 
 
 
𝑎𝑗,𝑠
0 𝑓𝑗,𝑠

0

𝑎𝑗,𝑠
1 𝑓𝑗,𝑠

1

⋱ ⋱

𝑎𝑗,𝑠
𝑚−𝑗−𝑠

𝑓𝑗,𝑠
𝑚−𝑗−𝑠

]
 
 
 
 

, 

𝑐𝑡
𝑘 =

[
 
 
 
 
𝑐𝑘,𝑡
0

𝑐𝑘,𝑡
1

⋱
𝑐𝑘,𝑡
𝑚−1−𝑘−𝑡

]
 
 
 
 

, 

for 1≤i≤m-1, 1≤j≤m-i, 2≤k≤m-i, 1≤l≤m-1-i, 1≤s≤m-j and 

1≤t≤m-1-k. 

The sub-matrices a1 and b1 are of order 

[m(m+1)(m+2)/6]×[(m+1)(m+2)/2]: 

 

𝑎1 =

[
 
 
 
 
𝑎1,0
0 𝑓1,0

0

𝑎1,0
1 𝑓1,0

1

⋱ ⋱
𝑎1,0
𝑚−1 𝑓1,0

𝑚−1]
 
 
 
 

,  

𝑏1 =

[
 
 
 
 
𝑏0,1
0 𝑔0,1

0

𝑏0,1
1 𝑔0,1

1

⋱ ⋱
𝑏0,1
𝑚−1 𝑔0,1

𝑚−1]
 
 
 
 

  

 

The sub-matrices c1 and w1 are of order 

[(m+1)(m+2)/2]×[m(m+1)(m+2)/6]: 
 

𝑐1 =

[
 
 
 
 
𝑐0,0
0

𝑐0,0
1

⋱
𝑐0,0
𝑚−1]

 
 
 
 

,  

𝑤1 =

[
 
 
 
 
𝑤0,0
0

𝑤0,0
1

⋱
𝑤0,0
𝑚−1]

 
 
 
 

  

 

The sub-matrices a2 and b2 are of order [m(m+1)(m2+m-

2)/24]×[m(m+1)(m+2)/6]: 
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𝑎2 =

[
 
 
 
𝑎1
1

𝑎1
2

⋱
𝑎1
𝑚−1]

 
 
 

, 

𝑎1
𝑖 =

[
 
 
 
 
𝑎1,𝑖
0 𝑓1,𝑖

0

𝑎1,𝑖
1 𝑓1,𝑖

1

⋱ ⋱
𝑎1,𝑖
𝑚−2−𝑖 𝑓1,𝑖

𝑚−2−𝑖
]
 
 
 
 

; 

 1 ≤ 𝑖 ≤ 𝑚 − 1 

𝑏2 =

[
 
 
 
𝑏1
1

𝑏2
1

⋱
𝑏𝑚−1
1 ]

 
 
 

, 

𝑏𝑖
1 =

[
 
 
 
 
𝑏𝑖,1
0 𝑔𝑖,1

0

𝑏𝑖,1
1 𝑔𝑖,1

1

⋱ ⋱
𝑏𝑖,1
𝑚−2−𝑖 𝑔𝑖,1

𝑚−2−𝑖
]
 
 
 
 

;  

1 ≤ 𝑖 ≤ 𝑚 − 1 

 

The sub-matrices c2 and w2 are of 

order[m(m+1)(m+2)/6]×[m(m+1)(m2+m-2)/24]: 

 

𝑐2 =

[
 
 
 
𝑐0
1

𝑐0
2

⋱
𝑐0
𝑚−1]

 
 
 

, 𝑐0
𝑖 =

[
 
 
 
 
𝑐0,𝑖
0

𝑐0,𝑖
1

⋱
𝑐0,𝑖
𝑚−2−𝑖

]
 
 
 
 

, 

 

for 1≤i≤m-1. 

 

𝑤2 =

[
 
 
 
𝑤1
0

𝑤2
0

⋱
𝑤𝑚−1
0 ]

 
 
 

, 

𝑤𝑖
0 =

[
 
 
 
 
𝑤𝑖,0
0

𝑤𝑖,0
1

⋱
𝑤𝑖,0
𝑚−2−𝑖

]
 
 
 
 

;  

1 ≤ 𝑖 ≤ 𝑚 − 1 

 

where,  

𝑎𝑝,𝑞
𝑙 = [𝑎𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+2−(𝑝+𝑞+𝑙)), 

𝑎𝑖𝑗 = {
𝑝𝜇2, 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
,  

𝑏𝑝,𝑞
𝑙 = [𝑎𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+2−(𝑝+𝑞+𝑙)),  

𝑏𝑖𝑗 = {
𝑞𝜇3, 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
,  

𝑓𝑝,𝑞
𝑙 = [𝑓𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+1−(𝑝+𝑞+𝑙)),  

𝑓𝑖𝑗 = {
𝑝𝛼2, 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
,  

𝑔𝑝,𝑞
𝑙 = [𝑎𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+1−(𝑝+𝑞+𝑙)),  

𝑔𝑖𝑗 = {
𝑞𝛼3, 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
,  

𝑐𝑝,𝑞
𝑙 = [𝑎𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚−(𝑝+𝑞+𝑙)),  

𝑐𝑖𝑗 = {
𝜂1, 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
,  

𝑤𝑝,𝑞
𝑙 = [𝑎𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚−(𝑝+𝑞+𝑙)),  

𝑤𝑖𝑗 = {
𝜂2, 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
,  

𝑥𝑝,𝑞
𝑙 = [𝑥𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+1−(𝑝+𝑞+𝑙)),  

𝑥𝑖𝑗 =

{
 
 
 

 
 
 
𝜆, 𝑗 = 𝑖 + 1,1 ≤ 𝑖 ≤ 𝑚 − (𝑝 + 𝑞 + 𝑙)

𝑗𝜇1, 𝑖 = 𝑗 + 1,1 ≤ 𝑗 ≤ 𝑚 − (𝑝 + 𝑞 + 𝑙)

−[𝜆 + 𝜂1 + 𝜂2 + (𝑖 − 1)(𝜇1 + 𝛼1) + 𝑝(𝜇2 + 𝛼2)

        +𝑞(𝜇3 + 𝛼3) + 𝑙(𝛽1 + 𝛽2 + 𝛽3) + 𝑛𝛾𝑟], 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 − (𝑝 + 𝑞 + 𝑙)

−[𝜆 + (𝑚 − (𝑝 + 𝑞 + 𝑙))(𝜇1 + 𝛼1) + 𝑝(𝜇2 + 𝛼2)

        +𝑞(𝜇3 + 𝛼3) + 𝑙(𝛽1 + 𝛽2 + 𝛽3) + 𝑛𝛾�̅�], 𝑖 = 𝑗 = 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)

0, otherwise

, 

𝑒𝑝,𝑞
𝑙 = [𝑒𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+2−(𝑝+𝑞+𝑙)), 

ℎ𝑖𝑗 =

{
𝑙(𝛽1 + 𝛽2 + 𝛽3), 𝑖 = 𝑗, 1 ≤ 𝑖 ≤ 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
. 

 

y1 is a (m+1)(m+2)/2 square matrix given by: 

 

𝑦1 =

[
 
 
 
 
 
𝑦0,0
0 𝑑0,0

0

𝑦0,0
1 𝑑0,0

1

⋱ ⋱
𝑦0,0
𝑚−1 𝑑0,0

𝑚−1

𝑦0,0
𝑚 ]

 
 
 
 
 

  

 

y2 is a m(m+1)(m+2)/6 square matrix given by: 

 

𝑦2 =

[
 
 
 
𝑦1
1

𝑦2
1

⋱
𝑦𝑚
1 ]
 
 
 

,  

 

where 

𝑦𝑖
1 =

[
 
 
 
 
 
𝑦𝑖,0
0 𝑑𝑖,0

0

𝑦𝑖,0
1 𝑑𝑖,0

1

⋱ ⋱
𝑦𝑖,0
𝑚−1−𝑖 𝑑𝑖,0

𝑚−1−𝑖

𝑦𝑖,0
𝑚−𝑖

]
 
 
 
 
 

; 1 ≤ 𝑖 ≤ 𝑚. 

y3 is a m(m+1)(m+2)/6 square matrix given by: 

 

𝑦3 =

[
 
 
 
𝑦1
1

𝑦2
1

⋱
𝑦𝑚
1 ]
 
 
 

,  

 

where 

𝑦𝑗
1 =

[
 
 
 
 
 
 
𝑦0,𝑗
0 𝑑0,𝑗

0

𝑦0,𝑗
1 𝑑0,𝑗

1

⋱ ⋱

𝑦0,𝑗
𝑚−1−𝑗

𝑑0,𝑗
𝑚−1−𝑗

𝑦0,𝑗
𝑚−𝑗

]
 
 
 
 
 
 

; 1 ≤ 𝑗 ≤ 𝑚. 

 

y4 is a m(m+1)(m2+m-2)/24 square matrix given by: 

 

𝑦4 =

[
 
 
 
𝐷1

𝐷2
⋱

𝐷𝑚−1]
 
 
 

; 𝐷𝑖 =

[
 
 
 
 
𝑦1
𝑖

𝑦2
𝑖

⋱
𝑦𝑚−𝑖
𝑖 ]
 
 
 
 

,  

𝑦𝑗
𝑖 =

[
 
 
 
 
 
 
𝑦𝑖,𝑗
0 𝑑𝑖,𝑗

0

𝑦𝑖,𝑗
1 𝑑𝑖,𝑗

1

⋱ ⋱

𝑦𝑖,𝑗
𝑚−1−𝑖−𝑗

𝑑𝑖,𝑗
𝑚−1−𝑖−𝑗

𝑦𝑖,𝑗
𝑚−𝑖−𝑗

]
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for 1≤i≤m-1 and 1≤j≤m-I, where, 

𝑦𝑝,𝑞
𝑙 = [𝑦𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+1−(𝑝+𝑞+𝑙)),  

𝑦𝑖𝑗 = {
𝜆, 𝑖 = 𝑗 = 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
,  

𝑑𝑝,𝑞
𝑙 = [𝑑𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚−(𝑝+𝑞+𝑙)),  

𝑑𝑖𝑗 = {
𝑗𝛼1, 𝑖 = 𝑗 + 1,1 ≤ 𝑗 ≤ 𝑚 − (𝑝 + 𝑞 + 𝑙)

0, otherwise
. 

z1 is a (m+1)(m+2)/2 square matrix given by: 

 

𝑧1 =

[
 
 
 
 
𝑧0,0
0

𝑧0,0
1

⋱
𝑧0,0
𝑚 ]
 
 
 
 

  

 

z2 is a m(m+1)(m+2)/6 square matrix given by: 

 

𝑧2 =

[
 
 
 
𝑧1
1

𝑧2
1

⋱
𝑧𝑚
1 ]
 
 
 

,  

where 

 

𝑧𝑖
1 =

[
 
 
 
 
 
𝑧𝑖,0
0

𝑧𝑖,0
1

⋱
𝑧𝑖,0
𝑚−1−𝑖

𝑧𝑖,0
𝑚−𝑖

]
 
 
 
 
 

;  1 ≤ 𝑖 ≤ 𝑚. 

z3 is m(m+1)(m+2)/6 square matrix given by: 

 

𝑧3 =

[
 
 
 
𝑧1
1

𝑧2
1

⋱
𝑧𝑚
1 ]
 
 
 

,  

 

where 

𝑧𝑗
1 =

[
 
 
 
 
 
 
𝑧0,𝑗
0

𝑧0,𝑗
1

⋱

𝑧0,𝑗
𝑚−1−𝑗

𝑧0,𝑗
𝑚−𝑗

]
 
 
 
 
 
 

;  1 ≤ 𝑖 ≤ 𝑚. 

 

z4 is a m(m+1)(m2+m-2)/24 square matrix given by: 

 

𝑧4 =

[
 
 
 
𝐸1

𝐸2
⋱

𝐸𝑚−1]
 
 
 

; 𝐸𝑖 =

[
 
 
 
 
𝑧1
𝑖

𝑧2
𝑖

⋱
𝑧𝑚−𝑖
𝑖 ]
 
 
 
 

,  

𝑧𝑗
𝑖 =

[
 
 
 
 
 
 
𝑧𝑖,𝑗
0

𝑧𝑖,𝑗
1

⋱

𝑧𝑖,𝑗
𝑚−1−𝑖−𝑗

𝑧𝑗,𝑖
𝑚−𝑖−𝑗

]
 
 
 
 
 
 

  

 

for 1≤i≤m-1 and 1≤j≤m-I, where, 

𝑧𝑝,𝑞
𝑙 = [𝑧𝑖𝑗](𝑚+1−(𝑝+𝑞+𝑙))×(𝑚+1−(𝑝+𝑞+𝑙)),  

𝑧𝑖𝑗 = {
𝑛𝛾𝑟, 𝑗 = 𝑖 + 1,1 ≤ 𝑖 ≤ 𝑚 − (𝑝 + 𝑞 + 𝑙)
𝑛𝛾�̅�, 𝑖 = 𝑗 = 𝑚 + 1 − (𝑝 + 𝑞 + 𝑙)
0, otherwise

. 

The ergodicity of the Markov process Q is established when 

the inequality xYe<xZNe is satisfied. Here, 𝑥 =

[𝑥0,0
0,0, 𝑥0,0

1,0, … , 𝑥0,0
𝑚,0, 𝑥0,0

0,1, 𝑥0,0
1,1, … , 𝑥0,0

𝑚−1,1, 𝑥0,0
0,2, … , 𝑥0,0

0,𝑚, 𝑥1,0
0,0,

𝑥1,0
1,0, … , 𝑥1,0

𝑚−1,0, 𝑥1,0
0,1, 𝑥1,0

1,1, … , 𝑥1,0
𝑚−2,1, 𝑥1,0

0,2, … , 𝑥1,0
0,𝑚−1, 𝑥2,0

0,0, 𝑥2,0
1,0,

… , 𝑥2,0
𝑚−2,0, 𝑥2,0

0,1, … , 𝑥2,0
0,𝑚−2, 𝑥3,0

0,0, … , 𝑥𝑚,0
0,0 , 𝑥0,1

0,0, 𝑥0,1
1,0, … , 𝑥0,1

𝑚−1,0,

𝑥0,1
0,1, 𝑥0,1

1,1, … , 𝑥0,1
𝑚−2,1, 𝑥0,1

0,2, … , 𝑥0,1
0,𝑚−1, 𝑥0,2

0,0, 𝑥0,2
1,0, … , 𝑥0,2

𝑚−2,0, 𝑥0,2
0,1,

… , 𝑥0,2
0,𝑚−2, 𝑥0,3

0,0, … , 𝑥0,𝑚
0,0 , 𝑥1,1

0,0, 𝑥1,1
1,0, … , 𝑥1,1

𝑚−2,0, 𝑥1,1
0,1, 𝑥1,1

1,1, … ,

𝑥1,1
𝑚−3,1, 𝑥1,1

0,2, … , 𝑥1,1
0,𝑚−2, 𝑥1,2

0,0, 𝑥1,2
1,0, … , 𝑥1,2

𝑚−3,0, 𝑥1,2
0,1, … , 𝑥1,2

0,𝑚−3,

𝑥1,3
0,0, … , 𝑥1,𝑚−1

0,0 , 𝑥2,1
0,0, 𝑥2,1

1,0, … , 𝑥2,1
𝑚−3,0, 𝑥2,1

0,1, … , 𝑥2,1
0,𝑚−3, 𝑥2,2

0,0, … ,

𝑥2,𝑚−2
0,0 , 𝑥3,1

0,0, … , 𝑥𝑚−1,1
0,0 ] represents the steady state distribution 

of F=XN+Y+ZN, and e=[1, 1, …, 1]T is a vertical array of ones. 

Solving the equation xF=0, we obtain: 

 

𝑥𝑝,𝑞
𝑖,𝑙 =

1

𝑖!𝑝!𝑞!𝑙!(𝛽1+𝛽2+𝛽3)
(
𝜆+𝑁𝛾𝑟

𝜇1+𝛼1
)
𝑖

(
𝜂1

𝜇2+𝛼2
)
𝑝

  

× (
𝜂2

𝜇3+𝛼3
)
𝑞

[
𝛼1(𝜆+𝑁𝛾𝑟)

𝜇1+𝛼1
+

𝛼2𝜂1

𝜇2+𝛼2
+

𝛼3𝜂2

𝜇3+𝛼3
] 𝑥0,0

0,0
  

(2) 

 

where, 0≤i≤m, 0≤p≤m-i, 0≤q≤m-(i+p), 0≤l≤m-(i+p+q). 

Applying the normalization condition 𝑥𝑒 = 1, 𝑥0,0
0,0

 is 

obtained as: 

 

𝑥0,0
0,0 = {∑𝑚𝑙=0 ∑

𝑚−𝑙
𝑖=0 ∑

𝑚−𝑖
𝑝=1 ∑

𝑚−𝑖
𝑞=1

1

𝑖!𝑝!𝑞!𝑙!(𝛽1+𝛽2+𝛽3)
  

× (
𝜆+𝑁𝛾𝑟

𝜇1+𝛼1
)
𝑖

(
𝜂1

𝜇2+𝛼2
)
𝑝

(
𝜂2

𝜇3+𝛼3
)
𝑞

  

× [
𝛼1(𝜆+𝑁𝛾𝑟)

𝜇1+𝛼1
+

𝛼2𝜂1

𝜇2+𝛼2
+

𝛼3𝜂2

𝜇3+𝛼3
]}
−1

  

(3) 

 

The criteria for stability has been obtained in Neuts [26]. It 

has been established that the equilibrium probabilities exist 

only when xYe<xZNe: 

 

(𝜆 − 𝑁𝛾(�̅� −

𝑟))[∑
𝑚−(𝑝+𝑞)
𝑖=0 ∑𝑚−𝑝𝑞=0 ∑

𝑚
𝑝=0 𝑥𝑝,𝑞

𝑖,𝑚−(𝑝+𝑞+𝑖)
]  

+𝛼1∑
𝑚−(𝑝+𝑞+𝑖)
𝑙=0 ∑𝑚−(𝑝+𝑖)𝑞=0 ∑𝑚−𝑖𝑝=0 ∑

𝑚
𝑖=1 𝑖. 𝑥𝑝,𝑞

𝑖,𝑙 < 𝑁𝛾𝑟  

(4) 

 

3.2 Matrix-geometric approach 

 

The stationary probability vector Π = [Π0, Π1, Π2, … ] 
with Π𝑗 =

[𝑃0,0
0,0(𝑗), 𝑃0,0

1,0(𝑗), … , 𝑃0,0
𝑚,0(𝑗), 𝑃0,0

0,1(𝑗), 𝑃0,0
1,1(𝑗), … , 𝑃0,0

𝑚−1,1(𝑗),

𝑃0,0
0,2(𝑗), … , 𝑃0,0

0,𝑚(𝑗), 𝑃1,0
0,0(𝑗), 𝑃1,0

1,0(𝑗), … , 𝑃1,0
𝑚−1,0(𝑗), 𝑃1,0

0,1(𝑗),

𝑃1,0
1,1(𝑗), … , 𝑃1,0

𝑚−2,1(𝑗), 𝑃1,0
0,2(𝑗), … , 𝑃1,0

0,𝑚−1(𝑗), 𝑃2,0
0,0(𝑗), 𝑃2,0

1,0(𝑗),

… , 𝑃2,0
𝑚−2,0(𝑗), 𝑃2,0

0,1(𝑗), … , 𝑃2,0
0,𝑚−2(𝑗), 𝑃3,0

0,0(𝑗), … , 𝑃𝑚,0
0,0(𝑗),

𝑃0,1
0,0(𝑗), 𝑃0,1

1,0(𝑗), … , 𝑃0,1
𝑚−1,0(𝑗), 𝑃0,1

0,1(𝑗), 𝑃0,1
1,1(𝑗), … , 𝑃0,1

𝑚−2,1(𝑗),

𝑃0,1
0,2(𝑗), … , 𝑃0,1

0,𝑚−1(𝑗), 𝑃0,2
0,0(𝑗), 𝑃0,2

1,0(𝑗), … , 𝑃0,2
𝑚−2,0(𝑗), 𝑃0,2

0,1(𝑗),

… , 𝑃0,2
0,𝑚−2(𝑗), 𝑃0,3

0,0(𝑗), … , 𝑃0,𝑚
0,0(𝑗), 𝑃1,1

0,0(𝑗), 𝑃1,1
1,0(𝑗), … ,

𝑃1,1
𝑚−2,0(𝑗), 𝑃1,1

0,1(𝑗), 𝑃1,1
1,1(𝑗), … , 𝑃1,1

𝑚−3,1(𝑗), 𝑃1,1
0,2(𝑗), … ,

𝑃1,1
0,𝑚−2(𝑗), 𝑃1,2

0,0(𝑗), 𝑃1,2
1,0(𝑗), … , 𝑃1,2

𝑚−3,0(𝑗), 𝑃1,2
0,1(𝑗), … , 𝑃1,2

0,𝑚−3(𝑗),

𝑃1,3
0,0(𝑗), … , 𝑃1,𝑚−1

0,0 (𝑗), 𝑃2,1
0,0(𝑗), 𝑃2,1

1,0(𝑗), … , 𝑃2,1
𝑚−3,0(𝑗), 𝑃2,1

0,1(𝑗), … ,

𝑃2,1
0,𝑚−3(𝑗), 𝑃2,2

0,0(𝑗), … , 𝑃2,𝑚−2
0,0 (𝑗), 𝑃3,1

0,0(𝑗), … , 𝑃𝑚−1,1
0,0 (𝑗)].  

The array of equilibrium probabilities is obtained with the 

help of MGM: 

 

Π𝑛 = Π𝑁𝑅
𝑛−𝑁 , 𝑛 ≥ 𝑁 (5) 

 

where, R, the rate matrix, is the minimal nonnegative solution 

to Y+RXN+R2ZN=0. An approximation of R can be obtained in 

light of the sequence {Rn} as given below: 
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R0=0 and 𝑅𝑛+1 = −𝑌𝑋𝑁
−1 − 𝑅𝑛

2𝑍𝑁𝑋𝑁
−1 for 𝑛 ≥ 0 

 

{Rn} follows a monotonic pattern, allowing the evaluation 

of R using iterative substitution, represented as 𝑅 = lim
𝑛→∞

𝑅𝑛. 

This approach aligns with techniques described in Neuts [26] 

and Latouche and Ramaswami [27]. 

 

3.3 Stationary distribution 

 

Π𝑄 = 0 results in the following: 

 

Π0𝑋0 + Π1𝑍1 = 0 (6) 

 

Π𝑗−1𝑌 + Π𝑗𝑋𝑗 + Π𝑗+1𝑍𝑗+1 = 0, 1 ≤ 𝑗 ≤ 𝑁 − 1 (7) 

 

Π𝑁−1𝑌 + Π𝑁𝑋𝑁 + Π𝑁+1𝑍𝑁 = 0 (8) 

 

Π𝑁𝑅
𝑗−1−𝑁𝑌 + Π𝑁𝑅

𝑗−𝑁𝑋𝑁 + Π𝑁𝑅
𝑗−𝑁+1𝑍𝑁 = 0 

for j≥N+1 
(9) 

 
∑∞𝑗=0 Π𝑗𝑒 = 1  (10) 

 

By conducting algebraic operations on Eqs. (6) through (10), 

we derive the subsequent recursive equations: 

 

Π0 = Π1𝑍1(−𝑋0)
−1 = Π1𝜒1 (11) 

 

Π𝑗−1 = Π𝑗𝑍𝑗[−(𝜒𝑗−1𝑌 + 𝑋𝑗−1)]
−1
= Π𝑗𝜒𝑗 , 

 2 ≤ 𝑗 ≤ 𝑁 
(12) 

 

Π𝑁(𝜒𝑁𝑌 + 𝑋𝑁 + 𝑅𝑍𝑁) = 0 (13) 

 

where, 𝜒1 = 𝑍1(−𝑋0)
−1  and 𝜒𝑗 = 𝑍𝑗[−(𝜒𝑗−1𝑌 +

𝑋𝑗−1)]
−1
, 2≤j≤N. 

The vector Π𝑁 is determined by the help of above equations. 

The normalization condition leads to: 

 

∑∞𝑗=0 Π𝑗𝑒 = Π𝑁[∑
𝑁
𝑗=1 ∏

𝑗
𝑖=𝑁 𝜒𝑖 + (𝐼 − 𝑅)

−1]𝑒 = 1  (14) 

 

Upon solving Eqs. (13) and (14) through Cramer’s rule, we 

acquire Π𝑁. Additionally, the probabilities of preceding states 

[Π0, Π1, … , Π𝑁−1]  are derived from Eqs. (11) and (12). 

Furthermore, the probabilities of subsequent states [Π𝑁+1 , 

Π𝑁+2, Π𝑁+3, … ]  can be determined with the help of the 

formula Π𝑛 = Π𝑁𝑅
𝑛−𝑁 , 𝑛 ≥ 𝑁 + 1. 

 

 

4. PERFORMANCE METRICS 

 

To assess the efficiency of the conceptual model, it is 

essential to compute the performance metrics such as the 

anticipated count of the servers being in different states and 

the average count of orbital customers, based on steady state 

probability distribution. 

Expected number of idle servers: 

 

𝐸[𝐼] = ∑∞𝑗=0 Π𝑗𝑈1  

= ∑𝑁−1𝑗=0 Π𝑗𝑈1 + Π𝑁𝑈1 + Π𝑁+1𝑈1 + Π𝑁+2𝑈1 +⋯      

= Π𝑁[∑
𝑁
𝑗=1 𝜒𝑗 + (𝐼 − 𝑅)

−1]𝑈1  

(15) 

 

where,  

𝑈1 =

[
 
 
 
 
𝑢𝑚, 𝑢𝑚−1, … , 𝑢1, 𝑢𝑜⏟            

#=𝑚+1

,

𝑢𝑚−1, 𝑢𝑚−2, … , 𝑢1, 𝑢𝑜⏟              
#=𝑚

,

… , 𝑢1, 𝑢𝑜⏟  
#=2

, 𝑢0
]
 
 
 
 
𝑇

, 

with 𝑢𝑖 = [𝑖, 𝑖 − 1, . . . ,1,0⏟        
#=𝑖+1

, 𝑖 − 1, 𝑖 − 2, . . . ,1,0⏟            
#=𝑖

, . . . , 1,0⏟
#=2

, 0]. 

 

Expected number of busy incoming servers: 

 

𝐸[𝐵𝐼] = ∑∞𝑗=0 Π𝑗𝑈2  

= ∑𝑁−1𝑗=0 Π𝑗𝑈2 + Π𝑁𝑈2 + Π𝑁+1𝑈2 + Π𝑁+2𝑈2 +⋯  

= Π𝑁[∑
𝑁
𝑗=1 𝜒𝑗 + (𝐼 − 𝑅)

−1]𝑈2  

(16) 

 

where,  

𝑈2 =

[
 
 
 
 
𝑢𝑚, 𝑢𝑚−1, … , 𝑢1, 𝑢𝑜⏟            

#=𝑚+1

,

𝑢𝑚−1, 𝑢𝑚−2, … , 𝑢1, 𝑢𝑜⏟              
#=𝑚

,

. . . , 𝑢1, 𝑢𝑜⏟  
#=2

, 𝑢0
]
 
 
 
 
𝑇

, 

with  𝑢𝑖 = [0,1, . . . , 𝑖⏟    
#=𝑖+1

, 0,1, . . . , 𝑖 − 1⏟        
#=𝑖

, . . . , 0,1⏟
#=2

, 0]. 

 

Expected number of busy outgoing type-1 servers: 

 

𝐸[𝐵𝑂1] = ∑
∞
𝑗=0 Π𝑗𝑈3  

= ∑𝑁−1𝑗=0 Π𝑗𝑈3 + Π𝑁𝑈3 + Π𝑁+1𝑈3 + Π𝑁+2𝑈3 +⋯  

= Π𝑁[∑
𝑁
𝑗=1 𝜒𝑗 + (𝐼 − 𝑅)

−1]𝑈3  

(17) 

 

where, 

𝑢3 = [𝑢1, 𝑢2, 𝑢3, 𝑢4]
𝑇; 

𝑢1 = [ 0,0, . . . ,0⏟    

#=
(𝑚+1)(𝑚+2)

2

], 

𝑢2 = [𝑢1
1, 𝑢2

1, … , 𝑢𝑚
1 ]; 

𝑢𝑖
1 = [ 𝑖, 𝑖, . . . , 𝑖⏟    

#=
(𝑚−𝑖+1)(𝑚−𝑖+2)

2

], 

𝑢3 = [ 0,0, . . . ,0⏟    

#=
𝑚(𝑚+1)(𝑚+2)

6

], 

𝑢4 = [𝑢1
1, 𝑢2

1, … , 𝑢𝑚−1
1 ]; 

𝑢𝑖
1 = [ 𝑖, 𝑖, . . . , 𝑖⏟    

#=
(𝑚−𝑖)(𝑚−𝑖+1)(𝑚−𝑖+2)

6

]. 

 

Expected number of busy outgoing type-2 servers: 

 

𝐸[𝐵𝑂2] = ∑
∞
𝑗=0 Π𝑗𝑈4  

= ∑𝑁−1𝑗=0 Π𝑗𝑈4 + Π𝑁𝑈4 + Π𝑁+1𝑈4 + Π𝑁+2𝑈4 +⋯  

= Π𝑁[∑
𝑁
𝑗=1 𝜒𝑗 + (𝐼 − 𝑅)

−1]𝑈4  

(18) 

 

where, 
𝑢4 = [𝑢1, 𝑢2, 𝑢3, 𝑢4]

𝑇 , 

𝑢1 = [ 0,0, … ,0⏟    

#
(𝑚+1)(𝑚+2)

2

], 
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𝑢2 = [ 0,0, . . . ,0⏟    

#
𝑚(𝑚+1)(𝑚+2)

6

], 

𝑢3 = [𝑢1
1, 𝑢2

1, … , 𝑢𝑚
1 ]; 

𝑢𝑖
1 = [ 𝑖, 𝑖, . . . , 𝑖⏟    

#
(𝑚+1−𝑖)(𝑚+2−𝑖)

2

], 

𝑢4 = [𝑢1
1, 𝑢2

1, … , 𝑢𝑚−1
1 , 𝑢1

2, 𝑢2
2, … , 𝑢𝑚−2

2 , … , 𝑢1
𝑚−1]; 

𝑢𝑖
𝑗
= [ 𝑖, 𝑖, . . . , 𝑖⏟    

#
(𝑚+1−𝑖−𝑗)(𝑚+2−𝑖−𝑗)

2

]. 

 

Expected number of breakdown servers: 

 

𝐸[𝐵𝐷] = ∑∞𝑗=0 Π𝑗𝑈5  

= ∑𝑁−1𝑗=0 Π𝑗𝑈5 + Π𝑁𝑈5 + Π𝑁+1𝑈5 + Π𝑁+2𝑈5 +⋯  

= Π𝑁[∑
𝑁
𝑗=1 𝜒𝑗 + (𝐼 − 𝑅)

−1]𝑈5  

(19) 

 

where, 

𝑢5 = [𝑢1, 𝑢2, . . . , 𝑢𝑚+1]
𝑇, 

𝑢𝑖 = [

0,0, … ,0⏟    
#=𝑚+2−𝑖

, 1,1, … ,1⏟    
#=𝑚+1−𝑖

, … ,𝑚 + 1 − 𝑖⏟      
#1

,

0,0, . . . ,0⏟    
#=𝑚+1−𝑖

, 1,1, . . . ,1⏟    
#=𝑚−𝑖

, . . . , 𝑚 − 𝑖⏟  
#1

, . . .0
]. 

 

Expected number of customers in the orbit: 

 

𝐸[𝑜𝑟𝑏𝑖𝑡] = ∑∞𝑗=1 𝑗. Π𝑗𝑒  

= ∑𝑁−1𝑗=1 𝑗. Π𝑗𝑒 + 𝑁Π𝑁𝑒 + (𝑁 + 1)Π𝑁+1𝑒 + ⋯  

= Π𝑁[∑
𝑁
𝑗=2 (𝑗 − 1)𝜒𝑗 +𝑁(𝐼 − 𝑅)

−1 + 𝑅(𝐼 −

𝑅)−2]𝑒  

(20) 

 

 

5. NUMERICAL ANALYSIS 

 

The system under consideration is a fiber optic customer 

care center where customer calls arrive at a rate of λ. Upon 

arrival, they are immediately served by m agents with service 

rate μ1. If all agents are busy, the customers are placed in a 

buffer, where they can retry for service at rate γ. The customers 

in the buffer can either continue to wait for service or abandon 

the system with probability r and 1-r respectively. 

The agents (free from incoming calls) are also responsible 

for making outgoing calls or emails after idle times at rate η1 

and η2, respectively. The outgoing service durations via calls 

and emails are exponentially distributed with rates μ2 and μ3 

respectively. The service outlets may face technical 

interruptions while providing service to incoming calls, 

outgoing calls, and outgoing emails at rates α1, α2 and α3 

respectively. The system immediately initiates a repair process 

with rates β1, β2 and β3 for incoming calls, outgoing calls, and 

outgoing emails, respectively. 

Numerical analysis is used to validate the impact of system 

parameters on efficiency metrics. The effects of parameter 

variations on metrics like anticipated count of idle servers E[I], 

servers busy with incoming calls E[BI], servers busy with 

outgoing calls E[BO1], servers busy with outgoing emails 

E[BO2], breakdown servers E[BD], and anticipated count of 

orbital customers E[Orbit] are analyzed. The choice of the 

parameters is subject to the satisfaction of the stability 

condition. The following results are obtained using MATLAB. 

 
 

Figure 2. λ for various in m vs. E(Orbit) 

 

 
 

Figure 3. λ vs. Performance Measures 

 

Case 1: For the following choices of parameters μ1=7, μ2=4, 

μ3=5, γ=5, r=0.7, η1=6, η2=7, α1=0.25, α2=0.1, α3=0.05, β1=3, 

β2=2, β3=1 and N=30, the outcomes resulting from variations 

in λ and m are portrayed in Figure 2. An escalation of the 

arrival rate of customer calls results in a proportional hike in 

the anticipated counts of orbital calls at the fiber optic 

customer care center. The Figure 3 demonstrates that a fixed 

value of m=5 results in a rise in the anticipated count of agents 

handling incoming calls and those vulnerable to breakdown, 

while the expected number of idle agents, agents handling 

outgoing calls and agents handling outgoing emails decreases 

with the rise in the arrival rate of customer calls. 

 

 
 

Figure 4. μ1 for various in m vs. E(Orbit) 
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Figure 5. μ1 vs. Performance Measures 

 

 
 

Figure 6. μ2 for various in m vs. E(Orbit) 

 

Case 2: For λ=15, μ2=4, μ3=5, γ=5, r=0.7, η1=6, η2=7, 

α1=0.25, α2=0.1, α3=0.05, β1=3, β2=2, β3=1 and N=30, Figure 

4 illustrates the outcomes resulting from variations in μ1 and 

m. Increasing the incoming call service rate μ1 results in a 

considerable decline in the anticipated count of orbital calls, 

regardless of the chosen value of m. Figure 5 shows that with 

a fixed value of m=5, a hike in μ1 results in a decline in the 

anticipated count of agents handling incoming calls and those 

susceptible to breakdown, while the expected number of idle 

agents, agents handling outgoing calls, and agents handling 

outgoing emails increases. 

 

 
 

Figure 7. μ2 vs. Performance Measures 

Case 3: By choosing λ=15, μ1=7, μ3=5, γ=5, r=0.7, η1=6, 

η2=7, α1=0.25, α2=0.1, α3=0.05, β1=3, β2=2, β3=1 and N=30, 

the effects of changing μ2 and 𝑚 on system performance were 

investigated in Figure 6. Irrespective of the chosen value of m, 

increasing outgoing call service rate μ2 resulted in a reduction 

of the anticipated count of fiber optic customer care orbital 

calls. Moreover, the increase in μ2 with a fixed m=5 led to a 

decline in the anticipated count of agents handling outgoing 

calls and those susceptible to breakdown, but a hike in the 

anticipated count of idle agents, agents handling incoming 

calls, and agents handling outgoing emails, is depicted in 

Figure 7. 

 

 
 

Figure 8. μ3 for various in m vs. E(Orbit) 

 

Case 4: The study was conducted on a system with λ=15, 

μ1=7, μ2=4, γ=5, r=0.7, η1=6, η2=7, α1=0.25, α2=0.1, α3=0.05, 

β1=3, β2=2, β3=1 and N=30. The impact of varying μ3 and m 

on system performance was investigated and presented in 

Figure 8. The results revealed that increasing outgoing email 

service rate μ3 led to a reduction in the anticipated count of 

fiber optic customer care calls waiting in the buffer, 

irrespective of the chosen value of 𝑚. Additionally, with a 

fixed m=5, a hike in μ3 resulted in a decline in the anticipated 

count of agents handling outgoing emails and those 

susceptible to breakdown, while increasing the expected 

number of idle agents, agents handling incoming calls, and 

agents handling outgoing calls, as illustrated in Figure 9. 

 

 
 

Figure 9. μ3 vs. Performance Measures 
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Figure 10. γ for various in m vs. E(Orbit) 

 

 
 

Figure 11. γ vs. Performance Measures 

 

Case 5: Taking λ=15, μ1=7, μ2=4, μ3=5, r=0.7, η1=6, η2=7, 

α1=0.25, α2=0.1, α3=0.05, β1=3, β2=2, β3=1 and N=30. The 

results, presented in Figure 10, showed that increasing retrial 

incoming rate γ led to a decrease in the anticipated count of 

fiber optic customer care calls waiting in the buffer, regardless 

of the chosen 𝑚. Furthermore, when m=5, an increase in γ 

caused a reduction in the expected number of agents handling 

incoming calls and those at risk of breakdown, while 

increasing the expected number of idle agents, agents handling 

outgoing calls, and agents handling outgoing emails, as 

illustrated in Figure 11. 

 

 
 

Figure 12. η1 for various in m vs. E(Orbit) 

Case 6: The system performance was evaluated for λ=15, 

μ1=7, μ2=4, μ3=5, γ=5, r=0.7, η2=7, α1=0.25, α2=0.1, α3=0.05, 

β1=3, β2=2, β3=1 and N=30, and the outcomes are portrayed in 

Figure 12. It was noticed that increasing agents idle time 

before making outgoing calls rate η1 led to an increase in the 

anticipated count of fiber optic customer care calls waiting in 

the buffer, regardless of the chosen m. Moreover, when m=5, 

an increase in 𝜂1 caused a reduction in the expected number of 

idle agents, agents busy handling incoming calls and agents 

handling outgoing emails, while increasing the expected 

number of agents handling outgoing calls and breakdown, as 

depicted in Figure 13. 

 

 
 

Figure 13. η1 vs. Performance Measures 

 

 
 

Figure 14. η2 for various in m vs. E(Orbit) 

 

 

Case 7: For the given set of parameters, λ=15, μ1=7, μ2=4, 

μ3=5, γ=5, r=0.7, η1=6, α1=0.25, α2=0.1, α3=0.05, β1=3, β2=2, 

β3=1 and N=30, Figure 14 depicts the impact of varying agents 

idle time before sending outgoing emails rate η2 and 𝑚 on the 

anticipated count of fiber optic customer care calls waiting in 

the buffer. It was observed that increasing η2 yields a 

corresponding rise in the anticipated count of calls waiting in 

the buffer, regardless of the chosen value of 𝑚. Furthermore, 

when m=5, an increase in η2 results in a reduction of the 

anticipated count of idle agents, agents occupied with 

incoming and outgoing calls, and agents susceptible to 

breakdown, while the expected number of agents handling 

outgoing emails increases, as presented in Figure 15. 
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Figure 15. η2 vs. Performance Measures 

 

Case 8: The given parameters are λ=15, μ1=7, μ2=4, μ3=5, 

γ=5, r=0.7, η1=6, η2=7, α2=0.1, α3=0.05, β1=3, β2=2, β3=1 and 

N=30. Figure 16 shows the impact of varying rates of 

breakdown during incoming calls α1 and m on the anticipated 

count of fiber optic customer care orbital calls. The results 

indicate that increasing α1 results in a corresponding rise in the 

anticipated count of orbital calls, irrespective of the value of 

m. Moreover, when m=5, an increase in α1 causes a decline in 

the anticipated count of idle agents, agents handling incoming 

calls, outgoing calls and outgoing emails, while the expected 

number of agents susceptible to breakdown increases, as 

illustrated in Figure 17. 

 

 
 

Figure 16. α1 for various in m vs. E(Orbit) 

 

 
 

Figure 17. α1 vs. Performance Measures 

 
 

Figure 18. α2 for various in m vs. E(Orbit) 

 

Case 9: Taking λ=15, μ1=7, μ2=4, μ3=5, γ=5, r=0.7, η1=6, 

η2=7, α1=0.25, α3=0.05, β1=3, β2=2, β3=1 and N=30. Figure 18 

shows the impact of varying rates of breakdown during 

outgoing calls α2 and m on the anticipated count of fiber optic 

customer care orbital calls. The results indicate that increasing 

α2 results in a decline in the anticipated count of orbital calls, 

irrespective of the value of m. Moreover, when m=5, a rise in 

α2 yields in a hike in the anticipated count of idle agents, agents 

handling incoming calls, outgoing emails, and those 

susceptible to breakdown, while the expected number of 

agents handling outgoing calls decreases, as presented in 

Figure 19. 

 

 
 

Figure 19. α2 vs. Performance Measures 

 

 
 

Figure 20. α3 for various in m vs. E(Orbit) 
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Figure 21. α3 vs. Performance Measures 

 

Case 10: For the given parameters λ=15, μ1=7, μ2=4, μ3=5, 

γ=5, r=0.7, η1=6, η2=7, α1=0.25, α2=0.1, β1=3, β2=2, β3=1 and 

N=30, Figure 20 depicts the effect of varying rates of 

breakdown during outgoing emails α3 and 𝑚  on the 

anticipated count of fiber optic customer care calls waiting in 

the buffer. It was observed that increasing α3 led to a decline 

in the anticipated count of orbital calls, regardless of the 

chosen value of 𝑚. Furthermore, when m=5, a rise in α3 yields 

in a hike in the anticipated count of idle agents, agents 

handling incoming and outgoing calls, and agents susceptible 

to breakdown, while the expected number of agents handling 

outgoing emails decreases, as presented in Figure 21. 

 

 
 

Figure 22. β1 for various in m vs. E(Orbit) 

 

Case 11: For the given values of the parameters λ=15, μ1=7, 

μ2=4, μ3=5, γ=5, r=0.7, η1=6, η2=7, α1=0.25, α2=0.1, α3=0.05, 

β2=2, β3=1 and N=30, Figure 22 illustrates the effect of varying 

rates of repair during incoming calls β1 and 𝑚  on the 

anticipated count of fiber optic customer care calls waiting in 

the buffer. It was observed that increasing β1 resulted in a 

corresponding decline in the anticipated count of orbital calls, 

regardless of the chosen value of m. Moreover, when m=5, an 

increase in β1 led to a hike in the anticipated count of idle 

agents, agents occupied with incoming and outgoing calls and 

outgoing emails, while the expected number of agents 

susceptible to breakdown decreased, as shown in Figure 23. 

 

 
 

Figure 23. β1 vs. Performance Measures 

 

Table 1 shows that as 𝜆 increases, E[BI] and E[BD] increase 

while E[I], E[BO1] and E[BO2] decrease. Additionally, for 

varying values of 𝑚 , an escalation in λ leads to a hike in 

E[Orbit]. The outcomes in Table 2 imply that increasing the 

value of μ1 leads to a decline in E[BI] and 𝐸[𝐵𝐷], while E[I], 

E[BO1] and E[BO2] increase. Moreover, for varying values of 

m, a hike in μ1 corresponds to a decline in E[Orbit]. Table 3 

demonstrates that an increase in μ2 results in a negative 

correlation with E[BO1] and E[BD], but a positive correlation 

with E[I], E[BI] and E[BO2]. Additionally, there is an inverse 

relationship between an increase in μ2 and E[Orbit] for varying 

values of m. Table 4 shows that increasing 𝜇3  is associated 

with a decrease in E[BO2] but an increase in E[I], E[BI], 

E[BO1] and E[BO2]. Furthermore, E[Orbit] declines with a 

hike in μ3 for different choices of m. 

Table 5 presents that an increase in γ is inversely associated 

with E[BI] and E[BD] but positively associated with E[I], 

E[BO1] and E[BO2]. Furthermore, a hike in γ leads to a decline 

in the anticipated count E[Orbit] for varying values of m. 

Table 6 demonstrates that increasing η1 results in a decline in 

the expected values of E[I], E[BI] and E[BO2], while leading 

to an increase in E[BO1] and E[BD]. Moreover, an increase in 

η1 corresponds to an increase in the expected value of E[Orbit] 

for diverse values of m. Table 7 displays that an increase in η2 

is inversely associated with the expected values of E[I], E[BI], 

E[BO1] and E[BD], but positively correlated with the expected 

value of E[BO2]. Additionally, a hike in η2 leads to an 

escalation in the anticipated value of E[Orbit] for varying 

values of 𝑚 . Table 8 shows that increasing α1 results in a 

decrease in the expected values of E[I], E[BI], E[BO1] and 

E[BO2], while increasing the expected value of E[BD]. 

Moreover, an increase in α1 corresponds to an increase in the 

expected value of E[Orbit] for different values of m. 

 

Table 1. Impact of λ on efficiency metrics for varying server count m 

 

λ 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

15 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

16 2.5841 1.7089 1.0903 1.1090 2.0298 0.9010 0.8535 0.1067 

17 2.8959 1.9377 1.2487 1.0543 2.1331 0.8742 0.8281 0.1103 

18 3.2261 2.1838 1.4216 1.0026 2.2326 0.8479 0.8031 0.1139 

19 3.5743 2.4473 1.6095 0.9536 2.3285 0.8220 0.7786 0.1172 

20 3.9399 2.7284 1.8130 0.9074 2.4206 0.7968 0.7547 0.1204 
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Table 2. Impact of μ1 on efficiency metrics for varying server count m 
 

μ1 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

7 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

8 2.0241 1.2862 0.7912 1.2813 1.7163 0.9793 0.9276 0.0956 

9 1.8215 1.1309 0.6802 1.3786 1.5468 1.0195 0.9657 0.0895 

10 1.6638 1.0127 0.5975 1.4615 1.4061 1.0518 0.9962 0.0844 

11 1.5380 0.9203 0.5339 1.5328 1.2879 1.0781 1.0212 0.0801 

12 1.4358 0.8463 0.4836 1.5945 1.1874 1.0999 1.0418 0.0765 
 

Table 3. Impact of μ2 on efficiency metrics for varying server count m 
 

μ2 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

2 3.1131 2.2727 1.6084 0.8695 1.7799 1.5117 0.7334 0.1055 

2.5 2.8079 1.9749 1.3423 0.9672 1.8360 1.3069 0.7850 0.1048 

3 2.5871 1.7663 1.1641 1.0464 1.8745 1.1508 0.8241 0.1042 

3.5 2.4205 1.6134 1.0384 1.1118 1.9022 1.0277 0.8547 0.1035 

4 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 
 

Table 4. Impact of μ3 on efficiency metrics for varying server count m 
 

μ3 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

3 2.8370 2.0026 1.3666 0.9548 1.8318 0.8226 1.2901 0.1008 

3.5 2.6502 1.8250 1.2136 1.0211 1.8644 0.8575 1.1554 0.1016 

4 2.5040 1.6894 1.1004 1.0771 1.8889 0.8857 1.0461 0.1022 

4.5 2.3868 1.5828 1.0139 1.1251 1.9079 0.9089 0.9555 0.1026 

5 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 
 

Table 5. Impact of γ on efficiency metrics for varying server count m 
 

γ 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

5 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

5.5 2.0901 1.3679 0.8651 1.1694 1.9192 0.9289 0.8798 0.1028 

6 1.9226 1.2598 0.7974 1.1722 1.9154 0.9294 0.8804 0.1026 

6.5 1.7807 1.1682 0.7401 1.1748 1.9118 0.9300 0.8809 0.1025 

7 1.6589 1.0896 0.6908 1.1774 1.9082 0.9306 0.8814 0.1024 

7.5 1.5533 1.0212 0.6479 1.1799 1.9047 0.9311 0.8820 0.1022 

8 1.4606 0.9613 0.6103 1.1824 1.9014 0.9317 0.8825 0.1021 
 

Table 6. Impact of η1 on efficiency metrics for varying server count m 
 

η1 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

5 2.1356 1.3623 0.8422 1.2409 1.9458 0.8009 0.9104 0.1020 

5.5 2.2138 1.4298 0.8936 1.2028 1.9344 0.8658 0.8946 0.1025 

6 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

6.5 2.3667 1.5647 0.9994 1.1322 1.9116 0.9885 0.8643 0.1033 

7 2.4413 1.6319 1.0534 1.0997 1.9001 1.0467 0.8498 0.1037 
 

Table 7. Impact of η2 on efficiency metrics for varying server count m 
 

η2 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

6 2.1670 1.3893 0.8626 1.2261 1.9410 0.9546 0.7750 0.1032 

6.5 2.2293 1.4433 0.9040 1.1957 1.9320 0.9413 0.8279 0.1031 

7 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

7.5 2.3517 1.5512 0.9886 1.1387 1.9140 0.9155 0.9291 0.1027 

8 2.4117 1.6050 1.0317 1.1119 1.9049 0.9031 0.9776 0.1026 
 

Table 8. Impact of α1 on efficiency metrics for varying server count m 
 

α1 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

0.25 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

0.5 2.5294 1.7238 1.1550 1.1392 1.8980 0.9153 0.8669 0.1806 

0.75 2.7635 1.9486 1.3639 1.1132 1.8728 0.9027 0.8551 0.2563 

1 2.9930 2.1713 1.5726 1.0885 1.8474 0.8907 0.8436 0.3298 
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Table 9. Impact of α2 on efficiency metrics for varying server count m 

 

α2 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

0.1 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

0.2 2.2834 1.4906 0.9409 1.1698 1.9242 0.9076 0.8807 0.1178 

0.3 2.2762 1.4843 0.9359 1.1728 1.9254 0.8879 0.8820 0.1320 

0.4 2.2694 1.4783 0.9312 1.1757 1.9265 0.8690 0.8833 0.1456 

 

Table 10. Impact of α3 on efficiency metrics for varying server count m 

 

α3 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

0.05 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

0.15 2.2880 1.4947 0.9441 1.1678 1.9235 0.9288 0.8627 0.1172 

0.25 2.2852 1.4923 0.9421 1.1690 1.9239 0.9294 0.8468 0.1309 

0.35 2.2826 1.4899 0.9403 1.1701 1.9243 0.9299 0.8314 0.1442 

 

Table 11. Impact of β1 efficiency metrics for varying server count m 

 

β1 
E[Orbit] 

E[I] E[BI] E[BO1] E[BO2] E[BD] 
m=5 m=6 m=7 

3 2.2909 1.4973 0.9461 1.1666 1.9230 0.9283 0.8792 0.1029 

4 2.2753 1.4845 0.9366 1.1727 1.9257 0.9312 0.8820 0.0884 

5 2.2637 1.4750 0.9295 1.1773 1.9276 0.9334 0.8842 0.0774 

6 2.2546 1.4676 0.9240 1.1810 1.9292 0.9352 0.8858 0.0689 

 

Table 9 demonstrates that an increase in α2 is associated 

with a decrease in the expected value of E[Orbit] for varying 

values of m. This increase in α2 also results in an escalation in 

the anticipated values of E[I], E[BI], E[BO2] and E[BD], while 

causing a decrease in the expected value of E[BO1]. Table 10 

shows that increasing α3 results in higher expected values of 

E[I], E[BI], E[BO1] and E[BD], but lower expected value of 

E[BO2]. In addition, a hike in α3 causes a decline in E[Orbit] 

for various 𝑚 values. The results in Table 11 demonstrate that 

increasing the values of β1 results in a hike in the anticipated 

values of E[I], E[BI], E[BO1] and E[BO2], while decreasing the 

expected value of E[BD]. Additionally, for varying values of 

m, a hike in β1 corresponds to a decline in the expected value 

of E[Orbit]. 

 

 
 

Figure 24. λ vs. μ1 vs. E(Orbit) 

 

Three-dimensional graphical representations are utilized to 

explore how alterations in system parameters influence overall 

system performance. The anticipated count of orbital calls at 

the fiber optic customer care centre E[Orbit] rises with a hike 

in the rate of arrival λ and decline with an escalation in the 

incoming call μ1 as portrayed in Figure 24. Figure 25 conveys 

that an escalation in the arrival rate λ causes a rise in the 

anticipated count of incoming orbital calls E[Orbit], whereas 

a hike in outgoing call μ2 brings about a decrease in E[Orbit].  

 

 
 

Figure 25. λ vs. μ2 vs. E(Orbit) 

 

 
 

Figure 26. γ vs. λ vs. E(Orbit) 
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Figure 26 interprets that an escalation in the arrival rate λ 

causes a hike in the anticipated count of orbital calls E[Orbit], 

whereas a hike in retrial rate γ brings about a decrease in 

E[Orbit]. 

 

 
 

Figure 27. η1 vs. λ vs. E(Orbit) 

 

 
 

Figure 28. α1 vs. λ vs. E(Orbit) 

 

 
 

Figure 29. λ vs. β1 vs. E(Orbit) 

 

Rise in E(Orbit) is noted with a hike in the making outgoing 

call rate η1 and a rise in the same is witnessed with a hike in 

the λ of orbital customers is clear from Figure 27. The 

anticipated count of orbital calls at the fiber optic care E(Orbit) 

rises with a hike in λ and escalates with a rise in the α1 as 

shown in Figure 28. The anticipated count of orbital calls at 

the fiber optic customer care centre E(Orbit) rises with a hike 

in λ and decreases with a hike in the β1 as portrayed in Figure 

29. The anticipated count of incoming orbital calls at fiber 

optic customer care centre E(Orbit) reduces with a rise in 

incoming call service rate μ1 and reduces with a rise in the 

outgoing call service rate μ2 as shown in Figure 30. 

 

 
 

Figure 30. μ1 vs. μ2 vs. E(Orbit) 

 

 
 

Figure 31. γ vs. μ1 vs. E(Orbit) 

 

 
 

Figure 32. γ vs. μ2 vs. E(Orbit) 

 

The anticipated count of orbital calls at the fiber optic 

customer care centre E(Orbit) reduces with a rise in retrial rate 
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γ and reduces with a rise in incoming call service rate μ1 as 

portrayed in Figure 31. It is evident from Figure 32 that a hike 

in the retrial rate γ brings about a decrease in the anticipated 

count of orbital calls E(Orbit), whereas a hike in outgoing call 

service rate μ1 brings about a decrease in E(Orbit). The plot in 

Figure 33 portrays an increase in the anticipated count of 

orbital calls at the fiber optic customer care centre E(Orbit) for 

a hike in breakdown rate α1 during incoming calls and 

decreasing trend for a hike in the incoming call service rate μ1. 

 

 
 

Figure 33. α1 vs. μ1 vs. E(Orbit) 

 

From the numerical investigation, we infer that for 

enhancing the efficiency of the proposed model, an increase in 

the service provision rates of incoming calls, outgoing calls 

and emails, retrial call rates and repair rates is beneficial. In 

addition, minimising the duration of idle times before making 

outgoing services serves effective in the improvement of the 

system efficiency. At the same time controlling the breakdown 

rates has a good impact on reducing the likely chances of 

potential reneging of customers. Moreover, higher arrival rates 

call for an increase in the number of agents. 

 

 

6. CONCLUSIONS 

 

The current study examines a multiple server retrial queue 

with unreliable servers, reneging and two types of outgoing 

services. Using QBD process, we have derived the stability 

condition essential for the existence of steady state 

probabilities. The equilibrium probabilities of the system size 

distribution are calculated using the MGM and several 

efficiency metrics are evaluated to assess the performance of 

the proposed model. The model is illustrated with a brief 

example of a fiber optic customer care center. This work 

investigates the influence of varying system based parameters 

on the efficiency measures, which are visually presented 

through numerical and graphical illustrations. Moreover, the 

inference drawn from numerical investigation is also 

interpreted in context of the practical implementation of 

variations in system parameters, associated with fibre optic 

customer care center. This work can be further explored on 

retrial queues with working breakdown and working vacation.  
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