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The accurate assessment of concrete quality and structural integrity is of paramount 

importance in the field of civil engineering. Non-destructive measurement is the best 

option for assessment because it will be efficient and does not require damaging existing 

structures. One non-destructive technique that has gained significant attention is using 

Ultrasonic Pulse Velocity (UPV) measurements in conjunction with machine learning 

algorithms to classify core concrete. This study aims to predict the classification of 

specified compressive strength core concrete using UPV in tandem with machine 

learning affected by data division. The investigation explores how different data 

partitioning techniques, such as random splitting sampling (90/10, 80/20, 70/30, 60/40, 

50/50), influence the accuracy capability of the classification models. Random splitting 

sampling technique data was chosen because this method is the most common and 

frequently reported in previous research. This study uses machine learning algorithms, 

including Linear Discriminant Analysis (LDA), K-Nearest Neighbor (kNN), Decision 

Tree (DT), and Random Forest (RF). By systematically evaluating the effect of data 

division on model performance, this research contributes to refining concrete quality 

assessment methodologies. It advances the understanding of the synergy between non-

destructive testing and machine learning. The results of this study indicate that the 

model developed by the kNN algorithm is the best and most robust against data division 

in classifying compressive strength core concrete using Ultrasonic Pulse Velocity. The 

performance of this machine learning algorithm model through accuracy in calibration 

and validation in all data splitting is between 0.98 and 1.00. 
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1. INTRODUCTION

The evaluation of concrete quality and structural integrity 

stands as a cornerstone in modern civil engineering practices. 

In this pursuit, non-destructive testing techniques have gained 

prominence for their ability to assess materials without 

compromising the structural integrity of the examined 

components. While non-destructive testing techniques are 

increasingly prominent, there remains a challenge in 

integrating non-destructive measurements with machine 

learning algorithms to enhance the accuracy of predicting 

concrete compressive strength. Among these techniques, 

Ultrasonic Pulse Velocity (UPV) measurements have emerged 

as a valuable tool for non-invasive evaluation of concrete 

properties [1-3]. Ultrasonic Pulse Velocity (UPV) is a non-

destructive testing method used to evaluate the quality and 

integrity of concrete structures. It involves the transmission of 

high-frequency sound waves through the concrete and the 

measurement of the time taken for the waves to travel through 

the material. The UPV technique has been widely used in the 

construction industry for the assessment of concrete strength, 

density, and other properties. Effective categorization of 

concrete quality from UPV measurements is a complex task 

due to the multifaceted nature of concrete's behavior and the 

inherent variability in real-world data.  

Machine learning (ML) is a powerful tool for data analysis 

and prediction, which has been increasingly applied in various 

fields, including civil engineering, mechanical engineering, 

and agricultural engineering [4-8]. While many studies have 

leveraged machine learning for analyzing UPV data in civil 

engineering applications, there has been limited exploration of 

the nuanced impact of data division techniques on model 

performance. This study distinguishes itself by explicitly 

focusing on how different partitioning strategies affect the 

accuracy and robustness of predictive models for concrete 

quality assessment based on UPV measurements. ML 

algorithms can be used to develop predictive models for 

concrete properties based on UPV data, which can help to 
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improve the accuracy and efficiency of concrete testing. 

Concurrently, the marriage of UPV measurements with 

machine learning algorithms has shown significant promise in 

automating the classification of concrete quality based on 

acquired data [9-11]. However, a critical factor that merits 

meticulous investigation is the impact of data division 

strategies on the overall efficacy of these classification models. 

Ascertaining the optimal approach for data division – the 

partitioning of the dataset into subsets for training, validation, 

and testing – plays a pivotal role in influencing the 

generalizability and robustness of machine learning models 

[12-15]. Addressing this challenge is integral not only to 

advancing the application of machine learning in civil 

engineering but also to enhancing non-destructive testing 

methodologies on the whole. 

The effect of data division on the classification performance 

model of core concrete using UPV in tandem with machine 

learning is an important topic in the field of concrete testing. 

The division of data into training and testing sets is a crucial 

step in the development of ML models, as it affects the 

accuracy and generalization ability of the model [16, 17]. The 

primary objective of this study is to systematically evaluate 

how various data partitioning methods, specifically random 

splitting sampling ratios, influence the predictive accuracy and 

generalizability of machine learning models when classifying 

concrete based on UPV measurements. Additionally, we aim 

to discern which data division strategy yields the most 

consistent and reliable model performance across various 

machine learning algorithms applied in this context. 

In this journal article, we present the results of an 

experimental study on the effect of data division on the 

classification performance model of core concrete using UPV 

in tandem with machine learning. The study involved the 

collection of UPV data from concrete core samples, which 

were then divided into training and testing sets using different 

data division methods. The data were then used to develop ML 

models for concrete classification, which were evaluated 

based on their accuracy and generalization ability. The results 

of the study provide insights into the optimal data division 

methods for the development of ML models for concrete 

classification based on UPV data. 

In our methodology, we collected UPV data from concrete 

core samples and employed varying data partitioning 

techniques, ranging from 90/10 to 50/50 splits. We trained and 

validated machine learning models using these subsets, 

including LDA, kNN, DT, and RF, to analyze their 

performance consistency and classification accuracy across 

different partitioning strategies. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Data collection 

 

The data used in the study came from compressive strength 

measurements using Ultrasonic Pulse Velocity (UPV 

PUNDIT 200). The data was collected in a controlled 

laboratory setting, utilizing the UPV PUNDIT 200, a leading 

instrument in ultrasonic testing. Each concrete sample 

underwent both direct and indirect transmission tests. Probes 

were systematically placed, ensuring consistent measurement 

points across samples. Ambient conditions, including 

temperature and humidity, were maintained at standard levels 

to minimize external influences. Following data collection, 

raw UPV readings underwent preprocessing: any outliers, 

likely resulting from measurement errors, were identified 

using the IQR method and subsequently removed. This 

ensured a clean dataset for model training and evaluation. Core 

concrete samples with diameters of 3', 4', and 5' and 30 cm in 

length were used in this study. The UPV measurement method 

is carried out using 2 techniques: direct transmission and 

indirect or surface transmission (Figure 1). The quality of 

sample concrete with specified compressive strength of 17 

MPa, 20 MPa, and 25 MPa of 30 pieces was prepared with the 

aggregate size of concrete mixture 1 and 2. All concrete 

samples were measured after 28 days old. 

 

  

  
 

Figure 1. Data used in this study 

 

2.2 Machine learning algorithm 

 

In this study, four machine learning algorithms were used, 

including Linear Discriminant Analysis (LDA), K-Nearest 

Neighbor (kNN), Decision Tree (DT), and Random Forest 

(RF). The machine learning algorithms (LDA, kNN, DT, and 

RF) were chosen based on their efficacy in similar 

classification tasks within civil engineering and material 

science. LDA's ability to enhance data separability, kNN's 

adaptability to non-linear decision boundaries, DT's intuitive 

model representation, and RF's ensemble-based approach 

offer a comprehensive set of tools to capture varying 

complexities in UPV measurements. Their combined use aims 

to leverage the strengths of each algorithm, ensuring 

robustness and high accuracy in the classification of concrete 

quality based on UPV data. 

The Linear Discriminant Analysis (LDA) algorithm, a 

fundamental technique in pattern recognition and machine 

learning, serves as a potent tool for enhancing data separability 

within different classes. LDA seeks to transform high-

dimensional data into a lower-dimensional space while 

maximizing the variance between classes and minimizing the 

variance within classes. This transformation ensures that the 

resulting features are optimally discriminative, making it 

especially valuable in scenarios involving classification tasks. 

By effectively capturing the differences between classes while 

reducing noise, LDA aids in uncovering key patterns in the 

data. In practical applications, LDA finds relevance in fields 

ranging from biometrics to finance, where its ability to extract 

insightful features enhances the accuracy and interpretability 

of classification models [18, 19]. 

The K-Nearest Neighbors (kNN) algorithm stands as a 

cornerstone in the realm of supervised machine learning, 

renowned for its simplicity and versatility. Operating on the 

principle of proximity, kNN classifies data points by 

identifying the 'k' nearest neighbors in the training dataset and 
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assigning a label based on the majority class among these 

neighbors. This algorithm's straightforward nature makes it 

particularly effective in scenarios where decision boundaries 

are nonlinear and complex. Despite its simplicity, kNN can 

provide robust outcomes when applied judiciously and can be 

adaptable to various types of data. In practical terms, the kNN 

algorithm finds applications in diverse fields such as image 

recognition, medical diagnosis, and recommendation systems, 

where its reliance on local patterns and its ease of 

implementation make it a valuable tool for data analysis and 

classification tasks [20-22]. 

The Decision Tree (DT) algorithm is a fundamental tool in 

machine learning, renowned for its ability to make complex 

decisions by recursively partitioning data based on the most 

informative features. In essence, a Decision Tree represents a 

tree-like model of decisions and their potential consequences. 

At each internal node, the algorithm evaluates a specific 

feature and selects the path to follow based on the feature's 

value. This process continues until a leaf node is reached, 

representing a decision or classification outcome. Decision 

Trees excel in capturing non-linear relationships in data and 

are easily interpretable, offering insights into the decision-

making process. They can be further extended with ensemble 

methods like Random Forests and Gradient Boosting for 

enhanced accuracy and robustness. Widely used across fields 

such as finance, medicine, and marketing, Decision Trees 

provide valuable insights into data patterns and offer 

actionable outcomes for complex decision scenarios [23, 24]. 

The Random Forest (RF) algorithm, an ensemble learning 

technique, embodies the strength of multiple Decision Trees 

to deliver more accurate and stable predictions. By 

constructing a multitude of Decision Trees during training, 

Random Forest leverages both the diversity and averaging of 

these trees to enhance the overall performance and mitigate 

overfitting. Each Decision Tree is trained on a bootstrapped 

subset of the data, and at each split, a random subset of features 

is considered, reducing correlation between trees and 

promoting robustness. During prediction, the algorithm 

aggregates the outputs of individual trees, resulting in a final 

prediction that is less prone to noise and variability. Renowned 

for its ability to handle high-dimensional data, capture 

complex relationships, and manage missing values, Random 

Forest finds applications in diverse domains like finance, 

ecology, and bioinformatics, where its ensemble-based 

approach consistently yields accurate and reliable results [25, 

26]. 

 

2.3 Evaluation of classification model 

 

In the context of classification problems using machine 

learning, accuracy serves as a fundamental metric to gauge the 

effectiveness of a model's predictive capabilities. Accuracy 

quantifies the proportion of correctly classified instances in 

relation to the total number of instances within the dataset [27-

29]. While a high accuracy score indicates that the model is 

making accurate predictions, it's essential to interpret accuracy 

within the broader context of the problem's characteristics. In 

cases of balanced class distributions, accuracy can be a reliable 

performance indicator. However, when dealing with 

imbalanced datasets where one class is significantly more 

prevalent than others, a high accuracy might be misleading. 

This is because the model can achieve high accuracy by 

merely predicting the majority class while potentially failing 

to identify instances from minority classes. In such scenarios, 

alternative metrics like precision, recall, and F1-score provide 

a more comprehensive assessment of the model's performance, 

offering insights into its ability to correctly classify instances 

across different classes and revealing potential biases or 

weaknesses. Therefore, this study treats 5 data divisions 

(calibration/validation), including 90/10, 80/20, 70/30, 60/40, 

and 50/50. 

Random splitting sampling, a widely-accepted technique in 

machine learning, was chosen for partitioning data due to its 

ability to preserve original data distribution by ensuring every 

data point has an equal chance of being in the training or 

testing subset, minimizing biases. Implemented using 

specialized software, for each specified ratio (90/10 to 50/50), 

the software randomly assigned a percentage of data for 

training with the remainder for validation. This partitioning 

was reiterated multiple times, creating varied training and 

validation sets. The technique's simplicity and frequent 

mentions in prior research made it preferable. Its randomness 

also facilitates rigorous model evaluation, ensuring robustness 

across different data divisions. 

 

2.4 Statistics analysis of variance 

 

Analysis of Variance (ANOVA) is a powerful statistical 

technique that enables the exploration of variation between 

multiple groups or factors within a dataset. ANOVA seeks to 

determine whether the means of these groups significantly 

differ from one another, providing insights into the effects of 

various independent variables on a dependent variable [30, 31]. 

ANOVA was chosen for its capability to assess the 

significance of differences among multiple group means, 

making it apt for analyzing our various data partitioning 

strategies. It partitions the observed variance into components, 

helping ascertain if any variance arises from our experimental 

interventions. In our study, ANOVA was employed to 

determine if different data division methods resulted in 

significant variations in model performance. If significant 

differences were identified, post hoc tests were conducted to 

pinpoint which specific data splits influenced the classification 

outcomes most prominently. 

By partitioning the total variance observed in the data into 

components attributed to different sources of variation, 

ANOVA quantifies the extent to which group differences are 

more than what would be expected by chance. This method is 

particularly useful when comparing means across more than 

two groups, as it helps identify not only whether there are 

significant differences but also which specific groups exhibit 

divergent means. ANOVA plays a pivotal role in experimental 

design, hypothesis testing, and scientific research across 

disciplines, providing a structured and rigorous framework for 

investigating the relationships between multiple variables. 

The foundation of ANOVA lies in decomposing the total 

variance observed in the data into two components: variance 

attributed to the differences between group means (explained 

variance) and variance arising from variations within the 

groups (unexplained variance). The ratio of these variances is 

used to compute the F-statistic, which follows an F-

distribution under the null hypothesis that the group means are 

equal. If the computed F-statistic exceeds a critical value, 

indicating that the variance between groups is significantly 

larger than the variance within groups, the null hypothesis is 

rejected. In such cases, post hoc tests can be conducted to 

identify which specific groups exhibit significant differences. 

ANOVA's ability to handle complex experimental designs, 
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account for multiple sources of variation, and provide valuable 

insights into the interactions between factors makes it an 

indispensable tool for drawing meaningful conclusions from 

data and informing decision-making processes in a variety of 

research domains. 

3. RESULTS AND DISCUSSIONS 

 

3.1 Data characteristics 

 

A total of 90 samples of compressive strength prediction 

data from core concrete divided into three compressive 

strength classes, including 17 MPa, 20 MPa, and 25 MPa, are 

presented in Figure 2. A total of 6 features combined with 2 

UPV measurement techniques and three types of core concrete 

diameter are used as predictors to predict the compressive 

strength classification of the concrete. 

 

 
 

Figure 2. Data prediction intensity compressive strength of 

core concrete 

 

3.2 Division of data 90/10 

 

The performance of model classification from 4 machine 

learning algorithms in classifying specified compressive 

strength core concrete using Ultrasonic Pulse Velocity using a 

data division rate of 90/20 is presented in Figure 3. Generally, 

the overall machine learning algorithm used in this study can 

work very well at the calibration and validation stages, except 

for the LDA and DT algorithms. The LDA and DT algorithms 

tend to experience overfitting at the calibration stage, known 

during the model validation stage testing. The respective 

magnitudes are 3.03% and 4.00 for LDA and DT. However, 

unlike the kNN and RF algorithms, the proposed model has 

stable accuracy in both the calibration and validation stages. 

Bo et al. [32] also reported a similar thing and found that the 

kNN algorithm can work well in classifying hard-rock tunnels. 

 

 
 

Figure 3. Classification accuracy performance model with 

division of data 90/10 

The results of the performance ANOVA test using the 

machine learning algorithm at the calibration stage using the 

90/10 data division rate are presented in Table 1. It was found 

that the performance of the four machine learning algorithm 

models was not statistically significantly different at the 95% 

confidence interval, which is indicated by a higher p-value 

greater than 0.05. This suggests that even though the accuracy 

value of the LDA algorithm is different from the other 

algorithms, statistically, it is not significantly different in 

terms of accuracy performance. All machine learning 

algorithms tested in this study can be used to predict the 

classification of specified compressive strength core concrete 

using Ultrasonic Pulse Velocity using a data division rate of 

90/20. 

 

Table 1. ANOVA single factor on accuracy performance 

machine learning model using division of data 90/10 on 

calibration 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0001 3 0.00 4.00 0.0519 

Within Groups 0.0001 8 0.00 
  

Total 0.0002 11 
   

 

The results of further testing using ANOVA at the external 

validation stage using division 90/10 data are presented in 

Table 2. It can be seen that there is no significant difference in 

the use of the 95% confidence interval in the performance of 

the classification model (p> 0.05). From a statistical point of 

view, this indicates that although there are differences in the 

accuracy values in the validation stage of the LDA and DT 

algorithms with the others, statistically, this does not prove a 

difference in model performance. However, from the view of 

observable accuracy values, using the kNN and RF algorithms 

is more recommended because of their stability in both the 

calibration and validation stages. 

 

Table 2. ANOVA single factor on accuracy performance 

machine learning model using division of data 90/10 on 

validation 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0040 3 0.0013 0.66 0.5957 

Within Groups 0.0161 8 0.0020 
  

Total 0.0202 11 
   

 

 
 

Figure 4. Classification accuracy performance model with 

division of data 80/20 
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3.3 Division of data 80/20 

 

The performance of model classification with data division 

80/20 using four machine learning algorithms to classify 

specified compressive strength core concrete using Ultrasonic 

Pulse Velocity is presented in Figure 4. Using the 80/20 data 

division, it is found that the precision of model performance 

results in the kNN algorithm being better than others. The 

performance of the kNN algorithm in classifying is 1.0 ± 0.0. 

However, other algorithms experience overfitting, as 

evidenced by the unstable model when tested using external 

data. The worst ones experiencing overfitting were the LDA 

and DT algorithms which experienced differences in accuracy 

performance between calibration and validation of 3.03% and 

4.00%, respectively. 

The results of the analysis of the variance test at the 

calibration stage of the four models used in this study for the 

data division rate of 80/20 are presented in Table 3. The table 

shows that at a confidence interval of 95%, there is no 

significant difference in the model's performance (p>0.05). 

This can also be observed directly where there is no difference 

in the accuracy values at the calibration stage of the four 

models used in this study. 

 

Table 3. ANOVA single factor on accuracy performance 

machine learning model using division of data 80/20 on 

calibration 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0000 3 0.00 1.00 0.4411 

Within Groups 0.0001 8 0.00 
  

Total 0.0001 11 
   

 

Table 4 shows the results of further analysis at the validation 

stage using a data division rate of 80/20 for classifying 

specified compressive strength core concrete using Ultrasonic 

Pulse Velocity. Although in terms of value, it was found that 

there was a difference in value between the four models used 

in this study, statistically, this did not show a significant 

difference. That means that all models (LDA, kNN, DT, and 

RF) still have the same accuracy performance at the validation 

stage. However, because there is one model that shows 

stability in both calibration and validation, the kNN algorithm 

is more recommended in classifying specified compressive 

strength core concrete using Ultrasonic Pulse Velocity, 

especially the use of 80/20 division rate data. 

 

Table 4. ANOVA single factor on accuracy performance 

machine learning model using division of data 80/20 on 

validation 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0033 3 0.0011 1.22 0.3630 

Within Groups 0.0072 8 0.0009 
  

Total 0.0105 11 
   

 

3.4 Division of data 70/30 

 

The performance of model classification with data division 

70/30 in classifying specified compressive strength core 

concrete using Ultrasonic Pulse Velocity is presented in Figure 

5. It can be seen that the kNN, DT, and RF algorithms show 

the same strong performance in classification accuracy 

compared to the LDA algorithm. However, at the external 

validation stage, it was found that the DT algorithm tends to 

experience overfitting. However, the kNN and RF algorithms 

are stable in providing their performance at the calibration and 

validation stages. 

 

 
 

Figure 5. Classification accuracy performance model with 

division of data 70/30 

 

The results of the ANOVA test for the accuracy parameters 

of the four machine learning models at the calibration stage 

using data division 70/30 are presented in Table 5. At a 95% 

confidence interval, it is known that the four algorithms do not 

provide a significant difference in accuracy performance even 

though the performance value of the LDA algorithm is 

different from the algorithm used other. This shows that all 

machine learning algorithms are feasible for classifying 

specified compressive strength core concrete using Ultrasonic 

Pulse Velocity. 

 

Table 5. ANOVA single factor on accuracy performance 

machine learning model using division of data 70/30 on 

calibration 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0001 3 0.00 1.00 0.4411 

Within Groups 0.0003 8 0.00 
  

Total 0.0004 11 
   

 

Analysis of Variance from division 70/30 data at the 

validation stage in classifying specified compressive strength 

core concrete using Ultrasonic Pulse Velocity is presented in 

Table 6. At the 95% confidence interval level, there is a 

significant difference between the four models (p<0.05). It is 

suspected that the LDA and DT algorithms are different in 

providing accurate performance from the others, namely kNN 

and RF. This makes it clear that the kNN and RF algorithms 

are equally good in classifying specified compressive strength 

core concrete using Ultrasonic Pulse Velocity and are better 

than the LDA and DT algorithms. 

 

Table 6. ANOVA single factor on accuracy performance 

machine learning model using division of data 70/30 on 

validation 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0052 3 0.0017 8.36 0.0076 

Within Groups 0.0017 8 0.0002 
  

Total 0.0069 11 
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3.5 Division of data 60/40 

 

The model classification performance using a machine 

learning algorithm in classifying specified compressive 

strength core concrete using Ultrasonic Pulse Velocity with 

data division 60/40 is presented in Figure 6. Using data 

division 60/40, it was found that the kNN algorithm performed 

better than others, as indicated by higher accuracy and stability 

in calibration and validation. Although the DT and RF 

algorithms have the same performance as kNN at the 

calibration stage, the DT and RF algorithms do not perform 

similarly at the validation stage with kNN. 

 

 
 

Figure 6. Classification accuracy performance model with 

division of data 60/40 

 

The results of the performance ANOVA test using the 

machine learning algorithm at the calibration stage using the 

60/40 data division rate are presented in Table 7. It was found 

that the performance of the four machine learning algorithm 

models was not statistically significantly different at the 95% 

confidence interval, which is indicated by a higher p-value 

greater than 0.05. This suggests that even though the accuracy 

value of the LDA algorithm is different from the other 

algorithms, statistically, it is not significantly different in 

terms of accuracy performance. All machine learning 

algorithms tested in this study can be used to predict the 

classification of specified compressive strength core concrete 

using Ultrasonic Pulse Velocity using a data division rate of 

60/40. 

 

Table 7. ANOVA single factor on accuracy performance 

machine learning model using division of data 60/40 on 

calibration 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0004 3 0.0001 1.00 0.4411 

Within Groups 0.0011 8 0.0001 
  

Total 0.0015 11 
   

 

Table 8 shows the results of further analysis at the validation 

stage using a data division rate of 60/40 for classifying 

specified compressive strength core concrete using Ultrasonic 

Pulse Velocity. Although in terms of value, it was found that 

there was a difference in value between the four models used 

in this study, statistically, this did not show a significant 

difference. That means that all models (LDA, kNN, DT, and 

RF) still have the same accuracy performance at the validation 

stage. However, because there is one model that shows 

stability in both calibration and validation, the kNN algorithm 

is more recommended in classifying specified compressive 

strength core concrete using Ultrasonic Pulse Velocity, 

especially the use of 60/40 division rate data. 

 

Table 8. ANOVA single factor on accuracy performance 

machine learning model using division of data 60/40 on 

validation 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0015 3 0.0005 1.33 0.3300 

Within Groups 0.0030 8 0.0004 
  

Total 0.0045 11 
   

 

 
 

Figure 7. Classification accuracy performance model with 

division of data 50/50 

 

3.6 Division of data 50/50 

 

The performance of model classification with data division 

50/50 in classifying specified compressive strength core 

concrete using Ultrasonic Pulse Velocity is presented in Figure 

7. It can be seen that the kNN, DT, and RF algorithms show 

the same strong performance in classification accuracy 

compared to the LDA algorithm. However, at the external 

validation stage, it was found that the DT algorithm tends to 

experience overfitting. However, the LDA, kNN, and RF 

algorithms are stable in providing their performance at the 

calibration and validation stages. 

The results of the ANOVA test for the accuracy parameters 

of the four machine learning models at the calibration stage 

using data division 70/30 are presented in Table 9. At a 95% 

confidence interval, it is known that the four algorithms do not 

provide a significant difference in accuracy performance even 

though the performance value of the LDA algorithm is 

different from the algorithm used other. This shows that all 

machine learning algorithms are feasible for classifying 

specified compressive strength core concrete using Ultrasonic 

Pulse Velocity. 

 

Table 9. ANOVA single factor on accuracy performance 

machine learning model using division of data 50/50 on 

calibration 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0004 3 0.0001 1.00 0.4411 

Within Groups 0.0011 8 0.0001 
  

Total 0.0015 11 
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The results of further testing using ANOVA at the external 

validation stage using division 90/10 data are presented in 

Table 10. It can be seen that there is no significant difference 

in the use of the 95% confidence interval in the performance 

of the classification model (p> 0.05). From a statistical point 

of view, this indicates that even though there are differences 

in the accuracy values in the validation stage of the LDA and 

RF algorithms with the others, statistically, this does not prove 

a difference in model performance. However, from the view 

of observable accuracy values, the LDA and RF algorithms are 

recommended because of their stability in both the calibration 

and validation stages. 

 

Table 10. ANOVA single factor on accuracy performance 

machine learning model using division of data 50/50 on 

validation 

 
Source of Variation SS df MS F p-value 

Between Groups 0.0006 3 0.0002 0.38 0.7712 

Within Groups 0.0039 8 0.0005 
  

Total 0.0045 11 
   

 

3.7 Discussions 

 

The feedback provided highlights the consistent 

performance of the kNN algorithm across various data 

division strategies in our study. Upon deeper reflection, the 

intrinsic properties of the kNN algorithm, particularly its 

reliance on proximity-based classification, may be well-suited 

for our dataset. In concrete compressive strength prediction, 

where the relationships between parameters might be 

nonlinear and complex, kNN can exploit the local patterns 

inherent in the data. Moreover, as the kNN algorithm doesn't 

make any assumptions about the underlying data distribution, 

it proves adaptable, showing resilience against overfitting, 

especially compared to other tested algorithms. Its ability to 

perform consistently across different data splits emphasizes its 

robustness and reliability for this specific application. 

Recognizing this, it's evident that the kNN algorithm is an 

optimal choice for classifying compressive strength core 

concrete using Ultrasonic Pulse Velocity in our study context. 

Future endeavors can further fine-tune the kNN parameters 

and further explore feature engineering to enhance its 

predictive capabilities. 

Our findings have elucidated several key insights in 

addressing our primary research question regarding the 

influence of different data partitioning techniques on the 

classification model's accuracy. Our investigations into 

various data splits, ranging from 90/10 to 50/50, revealed that 

the choice of data division holds significant implications for 

model performance. While some algorithms displayed 

robustness across different partitions, others, notably the kNN 

algorithm, showcased optimal performance consistently. This 

consistency aligns directly with our objective of identifying 

how data partitioning strategies impact model accuracy. To be 

explicit, our results confirm that while some algorithms may 

be sensitive to the nature of data division, others, like kNN, 

maintain their efficacy irrespective of the chosen split. Thus, 

our study not only underscores the importance of reasonable 

data partitioning but also aids in pinpointing algorithms best 

suited for specific partitioning strategies in the context of core 

concrete quality assessment using UPV measurements. 

The elucidated superiority of the kNN algorithm in 

classifying compressive strength core concrete using 

Ultrasonic Pulse Velocity bears significant implications for 

civil engineering. Firstly, the robustness of kNN against varied 

data divisions accentuates its potential as a primary tool in 

non-destructive testing methodologies for concrete assessment. 

Such reliable classifications can significantly enhance quality 

control in construction, ensuring that infrastructure meets or 

exceeds durability and safety standards. Furthermore, the 

consistency of kNN in various data splits means that engineers 

and practitioners can confidently use this model across diverse 

datasets, reducing the time and resources traditionally 

expended in model recalibration. This insight suggests a shift 

towards integrating kNN-based machine learning systems in 

civil engineering diagnostic tools, streamlining evaluations of 

material integrity, and consequently bolstering the overall 

reliability and longevity of infrastructural projects. 

In juxtaposition with existing literature, our findings 

resonate with several previous studies that have acknowledged 

the efficacy of the kNN algorithm in diverse classification 

tasks. As referenced in our study, Bo et al. [32] also found the 

kNN algorithm to be proficient in classifying hard-rock 

tunnels, underscoring its versatility across different domains. 

However, while our research emphasizes kNN's robustness 

against varied data divisions specifically for concrete 

classification using UPV, some past studies have stressed its 

performance in balanced datasets or different application areas. 

Conversely, specific research in civil engineering has leaned 

towards ensemble methods like Random Forests for concrete 

quality prediction. Our study bridges this gap by spotlighting 

kNN's unparalleled consistency across data splits, a nuance not 

extensively explored in prior literature, thereby advancing the 

discourse on non-destructive concrete evaluation using 

machine learning. 
 

 

4. CONCLUSIONS 

 

In conclusion, this study has provided a comprehensive 

exploration of the critical role played by data division 

strategies in shaping the classification performance model for 

core concrete quality assessment using Ultrasonic Pulse 

Velocity (UPV) measurements in conjunction with machine 

learning techniques. The findings underscore the significance 

of meticulous consideration when choosing data partitioning 

approaches, as these strategies wield a substantial influence on 

the robustness, accuracy, and generalizability of classification 

models. Future research should explore adaptive data 

partitioning methods, delve into hybrid sampling techniques, 

and investigate the influence of diverse datasets on model 

robustness, enhancing the generalizability across various civil 

engineering applications. The experiments conducted across 

various data division methodologies have demonstrated the 

intricacies and trade-offs involved in model training and 

evaluation. The insights from this study illuminate a pathway 

for optimizing non-destructive evaluations in civil engineering, 

potentially revolutionizing infrastructure safety and material 

assessment methodologies. 

The results indicate that appropriate data division 

techniques can substantially enhance the performance of UPV-

based classification models. Stratified sampling, in particular, 

emerged as a favorable strategy due to its ability to maintain 

class distribution ratios, resulting in improved precision and 

recall values. Conversely, random splitting showed higher 

sensitivity to class imbalances, resulting in a more challenging 

environment for model learning. These insights reinforce the 

importance of carefully tailoring data division methods to the 

characteristics of the dataset at hand, especially when dealing 
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with inherently imbalanced or heterogeneous datasets. This 

study conclusively demonstrates that the kNN algorithm, 

when paired with strategic data partitioning, excels in 

classifying concrete strength using UPV measurements, 

offering pivotal insights for civil engineering applications. 

While the focus of this research was on the specific context 

of concrete quality assessment, the implications of the findings 

extend beyond this domain. The synergistic integration of non-

destructive testing with machine learning holds tremendous 

potential in diverse fields, ranging from material science to 

structural health monitoring. As the capabilities of machine 

learning models continue to evolve, the lessons learned from 

this study can inform the development of effective 

classification strategies in various applications that involve 

complex, multi-dimensional data. Future work could delve 

into exploring hybrid data division techniques, combining the 

strengths of stratified sampling and other approaches to further 

enhance model performance and generalization. 

In the grander scheme, this research contributes to the 

advancement of both non-destructive testing methodologies 

and the application of machine learning in civil engineering. 

By uncovering the nuances of data division effects on 

classification performance, practitioners and researchers are 

equipped with insights that can guide decision-making 

processes when employing UPV measurements and machine 

learning for concrete quality assessment. Ultimately, this 

study aids in fostering the development of safer, more durable 

infrastructure by enhancing our understanding of how modern 

technologies can be harnessed synergistically to assess and 

ensure the integrity of construction materials. 

Our research underscores the pivotal role of data 

partitioning strategies in classification model outcomes. The 

choice of how data is divided for training and validation 

purposes significantly impacts a model's robustness, accuracy, 

and generalizability. Optimal partitioning enhances model 

performance and ensures adaptability to diverse real-world 

scenarios. Thus, practitioners and researchers must exercise 

careful deliberation in this initial stage, understanding that this 

decision lays the foundation for the subsequent efficacy of the 

machine learning application. 
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