
Optimization of Deep Neural Networks for Enhanced Efficiency in Small Scale Autonomous

Vehicles

Shabana Urooj1 , Mudasir Ahmad Dar2 , Shabana Mehfuz2* , Wafaa Shoukry Saleh1

1 Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, PO Box 84428,

Riyadh 11671, Saudi Arabia
2 Department of Electrical Engineering, Jamia Millia Islamia (A Central University), Delhi 110025, India

Corresponding Author Email: smehfuz@jmi.ac.in

https://doi.org/10.18280/ts.410141 ABSTRACT

Received: 20 March 2023

Revised: 1 July 2023

Accepted: 10 August 2023

Available online: 29 February 2024

Autonomous vehicles of the contemporary era constitute a sophisticated blend of artificial

intelligence and electronic components. These vehicles operate autonomously by employing

neural networks trained to interpret visual input from multiple onboard cameras and

subsequently produce corresponding steering angles. However, the existing neural networks

are characterized by their substantial scale, necessitating substantial GPU resources, and are

prone to latency issues and complex architectural requirements. These factors render these

networks unsuitable for small-scale applications where latency, complex architecture, and

expensive hardware are prohibitive. This paper proposes a methodology for optimizing these

neural networks for small-scale operations while preserving their accuracy and precision.

This is achieved through a fine-tuning process that customizes the architecture and modifies

various functional values and their parameters, resulting in a deep neural network tailored

for small-scale applications. This optimized network boasts a simpler architecture, lower

storage requirements, and reduced demand for GPU resources. The network is developed,

trained, and evaluated using TensorFlow, a widely employed API for machine learning

applications. The optimized network offers several advantages, including reduced latency,

a customizable architecture, minimized memory requirements, and decreased GPU demand,

making it a viable solution for various applications. The paper provides a detailed

exploration of the development of this bespoke deep neural network and its potential

implications for the future of small-scale autonomous vehicles.

Keywords:

A.I. autopilot, autonomous vehicles, deep

neural networks

1. INTRODUCTION

Automation, a technological advancement that minimizes

human intervention, has been instrumental in various sectors,

enabling machines to adapt to human needs. Notably, the

scientific realm has demonstrated an intense focus on

autonomous vehicles over the past few decades. The

importance of automation in research cannot be overstated; it

enhances efficiency, productivity, and reduces potential

human error [1, 2]. By automating repetitive tasks, researchers

can dedicate more time to significant aspects such as data

analysis and hypothesis testing. Furthermore, automation

allows large-scale data analysis and experimentation that

would be challenging or impossible to achieve manually. The

end results are faster outcomes, comprehensive datasets, and

uncovered insights that might have remained hidden,

accelerating the pace of scientific discovery [1, 2].

The breakthrough in autonomous vehicles was made

possible with the advent of deep learning, a revolutionary

technique that replaced traditional programming. Deep

learning's ability to learn and adapt based on data has made it

applicable in a wide range of fields, including the automation

of vehicles [1, 3]. The advent of Artificial Neural Networks,

inspired by the human brain, has been incredibly beneficial in

creating truly autonomous vehicles. These networks can be

trained on different roads and drive on them post successful

training [1, 3].

Several companies have promised autonomous vehicles, but

Tesla Inc. has been the most successful in delivering them.

This American company has developed, produced, and sold

autonomous vehicles with its patented autopilot, widely

considered the finest in the market [1]. Despite the

development of numerous convolutional networks, the focus

of this paper is on the customization of AlexNet and PilotNet,

two well-known deep neural networks used in autonomous

vehicles. These networks require large GPUs and extensive

memory spaces, leading to high costs. Therefore, there is a

pressing need for engineers to optimize these networks to

simplify them and reduce memory and GPU requirements,

especially for small-scale applications like warehouses,

laboratories, factories, or industries [2].

The process of optimization involves customizing the

neural network, using various techniques such as fine-tuning,

dropouts, batch normalization, regularization techniques, and

hyperparameter fine-tuning. This ensures that the network is

simpler, has fewer latency issues, and maintains accuracy in

line with traditionally used networks (AlexNet & PilotNet) or

within acceptable ranges [2, 4].

The motivation behind this work is to address the

limitations of current deep neural networks used in

autonomous vehicles and propose a need for optimizing these

networks for small-scale operations. The objective is to create

Traitement du Signal
Vol. 41, No. 1, February, 2024, pp. 469-476

Journal homepage: http://iieta.org/journals/ts

469

https://orcid.org/0000-0002-1477-8759
https://orcid.org/0009-0005-4904-8843
https://orcid.org/0000-0002-5451-6964
https://orcid.org/0000-0002-4726-1350
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410141&domain=pdf

customized deep neural networks that are specifically tailored

for small-scale operations, offering reduced latency,

simplified architecture, lower memory requirements, and

decreased GPU usage [2, 4].

1.1 Objectives

The recent surge in interest and contribution to artificial

intelligence has highlighted the potential of deep neural

networks in solving automation problems of varying scale and

complexity. However, building a deep neural network from

scratch for an autonomous vehicle, considering the application,

scale, and complexity, becomes a time-consuming process.

Hence, the objective of this work is to fine-tune existing neural

networks for automation tasks of varying scale and complexity,

particularly for small-scale and low-complexity tasks, while

maintaining relative accuracy [2, 4].

1.2 Contributions

This work aims to optimize existing neural networks for

small-scale operations while maintaining similar accuracy and

precision levels. The main contributions include customizing,

fine-tuning, and optimizing neural networks for small-scale

and low-complex applications. Various methods are employed,

such as augmentation, addition of layers in the architecture,

modification of architecture parameters, data preprocessing

and normalization, and batch normalization. Lastly, these

models are trained and tested, and a comparison of various

performance metrics (such as accuracy loss) is conducted [2,

4].

The remaining sections of the paper are organized as

follows: Section 2 reviews related work, Section 3 provides an

overview of machine learning and deep learning, Section 4

offers a brief introduction to autonomous vehicles, Section 5

presents the proposed optimized deep neural network, Section

6 explains the proposed DNN architecture, and Section 7

provides training and testing results. Finally, Section 8

elaborates on the findings, followed by the conclusion.

2. RELATED WORKS

Artificial Intelligence (AI) has seen tremendous popularity

both in the media and also in the engineering community. The

technique of deep learning has been implemented by engineers

to solve various problems in the field of automation, speech

recognition, image processing, data analysis, etc. Naturally,

when the idea of autonomous cars was conceived, the

engineers looked into AI for help and used deep learning. They

developed deep neural networks to do the transformation on

data which is gathered by various sensors and methods [5, 6].

There are many types of neural nets such as convolutional

neural networks, recurrent neural networks, auto encoders, etc.

which can be used in the application of autonomous vehicles.

Out of these convolutional neural networks is most famous

because it is efficient at performing the required task and

consists of various layers which perform operations and

transformations on images. Naturally, the architecture of such

neural net has many parameters and variables which in turn

accept various values and holds different functions. Therefore,

we can fine tune them according to the application and keeping

various parameters in mind. Techniques such as augmenting

of architecture such as layers, using of normalization methods

such as batch, L2 and use of dropouts, etc can help in

optimizing and customizing a neural network. The effect these

techniques can be found in the studies [7-10].

The aim of the work is to combine all these ideas and

methods while building neural nets and then implement these

techniques to customize, optimize and make a net efficient for

the required task with keeping the complexity, purpose and

application in mind.

3. MACHINE LEARNING AND DEEP LEARNING

Traditional coding or programming had always run into the

problem of real time adaptation. Usually, engineers used to

write codes for specific applications but since the code wasn’t

flexible to adapt or change according to any change or

parameter variation this made traditional coding run into a wall.

So, machine learning was developed and basically meant that

we could take help of various algorithms to analyze the data

and then after that a learning process would happen. Therefore,

in machine learning we could learn from the data and therefore

we would be comfortable enough to make generalized

predictions about the data.

Hence, machine learning had this feature of being flexible

and better than traditional programming as we would not be

required to write explicit codes due to learning taking place.

Therefore, machine learning saw tremendous application in

numerous fields such as data analysis, stock market

predictions, image recognition, medical diagnosis, speech

recognition etc.

Machine learning can be considered somewhat of a blanket

or general term and has many subfields such as deep learning,

A.I., etc.

Deep learning is mostly considered a subfield of machine

learning and is also sometimes referred to as a technique which

can be used to implement machine learning. Currently deep

learning is most widely used in many fields such as medical

diagnostic field to figure out cancer diagnosis from blocks of

data which are usually patient test scans. Deep learning has

also found application in autonomous vehicle industry too for

developing ‘autopilots’ for the vehicles.

The algorithms used in deep learning are inspired by human

neural networks and therefore are termed artificial neural

networks (ANN) because being artificial in nature. The

algorithms used must learn from the data just like in machine

learning and after learning they are capable of giving general

predictions about the data which is useful to us. Their structure

is built by units called ‘neurons’ which are similar to a

biological neuron, and these are organized into vast layers.

These layers are termed to be input layers, output layers and

hidden layers. The hidden layers always exist between input

and output layer and usually are numerous in nature which

give a model its complexity. Deep learning explicitly uses

these artificial neural networks (ANN) with multiple hidden

layers. These networks are alsocalled deep neural networks

(DNN) and have many hidden layers between their input and

output layers and hence are termed to be deep in nature.

3.1 Artificial neural networks

Since we have understood how artificial networks are

formed by organizing neurons into various layers, we use these

layers to form a complex structure which is able to do

mathematical operations on any data or we could say we are

470

creating mathematical computing structures which can assess

data and then learn from that particular data and then provide

general predictions on a new set of the similar data [3].

Every layer of the model or structure will serve a different

task or function and can-do mathematical operations. The data

enters the structure or model through its input layers and then

passes through the hidden layers and then the output layer

which is termed as a ‘forward pass’. We must do these forward

passes through the model when we are training the model.

The data which is fed to the network has many components

or dimensions and these components of the data determine

how many nodes in the input layer we require. The hidden

layers have generally random number of nodes which we

choose randomly. The node in the output layer is dependent on

what desired prediction we are looking for from the model.

Hence, artificial neural networks can be constructed with

specific applications in mind and then trained on our data sets

and after the training is complete, they can be used to perform

predictions on new data sets.

3.2 Basics of artificial neural networks

To succinctly understand ANN lets define the following

terms which are associated with artificial neural networks.

a) Layers: These are specifically organized neurons or

nodes which form what we call layers and are of different

types and perform numerous mathematical transformations on

a data. They can be dense layers, convolutional layers, pooling

layers, recurrent layers etc. and each has their own operation

and are used according to the purpose of the model.

b) Layer Weights: The connection between each neuron

in a network has assigned numbers which are called weights.

These weights are either randomly generated or can also be

specifically chosen. The always get multiplied with the input

data as the data does a forward pass through the model.

c) Activation Function: These are usually nonlinear

functions used to map a nodes or neurons input to a

corresponding output by doing a specific mathematical

operation or transformation. The output is a number between

an upper and lower limit value which depends on the function

used. Examples are ReLu function, threshold function etc.

d) Data Sets in ANN: There are three data sets used in

ANN to remove over fitting & under fitting and these are

explicitly used for training and testing the model. These are

listed below.

i) Training Set: In this set we have the data and the

corresponding label of the data which is used to train the model

repeatedly.

ii) Validation Set: It has data which is used to validate

the model while its training to make sure it isn’t over fitting

the training data (good at generalizing training data only).

iii) Test Set: This is an unlabeled and different unseen

data which is fed to model after training is done to check if

model can do successful prediction.

e) Training: It refers to passing data through a network

so that it learns the input and output mapping by using

different algorithms. It’s essentially an optimization problem

where the model is changing the values of weights and moving

them towards an optimal value. It makes use of a loss function

which helps the model in making successful prediction on the

given data. Therefore, we repeatedly send the training data

through the model and the model starts the learning process.

f) Prediction: After training of the model is complete

and we are satisfied that the model has learned well according

to different metrics then we do predictions with the model on

the test sets. As, the name suggest the prediction means the

network is trying to map a given input to an output and if the

training is done successfully this mapping will also be a

correct output and hence, we will say the model predicted

successfully.

g) Batch Size: It’s defined as number of the training data

samples which are passed to the network at once and usually

data is broken down into batches.

h) Epoch: It’s defined as the single pas of the entire data

through the network.

i) Over fitting: It is a term used to define the

phenomenon when a neural network can only classify data it

is trained on and not the data it hasn’t seen. It is reduced by

using data augmentation techniques to add diversity to the

training set and also by using drop out to reduce complexity of

the model by making some layers not take part in the process.

j) Under fitting: It is a term used to define the

phenomenon when the model cannot even classify the data

which is present in the training set and is reduced by making

the model more complex and adding more features in the input

data.

Relation between batch size & epoch:

Batches In Epoch=
Training Set Size

Batch Size

E.g., if training set=100 images

Then 1 epoch is completed when 100 images are passed

through the network.

If batch size=10 i.e., only 10 images are passed to the model

at one time.

4. AUTONOMOUS VEHICLES

Autonomous vehicles are vehicles which can steer

themselves autonomously without human intervention. They

are made capable to do this by installing them with a trained

deep neural network & a steering control system. The DNN

gives appropriate steering angle input to the steering control

system & the vehicle is steered autonomously. The deep neural

networks (DNN) are backbone and essence of an autonomous

vehicle.

4.1 Basic working

An autonomous vehicle has a ‘brain’ which process the

information which is passed to it by its sensors and then it

gives a corresponding response to that information which is

basically a steering angle command given to the steering

control system of the vehicle [3]. The basic block diagram of

the working of an autonomous vehicle is shown in Figure 1.

As we can see in the figure, the vehicle is loaded with

various cameras and other sensors. Usually, cameras are used

which take pictures of the surroundings of the vehicle which

is usually the road in front of the vehicle on which it must be

driven. These images are taken from various positions but

usually three positions set up is used which are referred to as

the center, right & left position [3].

The center position denotes the image which is taken from

a camera placed at the center of the car usually at the center of

the front of the car. The other two positions are relative to this

center position i.e., the right position means the camera is

placed to the right of the center and similarly the left position

471

is relative to the center where the camera is placed to the left

of the center. These three positions are used to get the

maximum information about the road and the surrounding

which in turn gives the data set diversity and enough

components and dimensions which makes the model learn

better from the data and predict more accurately on test sets.

Images from these cameras are then taken and passed to the

trained deep neural network (DNN) as inputs. The DNN serves

as the brain of the operations as it now must process these

images and perform mathematical operations on them to give

the necessary output [11]. This output is going to be the

steering angle which the DNN will give to a steering control

system of the car and the car will be steered autonomously by

the DNN [9].

The trained DNN has trained on similar images of different

roads with labeled information which is always corresponding

steering angles. So, once the DNN was trained and tested on

numerous road images and corresponding steering angles it

was employed in the field and hence will be able to

successfully predict the steering angle for the input image

present on its nodes [10].

The other sensors which can also be used in combination

with cameras are usually ultrasonic sensors (measure the

distance of any object by emitting ultrasonic sound waves &

then receives reflected wave & calculates the time taken

between emission and reception to measure the distance),

radar (radio detection & ranging) and Lidar (light detection &

ranging) Sensors. These also help in making the autonomous

vehicle safer and less accident prone [12-16].

Figure 1. Basic block diagram of an autonomous vehicle

4.2 AlexNet&PilotNet

Currently engineers can build different DNNs with different

features for different vehicles and accordingly change and

update the model. AlexNet&PilotNet are two of the most

famous neural networks used for image classification &

autonomous application [1, 11]. These Neural nets were

developed by researchers initially for image classification or

object classification and were eventually modified and made

suitable for autonomous driving [5].

AlexNet is a convolutional Neural Network which was

made for the prime application of image classification but can

be easily modified for autonomous application. It’s trained on

two graphic processing units (GPUs). It has five convolutional

layers with max pooling operation taking place between each

layer and three fully connected and it has about 63 million

trainable parameters. It can take up to 500MB of memory [1].

PilotNet which is also referred to as Nvidia Convolutional

Neural Network is a model specifically developed to improve

autonomous vehicle system in DARPA (Defense Advance

Research Project Agency). It is also a convolutional neural

network and has five convolutional layers and then four fully

connected layers and it has about 348,219 trainable parameters

[1].

The deep neural networks which are ‘traditionally’ used for

autonomous driving have complex architectures, bigger size,

have multiple convolutional layers with max pooling

occurring in between those layers and then multiple dense

layers etc. These neural networks are also trained using

multiple graphics processing units and which require updated

specifications and huge processing powers. Due to this the

customization and optimization of these networks is important

for small scale operation where such big processing units

should not be used, and such architectural complexity would

be overkill and unnecessary [6].

Hence, when using these neural nets, we need to optimize

and customize them so that we can make the architecture

simple, memory space less, not dependent on huge GPUs and

make latency less. Of course, when such kind of optimization

is done tradeoffs occur such as scale and complexity of the

application will decrease but as long as the accuracy of the

optimized model is within acceptable ranges, we can say the

optimization is successful [7, 8].

What we can propose is a customized deep neural network

which will have a simpler and customized architecture with

lesser layers and can perform within acceptable ranges.

5. PROPOSED OR OPTIMIZED DEEP NEURAL

NETWORK

Since, the idea is to feed an image from a camera as input

to a trained DNN and get steering angle as output. The network

will have convolution layers and we can figure out how many

of these are needed to keep the architecture simple by using

trial and error method until we achieve a satisfactory result [1,

3].

This will help us to figure out the number of convolutional

layers, its dimensions, number of filters etc. This fine tuning

of other DNNs and then customizing each layer and adjusting

hyper parameters to get desired results is essentially

customization and optimization. Similarly, after that we

require deeply connected layers the number of which will

depend upon the complexity and scale of the task.

The customized model’s architecture will have two

Convolution layers which will each have max pooling to

reduce the dimensions of the output image from these

convolution layers and then we will have one flattened layer

which will make the output from convolution layer suitable for

the dense layers and finally two deeply connected layers with

one output node. The architecture of the proposed DNN is

shown below in Figure 2.

Figure 2. Model architecture

472

6. UNDERSTANDING PROPOSED DNN

ARCHITECTURE

The basic architecture of the model is shown in Figure 3

below and we can see that it has two convolutional layers with

max pooling happening between them. The first convolutional

layer has 16 nodes and the input shape of 320×65×3 which

means the dimension of the input image are 320×65 pixels

with 3 representing it is a colored image (RGB) and the filter

used for convolution operation or pattern detection has a size

of 2×2. The activation function used during this layer is ‘ReLu’

or rectified linear unit which transforms the input data to the

maximum of either 0 or the input data itself. The convolving

filter which performs the dot product, or the convolution

operation has a size of 2×2. There is also use of zero padding

in the layers to make sure the image sizes aren’t reduced

excessively, and dimensions are retained while the images do

a forward pass through the layers. The shape of input images

is 320×65 and the output channel from the first convolutional

layer reduces it to 160×33 which then is kept through the

second convolutional layer.

The model has two dense layers and the first one has 10

nodes and the second one or the output one has one node.

There is also a flattened layer between the convolution and the

dense layer to make the out from convolutional layers suitable

for the dense or fully connected layers.

Figure 3. Layers of optimized model

The 1st Convolutional Layer is responsible for extracting

features from input images using convolutional filters, which

help in identifying patterns and visual characteristics relevant

to the task. The max pooling layer then downsamples the

output of the previous layer, reducing the spatial dimensions

while retaining important information. This layer helps in

reducing computation and extracting the most relevant

features. Finally, the 2nd Convolutional Layer further analyzes

the pooled features, capturing higher-level representations and

spatial relationships. This layer provides a more abstract

understanding of the input data, enabling better discrimination

and classification. Together, these optimized layers enhance

the model's ability to extract meaningful features, reduce the

dimensionality of the data, and capture complex patterns,

ultimately improving the model's overall performance.

6.1 Methods used for customization and optimization

The customization entails changing various layers of DNN

according to the need or purpose or application it has to

perform. The optimization of a model or DNN entails

changing or tuning the parameters, functions and other

variables and values which are present in these customized

layers till desirable performance metrics are achieved [6-8].

The customization and optimization of the model was done

in the following ways:

i. Addition and subtraction of various layers of the

DNN. To perform a small-scale operation, it is often required

to lessen the complexity of a model and such can be achieved

by using dropout which makes some layers not take part in

the training process and reduces the complexity of the model.

We can also customize such layers by reducing or increasing

their nodes, increasing, or decreasing the number of filters in

the layers, changing the dimensions of the filters i.e., rows

and columns and also initializing the values of the filters

depending upon how successfully the filter is performing

pattern detection.

ii. Reducing the dimensions of the input images of the

feature map change i.e., reduce as it goes through the

convolution operation, and it reduces the computational load.

Also, the max pooling operation after each convolutional

layers helps in reducing over fitting in the model or DNN by

keeping values of the most activated pixel which help in

making better pattern detection and help in successful feature

extraction.

iii. Also, over fitting and variance are reduced by using

L2 regularization which is a regularization technique, and it

augments the loss function in the DNN by adding certain

terms to it which incentivizes the optimizer to update the

weights of the model to a value which will make the loss

function have a minimum optimal value [6].

iv. Tuning of batch size according to how well the model

was learning and an optimum batch size makes the model fit

correctly on the data by keeping the computational power of

the system in mind.

v. Batch normalization was also applied to the layer

where it prevents the weights from updating to a high value

which may cascade down to other layers and cause instability.

It reduces the impact a high layer weight might influence the

training of the model and batch normalization will happen per

batch. Normalization will happen to the activation output of

each layer [7].

vi. Xavier initialization is used to counter the problem of

randomly initialized weights which lead to gradient

instability and makes learning difficult for the model. In

Xavier initialization the variance of the weights is shifted

from 1 to a new value which reduces the gradient problems.

For the ‘ReLu’ activation function the variance is shifted to
1

n

(where n is the number of weights connected to the previous

layers).

vii. Data pre-processing done to the training data set

involves cropping the images from their original size to a size

where there is less useless information in the image. Usually,

the sky and other surrounding objects are cropped from the

image. The images are also flipped and doubled to increase

the data set diversity which helps in training and gives model

the ability to successfully generalize on unseen data after

training.

viii. Tuning of learning rate was also done. The value set

for learning rate is a hyper parameter and setting it too low

and too high will lead to problems of learning and

computation and therefore this value is set with trial-and-error

method.

473

6.2 Comparison

The comparison between the three DNNs is shown in Table

1.

Table 1. Comparison of DNNs

Optimized

Model
AlexNet PilotNet

Convolution Layers 2 5 5

Dense Layers 2 3 4

Trainable

Parameters
1,691,909 63,000,000 348,219

Memory Size 2 MB 508 MB 5 MB

Training Epochs 20 20 20

7. TRAINING AND TESTING RESULTS

The optimized model is trained on the data collected from

various track of a gaming simulator called Unity game

simulator and is built by Unity Technologies. So, we would

require the training & test data set to have the images of the

various tracks which are present in that gaming simulator. The

game simulator is shown in the Figure 4.

The simulator allows us to record the various laps in

different tracks as images and corresponding information is

labeled to them. The information labeled to the images is the

steering angle, throttle, and speed and brake values. These

values are normalized for the DNN as normalization is an

important preprocessing step. The training set for the model F

will contain these images of various tracks with labeled

information so that the model can learn accurately and

sufficiently so that in the testing phase it is able to perform

accurate generalizations on unlabeled and unseen data. The

example of the data sets is shown in the Figure 5.

Figure 4. Gaming simulator

Figure 5. Example of data set

The images are from the various tracks which are in the

game simulator. The training set will contain labeled images

of the tracks which are obtained by manually driving the car

on these tracks for multiple laps with the help of a gaming

controller. The labels to the training images are their

corresponding steering angles. These steering angles are

normalized values. The total number of images collected is

30,000 and out of these 20% will be used for the validation set

and 80% for the training set.

Since we require three data sets namely training set,

validation set and test set. We can easily use 80% of the

collected images from the simulator for the training set and the

remaining 20% for the validation set. For the testing set we

will use different unlabeled images taken from a separate lap.

The test set can also have images from a different track which

is also built in the same game simulator. The optimized model

was trained on 24,000 images and initially the epochs were set

to 15 and the training set images were not resized, and the

results are shown below in Table 2.

In order to improve the training accuracy of the model, the

training set images were augmented by resizing, cropping

them and taking away the portions of the image which didn’t

have any useful information. Initial the images were 320×160

pixels and after resizing they were 318×102 pixels. After

doing the resizing of the training set, the model was trained

again with epochs set to 20 and the training results are shown

below in the Table 3. These training results are considered the

final training results of the model.

In the Figure 6 the model loss for training and validation is

shown for 20 epochs for each model i.e., AlexNet, PilotNet

and the optimized model. After training the optimized model

was tested on 10,000 unlabeled images and the results are

shown in Table 4 and Figure 7.

Table 2. Initial training results

Initial Training Results

Training

Set
Epoch Loss Accuracy

Validation

Loss

Validation

Accuracy

24,000 15 0.1219 0.8700 0.0427 0.8400

Table 3. Final training results

Final Training Results

Training

Set
Epoch Loss Accuracy

Validation

Loss

Validation

Accuracy

24,000 20 0.0811 0.9100 0.1936 0.8900

Table 4. Testing results

Testing Results

Testing Set Correct Prediction Wrong Prediction

10,000 8900 1100

Figure 6. Training and validation loss for all models

474

Figure 7. Normalized steering angle (º) prediction by

optimized model

In the Figure 7, the steering angle (º) predictions by

optimized model has been shown for 10,000 test images. This

work holds significant managerial implications for the

application of autonomous vehicles. By optimizing deep

neural networks for small-scale operations, the research offers

practical benefits to managers and decision-makers in the

industry. Customized neural networks with reduced latency,

simplified architecture, and lower memory and GPU

requirements can enable the deployment of autonomous

vehicles in contexts where resource constraints and cost

considerations are critical factors. This opens up opportunities

for implementing autonomous vehicle technology in various

industries, such as logistics, transportation, and delivery

services, even in scenarios with limited hardware resources.

The findings of this study provide valuable insights for

managers looking to leverage autonomous vehicle technology

in a cost-effective and efficient manner, thus facilitating its

adoption and implementation in real-world applications.

8. CONCLUSION

The optimization of any neural net is a continuous process

as various hyper parameters have to be changed using trial and

error methods or until the desired results are achieved. There

will always be therefore, tradeoffs and tolerance for margin of

errors. The net or model which has been optimized and

customized for a small-scale operation shows that training

metrics improve after customization and optimization. The

customization of convolution layers, the selection of various

parameters of these layers and the overall fine tuning is a

decent jumping point or reference point to understand what

more can be done to add more gains to the progress and

success which will reflect positively on the training and testing

parameters. Optimizing neural nets for various applications

involves comprehensive and time-consuming work to make

sure these hyper parameters are selected in such a way that

yields positive results.

The optimization of the model for small scale application

involved customizing the different layers of the model and

then changing or setting the hyper parameters to make sure the

metrics aligned with desired results. The work outlined here

also involved training that particular model on a vast data set

and yielded positive results in terms of training and testing

parameters. However, it is still important to note that this work

had certain caveats where the input variables were kept

constant to keep the model simple. In addition, the training and

testing of the model in virtual environment renders it not

generalizable for complex road or paths.

The aim of the work has been to understand the need of

customization of complex traditional deep neural networks

and then customize them according to the scale and

complexity of the task or operation and the need to

continuously update the model’s architecture to make it simple

and scalable. Such type of customization, optimizations or fine

tunings can be done exhaustively to make sure desired results

are achieved. Out of those few customizations and

optimizations were performed to yield acceptable performance

metrics.

Limitations of data access: Due to restricted data

availability, the study may have relied on a limited dataset,

potentially impacting the generalizability of the findings.

Expanding access to diverse and comprehensive datasets

would enhance the robustness and applicability of future

research in this domain.

Methodological limitations: The study acknowledges

potential limitations in the methodology employed, such as

assumptions made during the optimization process or

constraints imposed on the customization of neural networks.

Future research should explore alternative methodologies and

approaches to validate and refine the findings presented in this

study. Future research directions include: enhancing

optimization techniques, real-world implementation and

validation, cost efficiency analysis, and expanding application

domain.

ACKNOWLEDGMENT

This research project was funded by the Deanship of

Scientific Research, Princess Nourah bint Abdulrahman

University, through the Program of Research Project Funding

after Publication, Grant No. (43-PRFA-P-4).

REFERENCES

[1] Kocić, J., Jovičić, N., Drndarević, V. (2019). An end-to-

end deep neural network for autonomous driving

designed for embedded automotive platforms. Sensors,

19(9): 2064. https://doi.org/10.3390/s19092064

[2] Timmis, I., Paul, N., Chung, C.J. (2021). Teaching

vehicles to steer themselves with deep learning. In 2021

IEEE International Conference on Electro Information

Technology (EIT), Mt. Pleasant, MI, USA, pp. 419-421.

https://doi.org/10.1109/EIT51626.2021.9491894

[3] Raj, M., Narendra, V.G. (2021). Deep neural network

approach for navigation of autonomous vehicles. In 2021

6th International Conference for Convergence in

Technology (I2CT), Maharashtra, India, pp. 1-4.

https://doi.org/10.1109/I2CT51068.2021.9418189

[4] Dangskul, W., Phattaravatin, K., Rattanaporn, K.,

Kidjaidure, Y. (2021). Real-time control using

convolution neural network for self-driving cars. In 2021

7th International Conference on Engineering, Applied

Sciences and Technology (ICEAST), Pattaya, Thailand,

pp. 125-128.

https://doi.org/10.1109/ICEAST52143.2021.9426255

[5] Do, T.D., Duong, M.T., Dang, Q.V., Le, M.H. (2018).

475

Real-time self-driving car navigation using deep neural

network. In 2018 4th International Conference on Green

Technology and Sustainable Development (GTSD), Ho

Chi Minh City, Vietnam, pp. 7-12.

https://doi.org/10.1109/GTSD.2018.8595590

[6] Ni, J., Chen, Y., Chen, Y., Zhu, J., Ali, D., Cao, W.

(2020). A survey on theories and applications for self-

driving cars based on deep learning methods. Applied

Sciences, 10(8): 2749.

https://doi.org/10.3390/app10082749

[7] Liu, J. (2020). Survey of the image recognition based on

deep learning network for autonomous driving car. In

2020 5th International Conference on Information

Science, Computer Technology and Transportation

(ISCTT), Shenyang, China, pp. 1-6.

https://doi.org/10.1109/ISCTT51595.2020.00007

[8] Badola, A., Nair, V.P., Lal, R.P. (2020). An analysis of

regularization methods in deep neural networks. In 2020

IEEE 17th India Council International Conference

(INDICON), New Delhi, India, pp. 1-6.

https://doi.org/10.1109/INDICON49873.2020.9342192

[9] Wu, S., Li, G., Deng, L., Liu, L., Wu, D., Xie, Y., Shi, L.

(2018). L1-norm batch normalization for efficient

training of deep neural networks. IEEE Transactions on

Neural Networks and Learning Systems, 30(7): 2043-

2051. https://doi.org/10.1109/TNNLS.2018.2876179

[10] Neary, P. (2018). Automatic hyperparameter tuning in

deep convolutional neural networks using asynchronous

reinforcement learning. In 2018 IEEE International

Conference on Cognitive Computing (ICCC), San

Francisco, CA, USA, pp. 73-77.

https://doi.org/10.1109/ICCC.2018.00017

[11] Curiel-Ramirez, L.A., Ramirez-Mendoza, R.A.,

Bautista-Montesano, R., Bustamante-Bello, M.R.,

Gonzalez-Hernandez, H.G., Reyes-Avedaño, J.A.,

Gallardo-Medina, E.C. (2020). End-to-end automated

guided modular vehicle. Applied Sciences, 10(12): 4400.

https://doi.org/10.3390/app10124400

[12] Fridman, L., Ding, L., Jenik, B., Reimer, B. (2019).

Arguing machines: Human supervision of black box AI

systems that make life-critical decisions. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pp. 1335-1343.

http://dx.doi.org/10.1109/CVPRW.2019.00173

[13] Fridman, L., Brown, D.E., Kindelsberger, J., Angell, L.,

Mehler, B., Reimer, B. (2019). Human side of tesla

autopilot: Exploration of functional vigilance in real-

world human-machine collaboration.

https://teslamotorsclub.com/tmc/attachments/tesla-

autopilot-human-side-pdf.394047/.

[14] Olayiwola, J.O., Badejo, J.A., Okokpujie, K., Awomoyi,

M.E. (2023). Lung-related diseases classification using

deep convolutional neural network. Mathematical

Modelling of Engineering Problems, 10(4): 1097-1104.

https://doi.org/10.18280/mmep.100401

[15] Youssef, A.M. (2018). Operations of electric vehicle

traction system. Mathematical Modelling of Engineering

Problems, 5(2): 51-57.

https://doi.org/10.18280/mmep.050201

[16] Kotapati, G., Selvamani, P.K.D., Lella, K.K., Shaik, K.S.,

Katevarapu, V.R., Bommagani, N.J. (2023). Deep

learning based optimization model for energy

consumption of new electric vehicles. Revue

d'Intelligence Artificielle, 37(4): 825-834.

https://doi.org/10.18280/ria.370402

476

