
Enhancing Image Classification Through a Hybrid Approach: Integrating Convolutional

Neural Networks with Hidden Markov Mod

Abdelhak Djalab , Lahouaoui Lalaoui* , Aya Bisker , Aicha Hadibi

Department of Electronic, Faculty of Technology, Mohamed Boudiaf University of M’sila, M’sila 28000, Algeria

Corresponding Author Email: lahouaoui.lalaoui@univ-msila.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410132 ABSTRACT

Received: 22 July 2023

Revised: 20 November 2023

Accepted: 19 December 2023

Available online: 29 February 2024

In the field of computer vision, image classification stands as a pivotal task, aiming to

categorize images based on their inherent visual information. This paper presents an

innovative hybrid approach, merging the strengths of Convolutional Neural Networks

(CNNs) and Hidden Markov Models (HMMs) to enhance the efficacy of image

classification. The integration of these two methodologies, each excelling in distinct aspects

of data analysis, forms the cornerstone of our research. CNNs, renowned for their

proficiency in extracting spatial data and fine-grained features, are adept at generalizing

across diverse datasets. Conversely, HMMs, with their robust sequential data modeling

capabilities, adeptly capture dependencies within the feature sets derived from CNNs. This

synergy is embodied in the HMM-CNN framework, wherein CNNs serve to extract pertinent

features from images, while HMMs model the spatial dependencies between adjacent pixels.

Empirical evaluations on benchmark datasets substantiate the superior performance of this

hybrid approach over traditional CNNs, particularly in scenarios where temporal

dependencies are paramount, such as video analysis, action recognition, and gesture

classification. A comparative analysis employing five datasets and six metrics-recall,

precision, val_loss, val_accuracy, val_precision, and val_recall-reveals the superiority of the

CNN-HMM model. Specifically, against a standalone CNN model with an accuracy of 87%,

the CNN-HMM model demonstrates an accuracy of approximately 89.09%. This paper's

findings underscore the efficacy of combining CNN and HMM methodologies for advanced

image classification tasks, offering significant implications for future research in this

domain.

Keywords:

deep learning, Convolutional Neural

Network (CNN), Hidden Markov Model

(HMM), hybrid HMM and CNN, image

classification

1. INTRODUCTION

A fundamental problem in computer vision is image

classification, which is labeling or categorizing images based

on their visual characteristics. By accurately collecting spatial

patterns and learning to distinguish features from images,

although it can also be used with one-dimensional and

tridimensional data, CNNs, or convoluted neural networks, are

a specialized sort of neural network model designed to operate

with bidimensional image data. These networks are able to

learn to extract local characteristics, that is, structures that

repeat themselves throughout the image. CNNs have shown

exceptional effectiveness in image categorization. CNNs are

widely used in various applications, such as object detection,

image classification, and facial recognition, due to their ability

to learn and extract meaningful features from images [1]. The

use of deep learning algorithms like CNNs has revolutionized

the field of computer vision and led to significant

advancements in image classification tasks. With the help of

feature extraction and dimensionality reduction, the

representations from the input images.

To build the new CNN architectures into the IT vision

domain [2-6]. Dehghan et al. [7] utilized CNN provides a more

sophisticated method for classifying images and detecting

things. There are sophisticated numbers in this technology.

The terms you desire for a memento are used by artificial

intelligence and autonomous applications. CNNs are helpful,

particularly in situations with a lot of data, image classification,

etc. Their augmented usage across various industries can be

attributed to their exceptionally precise outcomes and

forecasts. HMMs are frequently used to predict the future

behavior of individual elements. The HMM is based on the

theory that an element's future behavior is determined by its

past behavior as well as the behavior of other nearby elements.

The HMM can be used to understand the relationships between

the elements in an ensemble of data as well as predict how

individual elements will behave in the future.

HMMs, on the other hand, are frequently used for sequential

data modeling and have historically been used in areas like

speech recognition or natural language processing [8]. The

goal is to use the sequential modeling capabilities of HMMs to

capture dependencies in the derived features from CNNs [9],

improving the classification's accuracy and discriminative

ability. The other tactic is to compile all of the data in order to

apply models that are more capable of deep learning, but at the

expense of losing track of individual behavior information.

This memory's hypothesis is that, despite the second strategy's

lower performance, it still provides useful information and that

Traitement du Signal
Vol. 41, No. 1, February, 2024, pp. 383-390

Journal homepage: http://iieta.org/journals/ts

383

https://orcid.org/0009-0003-3130-2650
https://orcid.org/0000-0003-0482-3293
https://orcid.org/0009-0007-6808-5468
https://orcid.org/0009-0009-6416-2002
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410132&domain=pdf

using both strategies together can improve overall

performance and mitigate the issue of the individualized

strategy's potential data shortage.

The hybrid HMM-CNN [10] technique takes advantage of

the advantages of both models to overcome the drawbacks of

standalone CNNs by merging these two potent algorithms.

Researchers have recently looked into the possible

advantages of a hybrid approach for picture classification that

combines the advantages of both HMMs and CNNs [11].

This hybrid approach tries to combine, in a beneficial way,

the temporal modeling provided by HMMs [12] and the spatial

analysis provided by CNNs [13, 14]. CNN components extract

complex patterns and high-level Following that, these features

are fed into an HMM, which simulates the temporal

correlations between the collected features and enables the use

of sequential data for better categorization.

This hybrid design potentially opens up a path for improved

image classification performance, especially in applications

like video analysis or image recognition where temporal

dependencies are critical.

Throughout this investigation, we will delve into the precise

procedures, techniques, and considerations associated with

putting a hybrid HMM-CNN [15] approach to use in building

an image classification system. We will look at how the

sequential modeling skills of HMMs [16] can be paired with

the feature extraction capabilities of CNNs [17] to produce

results in image classification that are more reliable and

accurate. In this work, CNN was used to extract the

characteristics, while HMM was employed to classify the

images.

In this work, we propose a hybrid method that combines

HMMs and CNNs for image classification. The CNN [18] is

used to extract features from the images, while the HMM is

used to model the spatial dependencies between adjacent

image pixels [19]. The resulting classification performance is

evaluated on a skin layer dataset, and the results show that the

proposed method outperforms other state-of-the-art methods.

The rest of the paper is organized as follows: Section 2

provides a brief overview of CNNs and HMMs; Section 3

describes the proposed hybrid method; Section 4 presents the

experimental results; and Section 5 concludes the paper.

2. METHODS

Image classification is an important task in computer vision

that involves partitioning an image into distinct regions or

objects. CNNs have emerged as a powerful tool for image

segmentation, achieving state-of-the-art performance in a

variety of applications. HMMs have been widely used for

image segmentation due to their ability to model complex

temporal dependencies and sequential data.

2.1 CNN for image classification methods

CNNs are neural networks that use convolutional layers to

extract features from the input image. These features can then

be used for classification, object detection, and other

classification tasks. CNN-based classification methods have

several advantages over traditional methods, including the

ability to handle complex image structures and to learn

representations directly from the data. There are several CNN-

based methods for image classification, each with its own

strengths and weaknesses. Some methods, such as fully

convolutional networks (FCNs), use encoder-decoder

architecture to produce a dense pixel-wise prediction of the

input image. Other methods, such as dilated convolutional

networks, use dilated convolutional layers to expand the

receptive field of the network.

In this context, choosing the appropriate method depends on

the specific application requirements, such as classification

accuracy, speed, and memory usage. In the following sections,

we will explore some of the popular CNN-based methods for

image classification and their characteristics in more detail.

There are several methods for image classification using

CNNs, some of which include:

FCNs are a type of CNN that have an encoder-decoder

architecture. The encoder part consists of convolutional and

pooling layers, while the decoder part consists of

deconvolutional layers. FCNs produce a dense pixel-wise

prediction of the input image, which can be thresholded to

generate a binary segmentation mask.

U-Net is an extension of the FCN architecture that includes

skip connections between the encoder and decoder parts.

These skip connections allow the decoder to access

information from earlier layers of the encoder, which can

improve segmentation accuracy.

SegNet is another encoder-decoder architecture that

includes pooling indices in the encoder part. These indices are

used in the decoder part to perform upsampling, which reduces

the number of parameters needed compared to other

architectures.

These are called dilated convolutional networks. They use

convolutional layers with faster dilation rates to make the

network's receptive field bigger while keeping the filter size

small. This can improve the network's ability to capture global

information and increase segmentation accuracy.

Multi-scale networks combine multiple CNNs with

different receptive fields to capture information at different

scales. This can improve the network's ability to capture both

local and global information and improve segmentation

accuracy.

These methods are just a few examples of CNN-based

approaches to image segmentation, and there are many other

variations and extensions that have been proposed. The choice

of method depends on the specific application and the

requirements for segmentation accuracy, speed, and memory

usage.

2.2 HMM for image classification methods

HMM-based image classification methods are particularly

useful when dealing with dynamic scenes or videos, where the

classification needs to be performed over a sequence of images.

The basic idea behind HMM-based image classification is to

model the image sequence as a Markov process, where each

image is a state and the transitions between states are governed

by a set of probabilities. These probabilities can be learned

from training data using algorithms such as the Baum-Welch

algorithm.

In HMM-based image classification, the image is first

represented using a set of features, such as color, texture, or

shape. The HMM is then used to model the temporal

dependencies between the features, and the image sequence is

segmented by finding the most likely sequence of states given

the observed features.

HMM-based image classification methods have several

advantages, including the ability to handle noisy or incomplete

384

data and the ability to model complex temporal dependencies.

However, they can be computationally intensive and may

require significant amounts of training data to achieve high

accuracy.

2.3 Method proposed for image classification

In this paper, a popular benchmark dataset in computer

vision and machine learning is CIFAR-10. It has 60,000 color

photos divided into 10 classes, with 6,000 images in each class.

The dataset is divided into 50,000 training images and 10,000

test images. The CIFAR-10 dataset was created especially for

applications involving image classification. At 32 by 32 pixels,

every image in the collection is tagged with one of the

following classes: truck, airplane, automobile, bird, cat, deer,

dog, frog, horse, or ship. CNN architecture is composed of a

number of treatment layers.

The convolutional layer (CONV) processes the data from a

receiver field. The pooling layered image (POOL) allows

information compression by reducing the intermediate image

size (usually through sub-sampling). The correction matrix

(ReLU), also referred to as "ReLU abuse" due to its activation

function (Linear Correction Unit), The FC layers a perceptron-

type layer and the loss layers (LOSS). The filter used has a 3x3

dimension; the network's multiplication of these couches will

enable the extraction of features. During the learning phase,

the network will adjust the weights of the different

convolutional filters until it finds elements in the image more

accurately. This will allow it to correctly guess the category in

this paper.

We proposed combining HMMs with machine learning

techniques, such as CNNs, to improve classification accuracy

and efficiency. These hybrid approaches combine the

strengths of both methods and can lead to more robust and

accurate classification results.

Here is an algorithmic approach for image classification

using a hybrid combination of HMMs and CNNs:

✓ Image Preparation

Collect and preprocess the image dataset, including resizing

images to a consistent size and normalizing pixel values. Split

the dataset into training and testing sets.

✓ CNN Feature Extraction

Use a pre-trained CNN model (in Figure 1) to extract high-

level features from the images in the training set. Flatten or

pool the extracted features into a fixed-dimensional vector

representation for each image.

Figure 1. Diagram of the proposed method

✓ HMM State and Observation Mapping

Define a set of hidden states in the HMM, corresponding to

the target classes for image classification.

Map each feature vector to an observation symbol,

representing the discrete observations for the HMM.

✓ HMM Training

Define a set of hidden states in the HMM, corresponding to

the target classes for image classification.

Map each feature vector to an observation symbol,

representing the discrete observations for the HMM.

✓ HMM-CNN Classification

For each image in the testing set, apply the pre-trained CNN

to extract the feature vector representation.

Pass the feature vector through the trained HMM to obtain

the most likely sequence of hidden states using the Viterbi

algorithm.

Map the sequence of hidden states to the corresponding

class labels for image classification.

✓ Evaluation

Compute evaluation metrics such as accuracy, precision,

recall, and F1-score to assess the performance of the hybrid

HMM-CNN model on the testing set.

✓ Fine-tuning and Optimization

Adjust the hyperparameters of both the CNN and HMM,

such as the learning rate, number of layers, filter sizes, and

transition probabilities.

Iteratively refine and fine-tune the hybrid model for better

accuracy and generalization.

It's worth noting that implementing a hybrid HMM-CNN

approach for image classification can be complex, and the

performance may not always surpass that of using CNNs alone.

CNNs are generally the preferred choice for image

classification tasks due to their ability to directly learn

complex spatial patterns from images. The hybrid approach

seeks to incorporate temporal dependencies into the

classification process, leveraging the sequential modeling

capabilities of HMMs.

Figure 2. Diagram of the proposed method

Overall, the hybrid HMM and CNN method combines the

strengths of both techniques: the CNN is used to extract

385

features from the image, while the HMM is used to model the

spatial dependencies between adjacent pixels. The resulting

classification performance is typically better than using either

technique alone. The diagram of the proposed algorithm for

our work is shown in Figure 2.

3. RESULT

The results of these studies suggest that the hybrid CNN-

HMM model can be an effective approach for image

classification, leveraging the strengths of both CNNs and

HMMs. The CNN can extract features from the image that are

relevant to the task of classification, while the HMM can

model the spatial relationships between adjacent pixels and

identify boundaries between different regions in the image.

However, the effectiveness of the hybrid model depends on

various factors, including the complexity of the image, the

number of classes, and the quality of the training data. Further

research is needed to evaluate the performance of the hybrid

CNN-HMM model for different types of images and

applications.

In this paper, I will describe the architecture of the CNN

model. I have developed it for image classification and

demonstrated its application on the CIFAR-10 dataset. The

model is implemented using the Keras API, which is built on

top of Tensor Flow. The architecture of the model consists of

several convolutional layers, followed by batch normalization

and max-pooling layers, which help to improve the stability of

the training process and reduce overfitting. Dropout is also

implemented to further prevent overfitting. The fully

connected layer at the end of the model has a large number of

neurons, which increases the model's capacity and allows it to

learn more complex features. The model is trained using the

Adam optimizer and the categorical cross-entropy loss

function. By training the model on the CIFAR-10 dataset for

multiple epochs, the model learns to accurately classify images

into 10 different classes. Overall, the combination of the CNN

architecture, batch normalization, dropout, and optimization

techniques make the model highly effective at image

classification tasks.

3.1 Software and tools

3.1.1 Python

Python is a high-level, interpreted programming language

known for its simplicity, readability, and versatility. It was

created by Guido van Rossum and first released in 1991.

Python's design philosophy emphasizes code readability,

making it easy for developers to express concepts clearly and

concisely. One of Python's defining features is its clean and

intuitive syntax, which allows programmers to write code

more naturally and expressively. This readability not only

enhances developer productivity but also facilitates

collaboration among teams. Python provides a vast standard

library that offers a wide range of modules and functions for

various tasks, such as file handling, networking, web

development, data manipulation, and more. Additionally,

Python has a thriving ecosystem of third-party libraries and

frameworks that extend its capabilities, enabling developers to

tackle specialized domains like machine learning, scientific

computing, and data analysis. Python's interpreted nature

allows for rapid development and prototyping. It supports

multiple programming paradigms, including procedural,

object-oriented, and functional programming, giving

developers the flexibility to choose the approach that best suits

their needs. The strength of Python is its cross-platform

compatibility, enabling code to run seamlessly on different

operating systems. This portability makes Python a popular

choice for developing applications that need to work across

various platforms and environments. Python has a large and

supportive community that contributes to its growth and

development. The community provides extensive

documentation, tutorials, and forums where programmers can

seek help, share knowledge, and collaborate on open-source

projects. In summary, Python is a versatile programming

language that prioritizes simplicity, readability, and ease of

use. Its extensive standard library, diverse ecosystem, cross-

platform compatibility, and supportive community make it a

popular choice for a wide range of applications and skill levels.

3.1.2 CNN’s architecture

Figure 3. CIFAR-10 dataset

Table 1. The architecture of the used model for my test

Layer (Type) Output Shape
Param

conv2d (Conv2D) None, 32, 32, 32 896

batch_normalization
(BatchNo (None, 32, 32,

32)
128

conv2d_1 (Conv2D) (None, 32, 32, 32) 9248

batch_normalization_1 (Batch (None, 32, 32, 32) 128

max_pooling2d

(MaxPooling2D)
(None, 16, 16, 32) 0

dropout (Dropout) (None, 16, 16, 32) 0

conv2d_2 (Conv2D) (None, 16, 16, 64) 18496

batch_normalization_2 (Batch (None, 16, 16, 64) 256

conv2d_3 (Conv2D) (None, 16, 16, 64) 36928

batch_normalization_3 (Batch (None, 16, 16, 64) 256

max_pooling2d_1
(MaxPooling2 (None, 8, 8,

64)
0

dropout_1 (Dropout) (None, 8, 8, 64) 0

conv2d_4 (Conv2D) (None, 8, 8, 128) 73856

batch_normalization_4 (Batch (None, 8, 8, 128) 512

conv2d_5 (Conv2D) (None, 8, 8, 128) 147584

batch_normalization_5 (Batch (None, 8, 8, 128) 512

max_pooling2d_2
(MaxPooling2 (None, 4, 4,

128)
0

dropout_2 (Dropout) (None, 4, 4, 128) 0

flatten (Flatten) (None, 2048) 0

dense (Dense) (None, 128) 262272

dropout_3 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 10) 1290

Total params 552,362

Trainable params 551,466

Non-trainable params 896

386

The studied model consists of a total of 18 layers, including

6 convolutional layers, 3 max-pooling layers, 6 batch

normalization layers, 3 dropout layers, 1 flattening layer, and

2 dense layers. The input image, which has a size of 32x32

pixels, is passed through these layers sequentially to classify it

into one of the 10 classes in the dataset. This table displays a

comprehensive summary of the model's architecture,

providing detailed information about each layer and its

corresponding parameters. Please refer to the table for a visual

representation of the model's architecture.

Figure 3 shows the detailed architecture (summary) of the

Model: "sequential"

This table (Table 1) shows the detailed architecture

(summary) of the model: "sequential".

3.1.3 Hardware

The hardware utilized throughout the implementation of the

entire project is described in Table 2.

Table 2. The hardware used to run the tests

 Intel(R) Core (TM) i3-10100F CPU @

3.60GHz 3.60 GHz

GPU Nvidia GeForce GTX 1050 Ti

Memory (RAM) 16.0 GB

OS Windows 11 64-bit

3.2 Data set

Researchers and practitioners often utilize the CIFAR-10

dataset to evaluate and compare the performance of different

image classification algorithms and models. It serves as a

benchmark for assessing the accuracy and generalization

capabilities of machine learning models in classifying images

from different categories. The CIFAR-10 dataset has

contributed to advancements in computer vision and deep

learning research. It has been used to train and evaluate various

state-of-the-art models, including CNNs, to achieve high

accuracy in image classification tasks. To initiate my tests, I

began by visualizing a randomly selected sample from the

dataset. Please refer to Figure 4 for an illustration of this

random sample. In this code, we are going to build a CNN

model that can classify images of various objects. We have 10

classes of images, such as: airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck.

Upon executing the code, some results were attained. Figure

5 provides a summary of the class distribution in the training

set, while Figure 6 depicts the class distribution.

Figure 4. A random sample from the dataset

Figure 5. Class distribution in the training set

Figure 6. Class distribution in the testing set

The testing set is presented below.

Training Section

The provided lines represent the training and validation

progress of a model over 50 epochs. Throughout the training

process, the model's performance is evaluated using various

metrics such as loss, accuracy, precision, and recall.

In the beginning, during the first epoch, the model achieved

a relatively low accuracy of 0.4095 on the training set,

indicating that it initially struggled to make accurate

predictions. However, there was a notable precision of 0.6303,

suggesting that when the model made predictions, they were

relatively reliable. The recall, which measures the model's

ability to identify positive instances correctly, was at 0.1953,

indicating room for improvement.

As the training progressed, the model's performance

gradually improved. By the 50th epoch, the model achieved a

significantly higher accuracy of 0.8755 on the training set,

indicating that it learned to make more accurate predictions

over time. Both precision (0.9091) and recall (0.8459) were

relatively high, suggesting that the model was effectively

identifying and classifying positive instances.

Overall, the model's performance progressed positively

throughout the training process, demonstrating an increasing

ability to make accurate predictions and classify positive

instances.

In Table 3, we present the performance of the criteria.

387

Table 3. The values of criteria to run the tests

Epoch 8/50

1562/1562-

156s 100ms/step

Epoch

9/50

1562/1562

148s

95ms/step

Epoch

10/50

1562/1562

144s

92ms/step

Epoch

50/50

1562/1562

154s

98ms/step

loss 0.7307 0.6964 0.6964 0.3600

Accuracy 0.7524 0.7649 0.7649 0.8764

precision 0.8366 0.8439 0.8486 0.9083

recall 0.6732 0.6912 0.7023 0.8473

val_loss 0.5864 0.5819 0.5712 0.4052

val_accuracy 0.8050 0.8060 0.8085 0.8687

val_precision 0.8758 0.8628 0.8674 0.8990

val_recall 0.7417 0.7486 0.7563 0.8432

Accuracy and Model Loss

Figure 7 suggests that the model is learning and acquiring

more information over time. Consequently, the training loss

decreases at a faster rate than the validation loss, indicating

improved performance on the training data. The widening gap

between the training and validation curves may indicate

potential overfitting, necessitating techniques to enhance

generalization.

Figure 7. Test accuracy and model loss plots

In the confusion matrix, we see that the truck class is

misclassified for the different classes used in this paper.

As an example, the model classified the images of birds,

cats, and trucks and misclassified the images of dogs, frogs,

and deer (Figure 8).

Figure 8. The confusion matrix of the model

The confusion matrix is a valuable tool for evaluating the

performance of a model as it provides insights into the true

positive, true negative, false positive, and false negative

metrics. In Figure 13, the arrangement of these metrics for

each class is depicted, offering a clear visual representation of

the model's performance in terms of correct and incorrect

classifications.

Error Rate

Figure 9 depicts the error rate of the classified and

misclassified images by the trained model. Upon observation,

it can be inferred that the model has achieved a satisfactory

level of accuracy, as the misclassification rate is less than one-

fourth of the entire dataset.

Figure 9. The error rate of the model

Accuracy

Upon completing the tests, the model demonstrated its

ability to accurately classify images, achieving a test accuracy

of 87.09%. This indicates the model's proficiency in accurately

predicting the correct classes for the test dataset.

4. TEST SECTION

Based on Figure 10 of the "Test" section, the image under

examination was effectively recognized, and its location was

correctly identified. Although we applied a filter to see if he

could identify it, he identified it as a deer and attained a rank

of 4 in the evaluation. Nevertheless, there remains an

opportunity to further improve the results and achieve even

better performance.

Figure 10. Test section results

Before concluding the tests, the provided code snippet

generates a grid of images along with their corresponding

labels for visualization purposes. Each image is randomly

388

selected from the X_Test dataset, and the predicted label is

assigned as the title for each image. The resulting grid of

images and labels is presented in the accompanying document.

In Figure 11, we give an example of an image noisy test, and

in Figure 12, the image test.

Figure 11. Test section results noisy

Figure 12. A random selection of images testing

At the end of the tests, the model achieved a test accuracy

of 87.09% in classifying the images.

Figure 13 provided illustrates a sample of the images,

depicting the expected true labels and the model's predicted

labels. The correct color predictions are represented in blue,

while the incorrect predictions are depicted in red.

The table in the paper would typically present the

quantitative results of the classification performance of the

proposed hybrid method compared to other state-of-the-art

methods. It would contain metrics such as precision, recall,

F1-score, and accuracy for each method, along with a

comparison of their performance.

Figure 13. Correct and incorrect predictions highlighted

The images in the paper would typically show examples of

the image classification results obtained using the proposed

hybrid method and other state-of-the-art methods. These

images would show the original image along with the

classification masks obtained from each method and would

allow the reader to visually compare the performance of the

different methods.

Additionally, the paper may include images of the skin layer

dataset used in the experiments to provide a better

understanding of the nature of the data being segmented.

5. CONCLUSION

A new and interesting way to use both spatial and temporal

information in image data is the hybrid model for image

classification that combines HMMs and CNNs. The primary

objective of this research was to investigate the efficacy of a

hybrid model combining CNNs and HMMs for image

classification. The aim was to leverage the spatial feature

extraction capabilities of CNNs and the temporal modeling

strengths of HMMs to achieve a more comprehensive

understanding of image data. This fusion of models aims to

capture the hierarchical and spatial features extracted by

CNNs along with the temporal dependencies modeled by

HMMs. Combining CNNs and HMMs in a hybrid way to

classify images leads to results that are useful in many ways

and help us learn more about this topic.

The integration of these models provides a versatile

framework applicable to various domains with dynamic and

sequential data.

The hybrid CNN-HMM model makes it more effective and

applicable across a broader range of image classification tasks.

Each recommendation represents a potential avenue for

improving specific aspects of the model's performance and

understanding.

The hybrid CNN-HMM model can potentially reduce errors

and enhance its overall performance on the test set. Adjusting

the architecture and training process based on specific

389

examples of errors provides a targeted and informed approach

to model improvement.

Denoising and edge detection were two issues that

thresholding solved, but the primary issue it created was data

loss. Hidden Markov statistical models, which may be used in

the spatial or multiresolution domains for classification, have

also been studied. Additionally, addressing these limitations in

future research can contribute to the refinement and broader

applicability of the proposed hybrid model. Future work on the

hybrid CNN-HMM model for image classification can focus

on several avenues to enhance its performance, robustness,

and applicability.

REFERENCES

[1] Kamavisdar, P., Saluja, S., Agrawal, S. (2013). A survey

on image classification approaches and techniques.

International Journal of Advanced Research in Computer

and Communication Engineering, 2(1): 1005-1009.

[2] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556.

https://doi.org/10.48550/arXiv.1409.1556

[3] He, K.M., Zhang, X.Y., Ren, S.Q, Sun, J. (2016). Deep

residual learning for image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770-778.

https://doi.org/10.48550/arXiv.1512.03385

[4] AbdulAzeem, Y., Bahgat, W.M., Badawy, M. (2021). A

CNN based framework for classification of Alzheimer’s

disease. Neural Computing and Applications, 33: 10415-

10428. https://doi.org/10.1007/s00521-021-05799-w

[5] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

ImageNet classification with deep convolutional neural

networks. Communications of the ACM, 60(6): 84-90.

https://doi.org/10.1145/3065386

[6] Zhang, J., Xie, Y., Wu, Q., Xia, Y. (2019). Medical

image classification using synergic deep learning.

Medical Image Analysis, 54: 10-19.

https://doi.org/10.1016/j.media.2019.02.010

[7] Dehghan, M., Faez, K., Ahmadi, M., Shridhar, M. (2001).

Handwritten Farsi (Arabic) word recognition: A holistic

approach using discrete HMM. Pattern Recognition,

34(5): 1057-1065. https://doi.org/10.1016/S0031-

3203(00)00051-0

[8] Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.

(2018). H-DenseUNet: hybrid densely connected UNet

for liver and tumor segmentation from CT volumes.

IEEE Transactions on Medical Imaging, 37(12): 2663-

2674. https://doi.org/10.1109/TMI.2018.2845918

[9] Safira, L., Irawan, B., Setianingsih, C. (2019). K-nearest

neighbour classification and feature extraction GLCM

for identification of Terry's Nail. In 2019 IEEE

International Conference on Industry 4.0, Artificial

Intelligence, and Communications Technology (IAICT),

Bali, Indonesia, pp. 98-104.

https://doi.org/10.1109/ICIAICT.2019.8784856

[10] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Rabinovich, A. (2015). Going deeper with

convolutions. In 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Boston, MA,

USA, 2015, pp. 1-9.

https://doi.org/10.1109/CVPR.2015.7298594

[11] Xie, H., Tian, G., Du, G., Huang, Y., Chen, H., Zheng,

X., Luan, T.H. (2018). A hybrid method combining

Markov prediction and fuzzy classification for driving

condition recognition. IEEE Transactions on Vehicular

Technology, 67(11): 10411-10424.

https://doi.org/10.1109/TVT.2018.2868965

[12] Wang, W., Hu, Y., Zou, T., Liu, H., Wang, J., Wang, X.

(2020). A new image classification approach via

improved MobileNet models with local receptive field

expansion in shallow layers. Computational Intelligence

and Neuroscience, 2020: 8817849

https://doi.org/10.1155/2020/8817849

[13] Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M.,

Schmidhuber, J. (2011). High-performance neural

networks for visual object classification. arXiv preprint

arXiv:1102.0183.

https://doi.org/10.48550/arXiv.1102.0183

[14] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei,

L. (2009). Imagenet: A large-scale hierarchical image

database. In 2009 IEEE Conference on Computer Vision

and Pattern Recognition, Miami, FL, USA, pp. 248-255.

https://doi.org/10.1109/CVPR.2009.5206848

[15] Naswale, P.P., Ajmire, P.E. (2016). Image classification

techniques-a survey. International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS),

5(2).

[16] Van Sloun, R.J., Demi, L. (2019). Localizing B-lines in

lung ultrasonography by weakly supervised deep

learning, in-vivo results. IEEE Journal of Biomedical and

Health Informatics, 24(4): 957-964.

https://doi.org/10.1109/JBHI.2019.2936151

[17] Manoj Krishna, M., Neelima, M., Harshali, M., Venu

Gopala Rao, M. (2018). Image classification using deep

learning. International Journal of Engineering &

Technology, 7: 614-617.

https://doi.org/10.14419/ijet.v7i2.7.10892

[18] Chen, X., Xu, Y., Wong, D. W. K., Wong, T.Y., Liu, J.

(2015). Glaucoma detection based on deep convolutional

neural network. In 2015 37th Annual International

Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), Milan, Italy, pp. 715-718.

https://doi.org/10.1109/EMBC.2015.7318462

[19] Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P. (2016).

Deep feature extraction and classification of

hyperspectral images based on convolutional neural

networks. IEEE Transactions on Geoscience and Remote

Sensing, 54(10): 6232-6251.

https://doi.org/10.1109/TGRS.2016.2584107

390

