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In the field of computer vision, image classification stands as a pivotal task, aiming to 

categorize images based on their inherent visual information. This paper presents an 

innovative hybrid approach, merging the strengths of Convolutional Neural Networks 

(CNNs) and Hidden Markov Models (HMMs) to enhance the efficacy of image 

classification. The integration of these two methodologies, each excelling in distinct aspects 

of data analysis, forms the cornerstone of our research. CNNs, renowned for their 

proficiency in extracting spatial data and fine-grained features, are adept at generalizing 

across diverse datasets. Conversely, HMMs, with their robust sequential data modeling 

capabilities, adeptly capture dependencies within the feature sets derived from CNNs. This 

synergy is embodied in the HMM-CNN framework, wherein CNNs serve to extract pertinent 

features from images, while HMMs model the spatial dependencies between adjacent pixels. 

Empirical evaluations on benchmark datasets substantiate the superior performance of this 

hybrid approach over traditional CNNs, particularly in scenarios where temporal 

dependencies are paramount, such as video analysis, action recognition, and gesture 

classification. A comparative analysis employing five datasets and six metrics-recall, 

precision, val_loss, val_accuracy, val_precision, and val_recall-reveals the superiority of the 

CNN-HMM model. Specifically, against a standalone CNN model with an accuracy of 87%, 

the CNN-HMM model demonstrates an accuracy of approximately 89.09%. This paper's 

findings underscore the efficacy of combining CNN and HMM methodologies for advanced 

image classification tasks, offering significant implications for future research in this 

domain. 
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1. INTRODUCTION

A fundamental problem in computer vision is image 

classification, which is labeling or categorizing images based 

on their visual characteristics. By accurately collecting spatial 

patterns and learning to distinguish features from images, 

although it can also be used with one-dimensional and 

tridimensional data, CNNs, or convoluted neural networks, are 

a specialized sort of neural network model designed to operate 

with bidimensional image data. These networks are able to 

learn to extract local characteristics, that is, structures that 

repeat themselves throughout the image. CNNs have shown 

exceptional effectiveness in image categorization. CNNs are 

widely used in various applications, such as object detection, 

image classification, and facial recognition, due to their ability 

to learn and extract meaningful features from images [1]. The 

use of deep learning algorithms like CNNs has revolutionized 

the field of computer vision and led to significant 

advancements in image classification tasks. With the help of 

feature extraction and dimensionality reduction, the 

representations from the input images. 

To build the new CNN architectures into the IT vision 

domain [2-6]. Dehghan et al. [7] utilized CNN provides a more 

sophisticated method for classifying images and detecting 

things. There are sophisticated numbers in this technology. 

The terms you desire for a memento are used by artificial 

intelligence and autonomous applications. CNNs are helpful, 

particularly in situations with a lot of data, image classification, 

etc. Their augmented usage across various industries can be 

attributed to their exceptionally precise outcomes and 

forecasts. HMMs are frequently used to predict the future 

behavior of individual elements. The HMM is based on the 

theory that an element's future behavior is determined by its 

past behavior as well as the behavior of other nearby elements. 

The HMM can be used to understand the relationships between 

the elements in an ensemble of data as well as predict how 

individual elements will behave in the future. 

HMMs, on the other hand, are frequently used for sequential 

data modeling and have historically been used in areas like 

speech recognition or natural language processing [8]. The 

goal is to use the sequential modeling capabilities of HMMs to 

capture dependencies in the derived features from CNNs [9], 

improving the classification's accuracy and discriminative 

ability. The other tactic is to compile all of the data in order to 

apply models that are more capable of deep learning, but at the 

expense of losing track of individual behavior information. 

This memory's hypothesis is that, despite the second strategy's 

lower performance, it still provides useful information and that 

Traitement du Signal 
Vol. 41, No. 1, February, 2024, pp. 383-390 

Journal homepage: http://iieta.org/journals/ts 

383

https://orcid.org/0009-0003-3130-2650
https://orcid.org/0000-0003-0482-3293
https://orcid.org/0009-0007-6808-5468
https://orcid.org/0009-0009-6416-2002
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410132&domain=pdf


 

using both strategies together can improve overall 

performance and mitigate the issue of the individualized 

strategy's potential data shortage. 

The hybrid HMM-CNN [10] technique takes advantage of 

the advantages of both models to overcome the drawbacks of 

standalone CNNs by merging these two potent algorithms. 

Researchers have recently looked into the possible 

advantages of a hybrid approach for picture classification that 

combines the advantages of both HMMs and CNNs [11]. 

This hybrid approach tries to combine, in a beneficial way, 

the temporal modeling provided by HMMs [12] and the spatial 

analysis provided by CNNs [13, 14]. CNN components extract 

complex patterns and high-level Following that, these features 

are fed into an HMM, which simulates the temporal 

correlations between the collected features and enables the use 

of sequential data for better categorization. 

This hybrid design potentially opens up a path for improved 

image classification performance, especially in applications 

like video analysis or image recognition where temporal 

dependencies are critical. 

Throughout this investigation, we will delve into the precise 

procedures, techniques, and considerations associated with 

putting a hybrid HMM-CNN [15] approach to use in building 

an image classification system. We will look at how the 

sequential modeling skills of HMMs [16] can be paired with 

the feature extraction capabilities of CNNs [17] to produce 

results in image classification that are more reliable and 

accurate. In this work, CNN was used to extract the 

characteristics, while HMM was employed to classify the 

images. 

In this work, we propose a hybrid method that combines 

HMMs and CNNs for image classification. The CNN [18] is 

used to extract features from the images, while the HMM is 

used to model the spatial dependencies between adjacent 

image pixels [19]. The resulting classification performance is 

evaluated on a skin layer dataset, and the results show that the 

proposed method outperforms other state-of-the-art methods. 

The rest of the paper is organized as follows: Section 2 

provides a brief overview of CNNs and HMMs; Section 3 

describes the proposed hybrid method; Section 4 presents the 

experimental results; and Section 5 concludes the paper. 

 

 

2. METHODS 

 

Image classification is an important task in computer vision 

that involves partitioning an image into distinct regions or 

objects. CNNs have emerged as a powerful tool for image 

segmentation, achieving state-of-the-art performance in a 

variety of applications. HMMs have been widely used for 

image segmentation due to their ability to model complex 

temporal dependencies and sequential data. 

 

2.1 CNN for image classification methods 

 

CNNs are neural networks that use convolutional layers to 

extract features from the input image. These features can then 

be used for classification, object detection, and other 

classification tasks. CNN-based classification methods have 

several advantages over traditional methods, including the 

ability to handle complex image structures and to learn 

representations directly from the data. There are several CNN-

based methods for image classification, each with its own 

strengths and weaknesses. Some methods, such as fully 

convolutional networks (FCNs), use encoder-decoder 

architecture to produce a dense pixel-wise prediction of the 

input image. Other methods, such as dilated convolutional 

networks, use dilated convolutional layers to expand the 

receptive field of the network. 

In this context, choosing the appropriate method depends on 

the specific application requirements, such as classification 

accuracy, speed, and memory usage. In the following sections, 

we will explore some of the popular CNN-based methods for 

image classification and their characteristics in more detail. 

There are several methods for image classification using 

CNNs, some of which include: 

FCNs are a type of CNN that have an encoder-decoder 

architecture. The encoder part consists of convolutional and 

pooling layers, while the decoder part consists of 

deconvolutional layers. FCNs produce a dense pixel-wise 

prediction of the input image, which can be thresholded to 

generate a binary segmentation mask. 

U-Net is an extension of the FCN architecture that includes 

skip connections between the encoder and decoder parts. 

These skip connections allow the decoder to access 

information from earlier layers of the encoder, which can 

improve segmentation accuracy. 

SegNet is another encoder-decoder architecture that 

includes pooling indices in the encoder part. These indices are 

used in the decoder part to perform upsampling, which reduces 

the number of parameters needed compared to other 

architectures. 

These are called dilated convolutional networks. They use 

convolutional layers with faster dilation rates to make the 

network's receptive field bigger while keeping the filter size 

small. This can improve the network's ability to capture global 

information and increase segmentation accuracy. 

Multi-scale networks combine multiple CNNs with 

different receptive fields to capture information at different 

scales. This can improve the network's ability to capture both 

local and global information and improve segmentation 

accuracy. 

These methods are just a few examples of CNN-based 

approaches to image segmentation, and there are many other 

variations and extensions that have been proposed. The choice 

of method depends on the specific application and the 

requirements for segmentation accuracy, speed, and memory 

usage. 

 

2.2 HMM for image classification methods 

 

HMM-based image classification methods are particularly 

useful when dealing with dynamic scenes or videos, where the 

classification needs to be performed over a sequence of images. 

The basic idea behind HMM-based image classification is to 

model the image sequence as a Markov process, where each 

image is a state and the transitions between states are governed 

by a set of probabilities. These probabilities can be learned 

from training data using algorithms such as the Baum-Welch 

algorithm. 

In HMM-based image classification, the image is first 

represented using a set of features, such as color, texture, or 

shape. The HMM is then used to model the temporal 

dependencies between the features, and the image sequence is 

segmented by finding the most likely sequence of states given 

the observed features. 

HMM-based image classification methods have several 

advantages, including the ability to handle noisy or incomplete 
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data and the ability to model complex temporal dependencies. 

However, they can be computationally intensive and may 

require significant amounts of training data to achieve high 

accuracy. 

 

2.3 Method proposed for image classification  

 

In this paper, a popular benchmark dataset in computer 

vision and machine learning is CIFAR-10. It has 60,000 color 

photos divided into 10 classes, with 6,000 images in each class. 

The dataset is divided into 50,000 training images and 10,000 

test images. The CIFAR-10 dataset was created especially for 

applications involving image classification. At 32 by 32 pixels, 

every image in the collection is tagged with one of the 

following classes: truck, airplane, automobile, bird, cat, deer, 

dog, frog, horse, or ship. CNN architecture is composed of a 

number of treatment layers. 

The convolutional layer (CONV) processes the data from a 

receiver field. The pooling layered image (POOL) allows 

information compression by reducing the intermediate image 

size (usually through sub-sampling). The correction matrix 

(ReLU), also referred to as "ReLU abuse" due to its activation 

function (Linear Correction Unit), The FC layers a perceptron-

type layer and the loss layers (LOSS). The filter used has a 3x3 

dimension; the network's multiplication of these couches will 

enable the extraction of features. During the learning phase, 

the network will adjust the weights of the different 

convolutional filters until it finds elements in the image more 

accurately. This will allow it to correctly guess the category in 

this paper. 

We proposed combining HMMs with machine learning 

techniques, such as CNNs, to improve classification accuracy 

and efficiency. These hybrid approaches combine the 

strengths of both methods and can lead to more robust and 

accurate classification results. 

Here is an algorithmic approach for image classification 

using a hybrid combination of HMMs and CNNs: 

✓ Image Preparation 

Collect and preprocess the image dataset, including resizing 

images to a consistent size and normalizing pixel values. Split 

the dataset into training and testing sets. 

✓ CNN Feature Extraction 

Use a pre-trained CNN model (in Figure 1) to extract high-

level features from the images in the training set. Flatten or 

pool the extracted features into a fixed-dimensional vector 

representation for each image. 

 

 
 

Figure 1. Diagram of the proposed method 

 

✓ HMM State and Observation Mapping 

Define a set of hidden states in the HMM, corresponding to 

the target classes for image classification. 

Map each feature vector to an observation symbol, 

representing the discrete observations for the HMM. 

✓ HMM Training 

Define a set of hidden states in the HMM, corresponding to 

the target classes for image classification. 

Map each feature vector to an observation symbol, 

representing the discrete observations for the HMM. 

✓ HMM-CNN Classification 

For each image in the testing set, apply the pre-trained CNN 

to extract the feature vector representation. 

Pass the feature vector through the trained HMM to obtain 

the most likely sequence of hidden states using the Viterbi 

algorithm. 

Map the sequence of hidden states to the corresponding 

class labels for image classification. 

✓ Evaluation 

Compute evaluation metrics such as accuracy, precision, 

recall, and F1-score to assess the performance of the hybrid 

HMM-CNN model on the testing set. 

✓ Fine-tuning and Optimization 

Adjust the hyperparameters of both the CNN and HMM, 

such as the learning rate, number of layers, filter sizes, and 

transition probabilities. 

Iteratively refine and fine-tune the hybrid model for better 

accuracy and generalization. 

It's worth noting that implementing a hybrid HMM-CNN 

approach for image classification can be complex, and the 

performance may not always surpass that of using CNNs alone. 

CNNs are generally the preferred choice for image 

classification tasks due to their ability to directly learn 

complex spatial patterns from images. The hybrid approach 

seeks to incorporate temporal dependencies into the 

classification process, leveraging the sequential modeling 

capabilities of HMMs. 

 

 
 

Figure 2. Diagram of the proposed method 

 

Overall, the hybrid HMM and CNN method combines the 

strengths of both techniques: the CNN is used to extract 
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features from the image, while the HMM is used to model the 

spatial dependencies between adjacent pixels. The resulting 

classification performance is typically better than using either 

technique alone. The diagram of the proposed algorithm for 

our work is shown in Figure 2. 

 

 

3. RESULT 

 

The results of these studies suggest that the hybrid CNN-

HMM model can be an effective approach for image 

classification, leveraging the strengths of both CNNs and 

HMMs. The CNN can extract features from the image that are 

relevant to the task of classification, while the HMM can 

model the spatial relationships between adjacent pixels and 

identify boundaries between different regions in the image. 

However, the effectiveness of the hybrid model depends on 

various factors, including the complexity of the image, the 

number of classes, and the quality of the training data. Further 

research is needed to evaluate the performance of the hybrid 

CNN-HMM model for different types of images and 

applications. 

In this paper, I will describe the architecture of the CNN 

model. I have developed it for image classification and 

demonstrated its application on the CIFAR-10 dataset. The 

model is implemented using the Keras API, which is built on 

top of Tensor Flow. The architecture of the model consists of 

several convolutional layers, followed by batch normalization 

and max-pooling layers, which help to improve the stability of 

the training process and reduce overfitting. Dropout is also 

implemented to further prevent overfitting. The fully 

connected layer at the end of the model has a large number of 

neurons, which increases the model's capacity and allows it to 

learn more complex features. The model is trained using the 

Adam optimizer and the categorical cross-entropy loss 

function. By training the model on the CIFAR-10 dataset for 

multiple epochs, the model learns to accurately classify images 

into 10 different classes. Overall, the combination of the CNN 

architecture, batch normalization, dropout, and optimization 

techniques make the model highly effective at image 

classification tasks. 

 

3.1 Software and tools 

 

3.1.1 Python 

Python is a high-level, interpreted programming language 

known for its simplicity, readability, and versatility. It was 

created by Guido van Rossum and first released in 1991. 

Python's design philosophy emphasizes code readability, 

making it easy for developers to express concepts clearly and 

concisely. One of Python's defining features is its clean and 

intuitive syntax, which allows programmers to write code 

more naturally and expressively. This readability not only 

enhances developer productivity but also facilitates 

collaboration among teams. Python provides a vast standard 

library that offers a wide range of modules and functions for 

various tasks, such as file handling, networking, web 

development, data manipulation, and more. Additionally, 

Python has a thriving ecosystem of third-party libraries and 

frameworks that extend its capabilities, enabling developers to 

tackle specialized domains like machine learning, scientific 

computing, and data analysis. Python's interpreted nature 

allows for rapid development and prototyping. It supports 

multiple programming paradigms, including procedural, 

object-oriented, and functional programming, giving 

developers the flexibility to choose the approach that best suits 

their needs. The strength of Python is its cross-platform 

compatibility, enabling code to run seamlessly on different 

operating systems. This portability makes Python a popular 

choice for developing applications that need to work across 

various platforms and environments. Python has a large and 

supportive community that contributes to its growth and 

development. The community provides extensive 

documentation, tutorials, and forums where programmers can 

seek help, share knowledge, and collaborate on open-source 

projects. In summary, Python is a versatile programming 

language that prioritizes simplicity, readability, and ease of 

use. Its extensive standard library, diverse ecosystem, cross-

platform compatibility, and supportive community make it a 

popular choice for a wide range of applications and skill levels. 

 

3.1.2 CNN’s architecture  

 

 
 

Figure 3. CIFAR-10 dataset 

 

Table 1. The architecture of the used model for my test 

 

Layer (Type) Output Shape 
Param 

# 

conv2d (Conv2D) None, 32, 32, 32 896 

batch_normalization 
(BatchNo (None, 32, 32, 

32) 
128 

conv2d_1 (Conv2D) (None, 32, 32, 32) 9248 

batch_normalization_1 (Batch (None, 32, 32, 32) 128 

max_pooling2d 

(MaxPooling2D) 
(None, 16, 16, 32) 0 

dropout (Dropout) (None, 16, 16, 32) 0 

conv2d_2 (Conv2D) (None, 16, 16, 64) 18496 

batch_normalization_2 (Batch (None, 16, 16, 64) 256 

conv2d_3 (Conv2D) (None, 16, 16, 64) 36928 

batch_normalization_3 (Batch (None, 16, 16, 64) 256 

max_pooling2d_1 
(MaxPooling2 (None, 8, 8, 

64) 
0 

dropout_1 (Dropout) (None, 8, 8, 64) 0 

conv2d_4 (Conv2D) (None, 8, 8, 128) 73856 

batch_normalization_4 (Batch (None, 8, 8, 128) 512 

conv2d_5 (Conv2D) (None, 8, 8, 128) 147584 

batch_normalization_5 (Batch (None, 8, 8, 128) 512 

max_pooling2d_2 
(MaxPooling2 (None, 4, 4, 

128) 
0 

dropout_2 (Dropout) (None, 4, 4, 128) 0 

flatten (Flatten) (None, 2048) 0 

dense (Dense) (None, 128) 262272 

dropout_3 (Dropout) (None, 128) 0 

dense_1 (Dense) (None, 10) 1290 

Total params 552,362 

Trainable params 551,466 

Non-trainable params 896 
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The studied model consists of a total of 18 layers, including 

6 convolutional layers, 3 max-pooling layers, 6 batch 

normalization layers, 3 dropout layers, 1 flattening layer, and 

2 dense layers. The input image, which has a size of 32x32 

pixels, is passed through these layers sequentially to classify it 

into one of the 10 classes in the dataset. This table displays a 

comprehensive summary of the model's architecture, 

providing detailed information about each layer and its 

corresponding parameters. Please refer to the table for a visual 

representation of the model's architecture. 

Figure 3 shows the detailed architecture (summary) of the 

Model: "sequential" 

This table (Table 1) shows the detailed architecture 

(summary) of the model: "sequential". 

 

3.1.3 Hardware 

The hardware utilized throughout the implementation of the 

entire project is described in Table 2. 

 

Table 2. The hardware used to run the tests 

 
 Intel(R) Core (TM) i3-10100F CPU @ 

3.60GHz 3.60 GHz 

GPU Nvidia GeForce GTX 1050 Ti 

Memory (RAM)  16.0 GB 

OS Windows 11 64-bit 

 

3.2 Data set 

 

Researchers and practitioners often utilize the CIFAR-10 

dataset to evaluate and compare the performance of different 

image classification algorithms and models. It serves as a 

benchmark for assessing the accuracy and generalization 

capabilities of machine learning models in classifying images 

from different categories. The CIFAR-10 dataset has 

contributed to advancements in computer vision and deep 

learning research. It has been used to train and evaluate various 

state-of-the-art models, including CNNs, to achieve high 

accuracy in image classification tasks. To initiate my tests, I 

began by visualizing a randomly selected sample from the 

dataset. Please refer to Figure 4 for an illustration of this 

random sample. In this code, we are going to build a CNN 

model that can classify images of various objects. We have 10 

classes of images, such as: airplane, automobile, bird, cat, deer, 

dog, frog, horse, ship, and truck. 

Upon executing the code, some results were attained. Figure 

5 provides a summary of the class distribution in the training 

set, while Figure 6 depicts the class distribution. 

 

 
 

Figure 4. A random sample from the dataset 

 

 
 

Figure 5. Class distribution in the training set 

 

 
 

Figure 6. Class distribution in the testing set 

 

The testing set is presented below. 

Training Section 

The provided lines represent the training and validation 

progress of a model over 50 epochs. Throughout the training 

process, the model's performance is evaluated using various 

metrics such as loss, accuracy, precision, and recall. 

In the beginning, during the first epoch, the model achieved 

a relatively low accuracy of 0.4095 on the training set, 

indicating that it initially struggled to make accurate 

predictions. However, there was a notable precision of 0.6303, 

suggesting that when the model made predictions, they were 

relatively reliable. The recall, which measures the model's 

ability to identify positive instances correctly, was at 0.1953, 

indicating room for improvement. 

As the training progressed, the model's performance 

gradually improved. By the 50th epoch, the model achieved a 

significantly higher accuracy of 0.8755 on the training set, 

indicating that it learned to make more accurate predictions 

over time. Both precision (0.9091) and recall (0.8459) were 

relatively high, suggesting that the model was effectively 

identifying and classifying positive instances. 

Overall, the model's performance progressed positively 

throughout the training process, demonstrating an increasing 

ability to make accurate predictions and classify positive 

instances. 

In Table 3, we present the performance of the criteria. 
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Table 3. The values of criteria to run the tests 

 

Epoch 8/50 

1562/1562- 

156s 100ms/step 

Epoch 

9/50 

1562/1562 

148s 

95ms/step 

Epoch 

10/50 

1562/1562 

144s 

92ms/step 

Epoch 

50/50 

1562/1562 

154s 

98ms/step 

loss 0.7307 0.6964 0.6964 0.3600 

Accuracy 0.7524 0.7649 0.7649 0.8764 

precision 0.8366 0.8439 0.8486 0.9083 

recall 0.6732 0.6912 0.7023 0.8473 

val_loss 0.5864 0.5819 0.5712 0.4052 

val_accuracy 0.8050 0.8060 0.8085 0.8687 

val_precision 0.8758 0.8628 0.8674 0.8990 

val_recall 0.7417 0.7486 0.7563 0.8432 

 

Accuracy and Model Loss  

Figure 7 suggests that the model is learning and acquiring 

more information over time. Consequently, the training loss 

decreases at a faster rate than the validation loss, indicating 

improved performance on the training data. The widening gap 

between the training and validation curves may indicate 

potential overfitting, necessitating techniques to enhance 

generalization. 

 

 
 

Figure 7. Test accuracy and model loss plots 

 

In the confusion matrix, we see that the truck class is 

misclassified for the different classes used in this paper. 

As an example, the model classified the images of birds, 

cats, and trucks and misclassified the images of dogs, frogs, 

and deer (Figure 8). 

 

 
 

Figure 8. The confusion matrix of the model 

The confusion matrix is a valuable tool for evaluating the 

performance of a model as it provides insights into the true 

positive, true negative, false positive, and false negative 

metrics. In Figure 13, the arrangement of these metrics for 

each class is depicted, offering a clear visual representation of 

the model's performance in terms of correct and incorrect 

classifications. 

 

Error Rate 

Figure 9 depicts the error rate of the classified and 

misclassified images by the trained model. Upon observation, 

it can be inferred that the model has achieved a satisfactory 

level of accuracy, as the misclassification rate is less than one-

fourth of the entire dataset. 

 

 
 

Figure 9. The error rate of the model 

 

Accuracy 

Upon completing the tests, the model demonstrated its 

ability to accurately classify images, achieving a test accuracy 

of 87.09%. This indicates the model's proficiency in accurately 

predicting the correct classes for the test dataset. 

 

 

4. TEST SECTION 

 

Based on Figure 10 of the "Test" section, the image under 

examination was effectively recognized, and its location was 

correctly identified. Although we applied a filter to see if he 

could identify it, he identified it as a deer and attained a rank 

of 4 in the evaluation. Nevertheless, there remains an 

opportunity to further improve the results and achieve even 

better performance. 

 

 
 

Figure 10. Test section results 

 

Before concluding the tests, the provided code snippet 

generates a grid of images along with their corresponding 

labels for visualization purposes. Each image is randomly 
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selected from the X_Test dataset, and the predicted label is 

assigned as the title for each image. The resulting grid of 

images and labels is presented in the accompanying document. 

In Figure 11, we give an example of an image noisy test, and 

in Figure 12, the image test. 

 

 
 

Figure 11. Test section results noisy 

 

 
 

Figure 12. A random selection of images testing 

 

At the end of the tests, the model achieved a test accuracy 

of 87.09% in classifying the images. 

Figure 13 provided illustrates a sample of the images, 

depicting the expected true labels and the model's predicted 

labels. The correct color predictions are represented in blue, 

while the incorrect predictions are depicted in red. 

The table in the paper would typically present the 

quantitative results of the classification performance of the 

proposed hybrid method compared to other state-of-the-art 

methods. It would contain metrics such as precision, recall, 

F1-score, and accuracy for each method, along with a 

comparison of their performance. 

 

 

 
 

Figure 13. Correct and incorrect predictions highlighted 

 

The images in the paper would typically show examples of 

the image classification results obtained using the proposed 

hybrid method and other state-of-the-art methods. These 

images would show the original image along with the 

classification masks obtained from each method and would 

allow the reader to visually compare the performance of the 

different methods. 

Additionally, the paper may include images of the skin layer 

dataset used in the experiments to provide a better 

understanding of the nature of the data being segmented. 

 

 

5. CONCLUSION 

 

A new and interesting way to use both spatial and temporal 

information in image data is the hybrid model for image 

classification that combines HMMs and CNNs. The primary 

objective of this research was to investigate the efficacy of a 

hybrid model combining CNNs and HMMs for image 

classification. The aim was to leverage the spatial feature 

extraction capabilities of CNNs and the temporal modeling 

strengths of HMMs to achieve a more comprehensive 

understanding of image data. This fusion of models aims to 

capture the hierarchical and spatial features extracted by 

CNNs along with the temporal dependencies modeled by 

HMMs. Combining CNNs and HMMs in a hybrid way to 

classify images leads to results that are useful in many ways 

and help us learn more about this topic. 

The integration of these models provides a versatile 

framework applicable to various domains with dynamic and 

sequential data. 

The hybrid CNN-HMM model makes it more effective and 

applicable across a broader range of image classification tasks. 

Each recommendation represents a potential avenue for 

improving specific aspects of the model's performance and 

understanding. 

The hybrid CNN-HMM model can potentially reduce errors 

and enhance its overall performance on the test set. Adjusting 

the architecture and training process based on specific 
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examples of errors provides a targeted and informed approach 

to model improvement. 

Denoising and edge detection were two issues that 

thresholding solved, but the primary issue it created was data 

loss. Hidden Markov statistical models, which may be used in 

the spatial or multiresolution domains for classification, have 

also been studied. Additionally, addressing these limitations in 

future research can contribute to the refinement and broader 

applicability of the proposed hybrid model. Future work on the 

hybrid CNN-HMM model for image classification can focus 

on several avenues to enhance its performance, robustness, 

and applicability. 
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