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Plagued by a high incidence rate worldwide, liver cancer comes in sixth place among all 

cancers. The degree of differentiation, which may be roughly divided into three types: 

weakly moderately differentiated, highly differentiated, and differentiated, has a substantial 

impact on the malignancy level of this terrible illness. In direction to improve the existence 

of affected role and life expectancy, therapeutic techniques that are customised for these 

varied levels of diversity are essential. The gold standard for identifying the main liver 

cancer, hepatocellular carcinoma (HCC), is a histopathological picture that allows for exact 

distinction of liver tumours at different stages of development. This study explores the 

creative use of the R-CNN algorithm for deep learning for the astute categorization of 

histological pictures associated with liver cancer that undergoes differentiation. So this study 

compared how well R-CNN did compared to five other popular deep learning models - 

SKNet, ResNet CBAM, ResNet50, VGG16, and SENet. It was really important to set up a 

good system to collect a lot of different data for this project. This would make sure they had 

enough info to properly test how well the different math models worked. They also created 

a thorough and precise method using things like recall, confusion matrices, F1-scores, and 

accuracy to analyze how the models performed. The results showed that R-CNN did 

amazingly well, with an accuracy of 96.7%! That means it was able to classify things 

correctly almost all the time. This demonstrates it had the most accurate predictions out of 

everything they looked at. Additionally, the R-CNN model proved to be very reliable and 

able to generalize well. In other words, it should work just as good on new, unseen data as 

it did on the information it was originally skilled on. This study compares the routine of R-

CNN to five other well-established deep learning models: SKNet, ResNet CBAM, 

ResNet50, VGG16, and SENet. Developing a robust data collection infrastructure is critical 

to enable the project to ensure a large and varied dataset for thorough evaluation of the 

mathematical models under consideration. A comprehensive and precise evaluation 

approach was provided through judicious usage of metrics like F1-Score, recall, confusion 

matrix, and accuracy to analyze the model performance. Testing results demonstrate R-

CNN's capabilities, evidenced by its notable 96. 7% accuracy indicating highly precise 

classification outcomes. Furthermore, the model exhibits strong reliability and 

generalizability. 
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1. INTRODUCTION

Liver cancer carriages a significant menace to health of the 

human and life expectancy. Hepatocellular carcinoma (HCC), 

a main liver cancer originating after liver cells, is an aggressive 

form of cancer. Each year, approximately 905,677 original 

cases of liver cancer are identified globally, with an 

impermanence rate as high as 90 percent. Liver cancer is the 

third important cause of cancer death globally. In 2020 alone, 

over 747,000 deaths from liver cancer were reported across the 

globe, in addition to more than 830,120 new cases. So, China 

accounts for around half of the universal problem of liver 

cancer. Being able to identify early what stage the liver cancer 

is at is really important for deciding the best treatment plan 

going forward. The potential of these advanced algorithms for 

machine learning to identify malignant liver lesions at an early 

stage is remarkable. For people who have this kind of cancer, 

more rapid and successful medical therapy may be possible 

due to the increased detection. Overall, developing liver 

cancer detection tests as well as therapy options through 

ongoing research remains a critical globally health concern.  

Understanding precise staging for cancer of the liver is 

crucial for creating customized therapies for each patient. The 

accurate data that these deep learning algorithms may offer on 
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the amount and spread of the disease allows for the 

development of customized therapies. By contrast, typical 

microscope assessment of samples of tissue might be personal, 

with varying views across clinicians about what they observed 

[1, 2]. The use of deep learning ushers in a new era of 

consistent and impartial analysis, minimizing differences in 

medical professionals' viewpoints and guaranteeing precise 

results. 

Correctly identifying the stage of cancer of the liver may 

significantly enhance the chances of receiving optimal 

treatment. Doctors can employ special medications, radiation 

therapy, or an operation, according to the stage. Using deep 

learning for liver cancer staging has sped up research in 

medical imaging and pathology [3, 4]. This has helped doctors 

understand the disease better and develop modern ways to 

diagnose and treat it.  

Catching liver cancer early and staging it precisely can save 

a lot of money for our healthcare system. That's because if 

caught late, treatments are more advanced and expensive. As 

deep learning keeps getting better, it will help create even 

more advanced models for diagnosing liver cancer stages. That 

will help doctors manage the disease even more. 

 

1.1 Limitations of current diagnostic methods 

 

Liver cancer has emerged as a formidable threat to human 

life and health over recent years, with both its global incidence 

and fatality rates on a steady incline [5-7]. The primary 

diagnostic methods currently employed comprise image tests, 

serum tests, and biopsies. Histopathological scans provide a 

detailed portrayal of liver cancer features, such as satellite 

nodules, metastases, and adjacent lesions, as well as crucial 

factors like the degree of differentiation, size, location, number, 

type, cellular, capsular, and vascular invasion. 

Among these factors, the degree of differentiation 

significantly influences the malignancy level. The malignancy 

decreases as the cells become more differentiated from each 

other and from the normal tissue cells. Conversely, the 

malignancy escalates as differentiation decreases [8, 9]. 

Given the importance of diagnosing liver cancer with 

diverse degrees of differentiation, precise classification of 

histological images of liver cancer is both essential and 

irreplaceable. However, classifying histopathological images 

with different levels of differentiation presents challenges. It 

is not only time-consuming and labor-intensive, requiring 

substantial manual effort, but it is also prone to errors due to 

the subjectivity of the individual and the variable experience 

levels of physicians. Such misjudgements can significantly 

impact the formation of a patient's prognosis and treatment 

plan [10]. 

Hence, the ongoing research into the classification of liver 

cancer histological images carries substantial relevance and 

promise [11, 12]. 

 

1.2 Role of AI in medicine 

 

In the wake of rapid advancements in artificial intelligence, 

the medical domain has extensively leveraged AI algorithms 

in recent years. Deep learning, an AI technique predicated on 

deep neural networks, constitutes one such artificial 

intelligence algorithm [13]. Computer vision and NLP tasks 

frequently employ deep learning, especially in the arenas of 

early disease diagnosis and medical image processing [14, 15]. 

In a significant study, Krishan and Mittal [16] utilized six 

distinct classifiers to categorize various tumor stages derived 

from CT scans. Their tumor classification accuracy spanned 

from 77.47% to 89.12%, thereby enabling radiologists to 

expedite the diagnosis and treatment of liver ailments 

substantially. However, this study also has limitations such as 

the exclusive use of one type of sample. 

Xu et al. [17] proposed a radiomic diagnosis model that 

effectively distinguished between intrahepatic 

cholangiocarcinoma (ICCA) and hepatocellular carcinoma 

(HCC) using CT images. With AUCs (Area Under the Curve) 

of 0.847 in the assessment cohorts and 0.659 in the validation, 

this model will facilitate differentiation between ICCA and 

HCC in future. Nonetheless, this study underscores the need 

for enhanced classification accuracy. 

Wan et al. [18] presented the MMF-CNN, a novel 

methodology that integrates multi-level and multi-scale fusion 

techniques within Convolutional Neural Networks (CNNs) for 

the purpose of detecting liver lesions in magnetic resonance 

imaging (MRI). They systematically used their inventive 

technique on several cutting-edge deep learning systems. The 

results of the research support the efficacy of their proposed 

strategy and highlight the way it may enhance the accuracy of 

MRI images used for assessing lesions in the liver.  

Zhou et al.'s [19] comprehensive examination of machine 

learning (ML) and deep learning (DL) methods established a 

foundation for scientific literacy in the artificial intelligence 

(AI) field. In addition, they concentrate on convolution neural 

networks (CNNs) and its application to liver-related imaging 

issues. The real-world study in the article shows how AI can 

be used to detect and assess specific liver areas, enhance the 

results of therapy, and predict the liver's reactions to medicines. 

Their cooperative study supports machine-assisted health as a 

possible development in liver-related therapies. 

In the same vein, Sureshkumar et al. [20] developed an 

entirely automatic Computer-Aided Diagnostic (CAD) 

approach for detecting hepatocellular carcinoma (HCC) 

employing CNN design. The present investigation has 

investigated a variety of techniques and algorithms used to 

assess cancer of the liver.  

The suggested approach seeks to enhance overall precision 

while identifying rare tumours with a smaller rate of false 

positives. In addition, the study provides an original method to 

categorize liver scans with CT and determine between regular 

and unusual patterns. When put together, these findings 

present exciting novel perspectives as to how AI could 

enhance liver disease diagnosis and paving the door for better 

and more precise treatments. 

 

1.3 Deep learning in liver cancer diagnosis 

 

Due to the limitations caused forth by fewer participants, 

the study left the diagnosis criteria unchanged. In Lin et al.'s 

study [21], a Convolutional Neural Network (CNN) was 

carefully constructed utilizing the VGG framework. This 

contributed to a classification accuracy of more than 92% for 

all stages of liver cancer.  

Using a deep learning algorithm together with multi-photon 

imaging demonstrated potential in differentiating between 

various forms of hepatocellular carcinoma (HCC), opening up 

fresh possibilities for automated testing [22]. There is plenty 

of potential for enhancement of accuracy, given that the study 

is still in its infancy. This work enhances the process of 

effectively collecting characteristics from medical visuals by 

incorporating a visual focus system to the deep learning 
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framework. 

 

 

2. DATASET 
 

The Hepatocellular Carcinoma Dataset (HCC dataset) 

included 165 number of 256×256 liver cancer histopathology 

images which were used in the present study. There are 68 

histological photos with moderate differentiation, 53 images 

with very different images, and 44 images with weak 

differentiation. The HCC dataset utilized in the present 

research was politely provided by a Portuguese college 

hospital. Within-depth data on 165 actual individuals who 

have been identified as having hepatocellular carcinoma (HCC) 

could be found in this dataset. In addition to demographic 

details, risk factors, outcomes of tests, and a wealth of data 

related to longevity, the dataset contains every necessary 

medical data. This rich and diverse dataset serves as a valuable 

resource for conducting a thorough and insightful analysis of 

HCC, enabling researchers to glean meaningful insights into 

the various factors associated with this disease in a real-world 

clinical setting. 

The dataset includes 49 features that were chosen in 

accordance with the EASL-EORTC Clinical Practice 

Guidelines, which represent the most recent advances in the 

treatment of HCC and the dataset is available in 

https://archive.ics.uci.edu/dataset/423/hcc+survival. 

 

 

3. MATERIALS AND METHODS  

 

Figure 1 shows the architecture diagram. Initially input 

image is taken from the Kaggle Dataset and pre-processed 

with Weiner filter then segmented and extracted features using 

FCM-CSA and SIFT algorithms respectively. Extracted 

features are classified using R-CNN and liver tumor is 

classified with different classes. This classification helps the 

medical experts to take the right decisions at right time to save 

the human life. Gray-Level Co-occurrence Matrix (GLCM) 

can be a valuable tool for feature extraction in liver cancer 

identification, especially when analyzing medical images like 

CT scans, MRIs, or ultrasound images for texture analysis, 

discriminative features, local analysis and interpretability. For 

liver cancer identification need to features are very important 

for classification so only GLCM was utilized in the proposed 

work. 

 

 
 

Figure 1. Architecture diagram for proposed method 

 

R-CNN (Region-based CNN) is powerful computer vision 

techniques that have been widely used in various applications, 

including object detection, image segmentation, and more. 

While these techniques are not specific to liver cancer 

identification and classification, they can be essential tools in 

the field of medical image analysis, including liver cancer 

identification and classification, for several reasons like 

accurate detection, localization, feature classification, and 

extraction.  

While R-CNN and its variants offers many advantages, it's 

significant to note the success be contingent on the availability 

of high-quality annotated medical image datasets and the 

expertise of healthcare professionals to interpret the results 

and make informed decisions based on the model's predictions. 

 

3.1 Image pre-processing 

 

The foundational step is pre-processing, a crucial stage in 

which input images are sourced from both the Kaggle dataset 

and on-site field visits. During pre-processing, the objective is 

to eliminate undesirable noise from the images while 

simultaneously boosting the contrast levels to enhance overall 

image quality. 

In liver cancer identification and classification, pre-

processing prepares the raw medical images for subsequent 

feature extraction and AI based algorithms. It ensures that the 

data used for analysis is accurate, consistent, and conducive to 

reliable results, ultimately improving the diagnostic and 

classification accuracy for liver cancer. 

Figure 2 (a) shows input image of Histopathological image 

of liver with Cancer and Figure 2 (b) shows the pre-processed 

image of liver with cancer cells. 

 

3.2 Segmentation using Fuzzy C-Means (FCM) 

 

In the segmentation of diseased (cancerous) portions, an 

innovative approach called FCM-CSA (Fuzzy C-Means based 

Chameleon Swarm Algorithm) was applied. The segmentation 
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process within FCM-CSA is delineated through the following 

steps: Leveraging the principles of fuzzy logic, an 

unsupervised classification model akin to the Fuzzy C-Means 

(FCM) network was introduced. Unlike traditional 

partitioning models such as k-means, where each data point 

corresponds to a single partition, the FCM model allows for a 

more nuanced representation of data points within multiple 

partitions, providing a richer and more flexible segmentation 

framework. 

 

 
(a) 

 
(b) 

 

Figure 2. a) Histopathological image of liver with cancer b) 

Pre-processed liver with cancer 
 

Eq. (1) calculates the cluster centers: 

 

𝐷𝑗 =  
∑ 𝑉𝑗,𝑘 𝑌𝑘

𝑛𝑀
𝐾=1

∑ 𝑉𝑗,𝑘 
𝑛𝑀

𝐾=1

 (1) 

 

The dataset comprises M data points, denoted as yk, where 

k represents the index of each pixel. The degree of membership 

for the kth pixel is expressed through a fuzzifier denoted as 'n,' 

with the constraint that 'n' is greater than 1. Eq. (2) articulates 

the formula that encapsulates this relationship, providing a 

mathematical representation of the degree of membership for 

each pixel in the dataset.  

 

𝑉𝑗,𝑘 =  
1

∑
𝐶𝑗,𝑘

2/(𝑛−1)

𝐶𝑗,𝑘

𝑚𝑑
𝐿=1

 
(2) 

 

Degree of membership is represented by v(j,k). c2(yk, dj) 

gives the distance that exists between the jth group and the kth 

pixel. The parameter 'n', which provides a fuzziness level 

where 1 < n ≤ ∞, plays an essential part when determining the 

number of membership degrees. The method described in look 

at 1 yields ideal clustering centers, which can be utilized to 

help segment the malignant disease off the image. 

The Fuzzy C-Means (FCM) method has certain issues 

throughout the segmentation process, particularly with the 

initial cluster centroids' poor performance. In order to 

accomplish this, we employ a mixed approach that involves 

the FCM-based Chameleon Swarm Algorithm (CSA), 

additionally referred to as FCMCSA. The meta-heuristic 

technique known as the CSA begins the optimization 

procedure with initializing the number of participants. The 

first population is formed with a random initialization in a 

search space, assuming an overall population count of 'C' 

within the search space of size 'D'. By utilizing the benefits of 

both FCM and CSA, this combination approach reduces the 

limitations of FCM's original cluster centroids and enhances 

segmentation quality overall. 

 

 ai = Lj + rand × (Uj – Lj) (3) 

 

The first vector of ith chameleon is represented by ai, with 

the upper and lower limits of the search area defined as Lj and 

Uj in the jth dimension, respectively. The variable rand denotes 

a randomly generated number within the range of 0 to 1. The 

reinforced exploratory capabilities of the chameleons in the 

search space are succinctly articulated as follows: 

 

𝜌 =  𝛿 𝑒𝑥𝑝(−
𝛼𝑡
𝑅

)
 (4) 

 

In the iterative process, the parameter ρ plays a pivotal role 

and diminishes as the iterations progress. Predefined 

parameters δ, α, and β are strategically employed to govern the 

delicate balance between exploration and exploitation stages. 

The updating of chameleons' positions in the search space is 

orchestrated through rotating centered coordinates, coupled 

with an acceleration factor. With Figure 3 offering a 

representation of the input image alongside the segmented 

output achieved through the FCM-CSA. 

 

 
(a) 

 
(b) 

 

Figure 3. a. Binary image; b. Segmented image using FCM-

CSA algorithm 
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3.3 Feature extraction using GLCM 

 

Following segmentation, the next step involves feature 

extraction through a rapid GLCM (Gray Level Co-occurrence 

Matrix) feature extraction model. Typically, GLCM features 

provide comprehensive texture descriptions of images, but 

their computational intensity poses a significant resource 

challenge. In this model, the gray levels of image pixels 

undergo re-quantization to minimize G, enhancing the 

efficiency of the GLCM feature extraction process. The fast 

GLCM model proves to be a robust method for extracting 

features related to liver cancer disease. The model operates by 

establishing connections between spatially close pixel features, 

calculating GLCM matrices under the correlation type, and 

assigning index pixels to all pyramid weight matrix 

neighborhoods. To estimate GLCM features for other pixels, 

this model, as illustrated in Eq. (5), is employed, ensuring a 

comprehensive and efficient extraction process. 

 

𝐹(𝑞) =  ∑ 𝑏𝑗

𝑚

𝑗=1

(𝑞)𝐹(𝑦𝑖) (5) 

 

The feature vector for non-key pixels, denoted as F(q), is 

defined, with each overlapping weight window centered on a 

key pixel equal to yj. To assess the efficacy of the fast GLCM 

performance, simulations are conducted with varied image 

sizes, utilizing three single-band images for validation. The 

simulation employs the following parameters, and the results 

are visually depicted in Figure 4, showcasing the extracted 

features from a histopathological image depicting liver cancer 

using GLCM. 

 

 
 

Figure 4. Feature extraction using GLCM 

 

• Utilizing a fixed window size of 33 × 33 for GLCM 

extraction simplifies the process. The extracted features 

using the GLCM algorithm are illustrated in Figure 4. 

• The execution load of GLCM is effectively reduced, and 

sparsity of GLCM matrices is reduced through strategic 

adjustments. 

• To diminish the computational load (G), a re-quantization 

of the input image gray levels is performed. 

 

3.4 Feature classification using fast R-CNN 

 

A powerful object detection tool, known as the Fast Region-

Based CNN (Fast R-CNN), employs deep learning techniques 

for categorizing objects within an image. Leveraging the Edge 

Boxes approach, it enhances the computational efficiency of 

object detection by generating effective region proposals. 

Edge Boxes provide a straightforward measure of objectness, 

subtracting edges that are part of contours crossing the border 

of the box's. 

Possible object-containing areas are initially meticulously 

delineated using Edge Boxes in the two-stage Fast R-CNN 

recognition technique. In the next phase, each component is 

classified. In the first step, layers of convolution are employed 

to analyze the entire picture with the goal to extract features. 

In addition to generate region ideas and extract characteristics 

from the image, Edge Box are additionally processed at this 

stage. 

Regions of interest (ROIs) in hepatic pictures are identified 

and categorized via Fast R-CNN, which finds application to 

liver cancer classification. The assessment of Fast R-CNN's 

performance in detecting liver cancer can be performed using 

a number of criteria, such as precision, recall, precision, 

accuracy, and F1-Score. The device's operating characteristic 

curve's area under the curve (AUC-ROC). 

Accuracy calculates the precision of positive diagnoses 

among every sample marked as positive, while accuracy 

estimates the proportion of properly classified samples. 

Among every one of the genuine positive samples, recall 

assesses the precision with which positive classification have 

been generated. Recall and accuracy are evaluated in an 

equitable way by the F1 score. The ability of the model to 

differentiate between samples that are positive or negative 

across a range of threshold is assessed with AUC-ROC. 

A set of annotated liver images that can tell the difference 

among malignant or non-cancerous material is essential to 

evaluate the efficacy of Fast R-CNN in cancer of the liver 

diagnosis. Three sets of data points have been divided into test, 

validation, and learning. The model changes on its initial set 

throughout training, changing hyperparameters for learning 

rate and batch count for optimal. These evaluations help 

identify the model's benefits and drawbacks, directing 

potential enhancements to the layout and training methods. 

Three different categories utilizing the Fast R-CNN technique 

are shown visually in Figure 5. 

 

 
 

Figure 5. Different classes of classification using R-CNN 

algorithm 

 

3.4.1 Training 

By utilizing an image the labeler is an essential for object 

detectors training such as Fast R-CNN. The image labeler 

program facilitates the assignment of predetermined 

rectangular Regions of Interest (ROIs) labels to a set of 

photographs, distinguishing them into three types: poorly 

differentiated, well differentiated, and moderately 

differentiated. During the training process, expert doctors are 

actively involved in classifying liver cancer from low to high 

grades. 
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The labeled ROIs for each image can be exported to the 

MATLAB workspace. After creating ROIs and labels for each 

image in a collection, a command like "trainingData" can be 

used. This exported ground truth serves as crucial input during 

the training phase. 

The object detector introduced in this model; Fast R-CNN 

is built upon the foundation of the VGG-16 Convolutional 

Neural Network (ConvNet). The VGG-16 ConvNet undergoes 

a transfer learning approach, adapting pre-trained weights for 

effective object detection. Each image requires a 

corresponding label identifying the rectangle region of interest 

(ROI). In this study, the region for each image in its label 

column is set to [1, 1, 224, 224], given that every image in the 

dataset is a cropped image of liver cancer. 

Modifications to the VGG-16 model include adjusting the 

dimensions of the last three layers and the image input layer 

from [224, 224, 3] to [48, 48, 3]. Additionally, the grayscale 

picture dataset undergoes transformation from [48, 48, 1] to 

[48, 48, 3]. Further enhancements involve the addition of a 

region-of-interest pooling layer and a bounding box regression 

layer, transforming the pre-trained model into Fast R-CNN 

object identification network. This adaptation ensures the 

effective integration of the VGG-16 model into the Fast R-

CNN framework for accurate liver cancer classification. 

 

 

4. EXPERIMENTAL RESULT ANALYSIS 

 

Three key parameters—specificity, accuracy, and recall—

as indicated in Eqs. (6)-(8) are all taken into consideration in 

assessing the effectiveness of the planned work. These 

indicators serve as crucial criteria for evaluation, providing an 

in-depth understanding of the effectiveness of the strategy. 

True negative (TN), false positive (FP), false-negative (FN), 

and true positive (TP) among others, were the four unique 

parameters which make up the evaluation [23, 24]. 

 

TP
Precision=

FP+TP
 (6) 

 

FPTN

TN
SP

+
=

 
(7) 

 

/recall TP TP FN= +  (8) 

 

The figures that are given provide strong proof of the 

enhanced efficacy of the suggested strategy, showing high 

Precision, Recall, and Specificity scores. Consequently, the R-

CNN model achieved a remarkable 97.27% final accuracy. 

The R-CNN neural network model's effectiveness in the smart 

classification of images from histopathology is demonstrated 

by this study. 

In this framework, an original comparative analysis has 

been carried out, where four different innovative deep learning 

models—ResNet50 CBAM, ResNet50 SKNet, VGG16, and 

SEnet—were contrasted with the R-CNN deep training model. 

Notably, it's the initial occasion that comparison this 

comprehensive was made in an intelligence categorization 

study of pictures reflecting multiple kinds of differentiating 

tumors of the liver histology, or the findings illustrate the 

efficiency of the R-CNN model in exceeding its rivals and 

establish it as an effective tool for cognitive histopathology 

image classification. 

A significant development in the discipline of 

histopathology categorization of images was made possible by 

the R-CNN's exceptional 97.27% precision in classification. 

This study clearly indicate that the R-CNN deep learning 

algorithm has a lot of possibilities for correctly identifying 

photos related to histopathology. This development is 

especially helpful for physicians since it enables more efficient 

planning of therapy according to each phase of cancer, which 

in turn ensures prompt and specialized patient care. R-CNN 

installation can both lessen the quantity of labor that doctors 

have to do as cut back on the length of time needed for 

interpreting cancer of the liver histopathology images. 

Figure 6 provides an illustration of the analysis's findings 

enabling simple comprehension. In addition, Table 1 offers an 

in-depth contrast between the suggested Fast R-CNN 

approach and the performance of renowned liver cancer 

classification algorithms, like SVM, RETRaiN, SBN-CNN, 

VGG-19, and CB-CNN [24, 25]. The table further delves into 

a detailed comparison of precision, emphasizing the correct 

identification of objects. In this evaluation, the proposed 

method is pitted against existing algorithms SVM, RETRaiN, 

SBN-CNN, VGG-19, and CB-CNN [26], highlighting its 

effectiveness in the classification recognition domain. 
The confusion matrix, a crucial tool for elucidating various 

metrics, is visually presented in Figure 7 and detailed in Table 

2. In this matrix, the predicted labels are indicated in rows, 

while the original labels are presented in columns, 

categorizing liver tumors into benign and malignant states. 

The matrix distinctly illustrates the performance of the 

proposed R-CNN method, showcasing its superior 

classification capabilities. 

In the context of liver cancer classification with the R-CNN 

algorithm, the confusion matrix enables an assessment of how 

well the algorithm classifies different types of liver cancer. In 

this example, rows represent expected classes, and columns 

indicate actual classes. Each cell indicates the number of 

instances where the expected class aligns with the actual class. 

 

Table 1. Precision, recall and specificity of the proposed 

method fast R-CNN 

 
Algorithm Precision Recall Specificity 

SVM 0.807 0.818 0.917 

SBN-CNN 0.802 0.883 0.937 

RETRaiN 0.781 0.871 0.918 

CB-CNN 0.805 0.836 0.927 

VGG-19 0.788 0.835 0.975 

R-CNN (Proposed) 0.898 0.891 0.952 

Table 2. Confusion matrix 

 
 Actual Hepatocellular 

Carcinoma 

Actual 

Cholangiocarcinoma 

Actual Metastatic 

Carcinoma 

Predicted Hepatocellular 

Carcinoma 

50 10 5 

Predicted Cholangiocarcinoma 5 30 8 

Predicted Metastatic Carcinoma 2 8 40 
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Figure 6. Performance Analysis of proposed algorithm (precision, recall and specificity) 

 

 
 

Figure 7. Confusion matrix 

 

To interpret this matrix, you can calculate various 

evaluation metrics such as precision, recall, and F1-score. For 

instance, the precision for predicting Hepatocellular 

carcinoma would be calculated as TP/(TP + FP) = 120 / (120 

+ 15) = 0.889, where TP is the number of true positives 

(correctly predicted Hepatocellular carcinoma), and FP is the 

number of false positives (predicted as Hepatocellular 

carcinoma, but actually a different type of liver cancer). This 

analysis helps provide a nuanced understanding of the 

algorithm's performance in liver cancer classification. 

The HCC datasets employed in this study have been 

meticulously partitioned into distinct sets for comprehensive 

training, validation, and evaluation of the proposed model. To 

be more exact, 90% of the data has been set aside for learning, 

7% for validation, then 3% for extensive testing. This 

intentional divide ensures the model's generalization and 

resiliency. 

The proposed model has been trained and refined with the 

first two sets of data, which total 90% of the training data and 

7% for validation. This allows the model to grow comfortable 

with the subtleties of the HCC dataset. The test data set, 

making up 3% of the initial data set, will be utilized only to 

assess the extent to which the suggested approach detects 

items. To enhance clarity, Table 3 provides an overview of the 

image distribution between the initial training, examination, 

and validation sets, highlighting the volume of data utilized in 

every phase of the research. This meticulous arrangement 

ensures a stringent examination and testing procedure for the 

provided model, increasing the model's reliability and 

adaptability for determining cancer of the liver. 

 

Table 3. Usage of images for training and testing  

 

 Training Testing Validation Total 

HCC Image 

Dataset 

148 

(90%) 

12 

(7%) 
5 (3%) 165 

 

 
 

Figure 8. Convergence curves for validation and training 

datasets 

 

The suggested Fast R-CNN model's efficacy appears on the 

chart in Figure 8. The red and dark blue lines for correctness 

reflect the training and verification curves, while the green and 
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sky-blue lines represent the training and validation loss. 

surprisingly, the loss curve increases rapidly in the initial two 

epochs until it finally settles around the seventh one epoch. 

The validation and training curves gradually align that look at 

confluence after a few additional training epochs as the 

algorithm improves. 

 

 

5. CONCLUSION 

 

In short, the region-based convolutional neural networks 

(RNCNN) and Fuzzy C-Means (FCM) algorithms exhibit 

potential in identifying signs of cancers of the liver from 

clinical images. R-CNN shows efficiency in recognizing and 

classifying areas of interest (ROIs) in liver images, allowing 

doctors determine malignant regions and renders liver cancer 

detection and therapy easier. Together with each other, the 

outcome measures provide an in-depth comprehension of the 

R-CNN model's capacity to identify and categorize pertinent 

regions in liver images, which is crucial to enhancing the 

accuracy and efficacy of liver cancer diagnosis and therapy 

planning. However, FCM is a useful technique for clustering 

that can help identify trends and links between the image 

pixels for purposes of diagnosing liver cancer. Each pixel in 

FCM may be given a degree for membership which reflects its 

likelihood of slipping into a particular category (cancerous or 

non-cancerous). Metrics like cluster purity, entropy, and 

precision can be used to evaluate the efficacy of FCM. When 

comparing the two techniques, R-CNN could prove more 

accurate and reliable at recognizing and categorizing ROIs in 

liver pictures, while FCM could provide an easier to use 

analysis of the image's features or aid in determining the 

location of the liver's regions. The suggested approach goes 

above the current methods utilized in this field of study for 

performance contrast, attaining accuracy of 0.898, recall of 

0.891, and a sensitivity of 0.952. R-CNN and its variants can 

be computationally demanding, especially during the training 

phase. Training deep neural networks on medical image 

datasets, which are often large and high-dimensional, can 

require significant computational resources and time. There 

are several potential future enhancements for deep learning-

based liver cancer classification incorporating multi-modal 

data, Data augmentation, Transfer learning, Explainable AI, 

Online learning. Based on the application and size of the data 

set the future researcher may select LSTM, U-NET, CapsNET, 

and 3D-CNN.  
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