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Dimension reduction algorithms have become widespread in data science due to the 

prevalence of High-Dimensional Data (HDD). In recent years, many versions of Linear 

Discriminant Analysis (LDA) have been developed for dimensionality reduction. Among 

them, the Fast Harmonic mean-based LDA (FHLDA) and FHLDA-pairwise (FHLDAp) 

algorithms reduce HDD by adopting joint diagonalization based on Taylor expansion to 

generate discriminants. However, the Stiefel manifold gradient scheme in these algorithms 

involves many matrix multiplications, leading to high computational time complexity 

(𝑂(𝑝2)). Thus, this manuscript proposes an Accelerated Optimization (AO) approach for

FHLDA and FHLDAp algorithms to reduce the complexity of the Stiefel manifold gradient 

scheme to 𝑂(√𝑝) . A Nesterov accelerated gradient descent scheme is introduced to 

optimize functions on the Stiefel manifold by constructing a sequence of proximal points 

satisfying manifold constraints. This achieves asymptotically optimal error for L-smooth 

convex, as well as L-smooth and 𝜇-strongly convex functions, provided step size satisfies 

the Lipschitz smoothness condition. So, it is ensured to converge and achieve an accelerated 

rate after the solution is nearer to the local. After applying this scheme, joint diagonalization 

via Taylor expansion recovers the discriminant vector from the manifold. Experimental 

results demonstrate that the AOFHLDA and AOFHLDAp algorithms outperform LDA, 

FHLDA, and FHLDAp on both single and multi-label datasets, achieving significant 

accuracy improvements. Specifically, AOFHLDA improves accuracy by 17.87%, 14.14%, 

14.65%, and 15.28% on the PIE, UMIST, Barcelona, and MediaMill datasets, respectively. 

Similarly, AOFHLDAp improves accuracy by 19.32%, 15.13%, 15.61%, and 16.44% on 

the PIE, UMIST, Barcelona, and MediaMill datasets, respectively. 
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1. INTRODUCTION

The availability of HDD in machine learning has surged as 

technology advances. HDD encompasses high-resolution 

images, databases, genes, and more. However, HDD poses 

major challenges for classification algorithms in terms of 

reliability and efficiency [1]. One core issue that arises is the 

"curse of dimensionality". This refers to the difficulty of 

selecting from a vast number of features when building a 

classifier [2]. As the number of dimensions or features grows, 

the amount of data needed to populate the space grows 

exponentially. This makes it incredibly difficult to find 

meaningful patterns with limited training data. As a result, 

classification performance suffers. Some algorithms are less 

susceptible as they rarely emphasize feature selection. Instead, 

they apply a classification algorithm to every available feature 

[3]. However, even if the prediction accuracy does not degrade, 

the computational cost can become prohibitive. This prevents 

the use of such exhaustive techniques with HDD in many real-

world contexts [4]. To address this, dimensionality reduction 

methods were developed to extract the most useful data and 

features to facilitate HDD processing. Dimension reduction is 

often necessary for neural networks, object recognition, and 

other applications dealing with high-dimensional spaces [5].  

Several learning approaches exist for handling HDD 

classification. These primarily aimed to reduce HDD problems 

via attribute selection and prediction [6]. Such techniques were 

also used to ensure diversity of classifications, using sample 

selection strategies like AdaBoost [7]. However, traditional 

techniques have some drawbacks: (i) many employ quick 

dimensionality reduction rather than expanding features, and 

(ii) refine specific objective functions rather than unsupervised

methods like density-based clustering [8].

Several dimensionality reduction techniques have been 

developed, such as Principal Component Analysis (PCA), 

LDA, and Independent Component Analysis (ICA) [9-11]. 

These techniques aim to project data into a lower dimensional 

space, assuming linear relationships in the data. LDA, for 

example, maximizes class separability by maximizing 

between-class variance and minimizing within-class variance. 

However, it has limitations when dealing with high-

dimensional complex data, as it may allow overlap between 

classes. In many real-world scenarios, the structure of HDD is 

complex and non-linear, such as in high-resolution image 
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datasets or genomic data. Linear techniques like PCA and 

LDA fail to capture the intrinsic dimensionality and complex 

data relationships, resulting in poor representation of the data 

in the reduced space.  

Nonlinear dimensionality reduction methods, such as kernel 

PCA or manifold learning, address this issue by modeling 

nonlinear structures in data. However, they come with 

challenges such as higher computational costs. Determining 

the most suitable dimensionality reduction method requires 

assessing the inherent structure of the HDD, as linear 

techniques are insufficient for datasets with clear nonlinear 

relationships between dimensions. To address this 

shortcoming, algorithms like Harmonic mean-based LDA 

(HLDA) and HLDA-pairwise (HLDAp) were proposed [12]. 

These take into account harmonic average between-class gaps 

to improve class separation. However, HLDA and HLDAp 

have a computationally expensive initialization process 

involving matrix decomposition and inversion. This led to the 

development of Fast versions – FHLDA and FHLDAp – which 

use joint diagonalization and Taylor expansion [13] to reduce 

initialization iterations for discriminant formation. This avoids 

sweeping procedure, calculating all eigenvector components 

simultaneously. A first-order approximation of the inverse 

eigenvector matrix and full matrix were iteratively refined. 

However, class overlap can still cause misclassification. This 

was addressed by leveraging between-class scatter matrices to 

find the optimal discriminant vector. Still, the Stiefel manifold 

gradient has 𝑂(𝑝2) complexity, where 𝑝 is the data dimension, 

because it requires many matrix multiplications. 

Hence this paper proposes AOFHLDA and AOFHLDAp 

algorithms to reduce the complexity of the Stiefel manifold 

gradient schemes for FHLDA and FHLDAp. A Nesterov 

accelerated gradient descent scheme is introduced to handle 

orthogonality constraints and optimize functions on the Stiefel 

manifold. This achieves asymptotically optimal error rates for 

L-smooth convex and L-smooth, 𝜇-strongly convex functions. 

Thus, it ensures accelerated convergence once the solution is 

nearer to the local. After applying this scheme, joint 

diagonalization via Taylor expansion recovers the 

discriminant vector. This efficiently reduces the complexity of 

the Stiefel manifold gradient (𝑂(√𝑝)).  

The proposed algorithms, AOFHLDA and AOFHLDAp, 

are well-suited for a wider range of HDD tasks compared to 

prior algorithms. They enable efficient processing of HDD 

such as hyperspectral images, genomics data, and multivariate 

time series.  

In contrast, HLDA and FHLDA are mostly limited to lower-

dimensional data like basic image classification tasks. By 

reducing the computational burden, the proposed algorithms 

can scale to much higher dimensionality HDD across various 

domains. This allows them to tackle more complex learning 

challenges such as identifying rare cell populations in single-

cell genomic data or detecting anomalies in massive industrial 

sensor datasets. Additionally, these algorithms can resist 

outliers by estimating the pairwise within-class covariance 

matrix appropriately for the classification task. Their broad 

applicability to diverse HDD types is a key advantage over 

existing algorithms. 

The remaining sections of this article are as follows:  

Section 2 discusses similar efforts on dimensionality 

reduction in multiple systems. Section 3 describes the 

proposed algorithm, while Section 4 demonstrates its 

effectiveness. Section 5 summarizes this study and discusses 

future improvements. 

2. LITERATURE SURVEY 

 

Li et al. [14] developed a new joint dimensionality reduction 

and dictionary training model for HDD categorization. An 

auto-encoder was used to capture a nonlinear representation, 

which minimizes dimension and maintains the nonlinear 

pattern of the HDD. After, a neighborhood restraint with tag 

embedding was applied to maintain the appropriate nonlinear 

local pattern and improve class refinement. The mapping task 

and dictionary were adjusted concurrently to improve 

efficiency. In contrast, 𝑙2-norm has lower robustness against 

outliers than 𝑙1-norm.  

Zhao et al. [15] presented a theoretical model in graph 

embedding to direct the weight selection that provides a huge 

nearby adjacent premise boundary. Such linear subspace was 

used to maintain the intra-class adjacent geometry similarity 

and the examples in multiple categories. Conversely, it needs 

to obtain the ideal weight function and analyze the impact of 

outliers. 

Qu et al. [16] developed a new dimensionality reduction 

scheme named supervised discriminant Isomap. Initially, raw 

data points were split into multiple manifolds using their label 

data. After that, an ideal nonlinear subspace was obtained to 

maintain the geometrical structure of all manifolds based on 

the Isomap condition and improve the discrimination ability 

by increasing the distances among instances of multiple 

classes and the highest margin graph normalization term. Also, 

a supervised discriminant Isomap prediction was applied to 

solve the optimization problems. But it needs to optimize 

model parameters concurrently to reduce the complexity. 

Lu et al. [17] presented a new Auto-weighted LDA (ALDA), 

which captures a correlation matrix and modifies it in the 

subspace concurrently to analyze the neighborhood in the ideal 

subspaces. Also, a novel system was constructed depending on 

-norm and a low weight was allocated to the pairwise elements 

with long range and vice versa. Then, a repeated re-weighted 

optimization scheme was applied to resolve the defined 

problem. However, it did not cope with a huge amount of 

unannotated corpora.  

Su et al. [18] designed a Deep Order-preserving 

Wasserstein Discriminant Analysis (DeepOWDA) to train 

linear and nonlinear discriminative subspace for HDD 

categorization, correspondingly. A new separability measure 

among data labels was created according to the order-

preserving Wasserstein gap to obtain the necessary variances 

amid their time-based patterns. Also, the linear and nonlinear 

conversions were learned by increasing the inter-class gap and 

reducing the intra-class scatter. But its computational 

complexity was high due to the iterative process. 

Li et al. [19] presented a Generalized Lp-norm 2D LDA 

method (G2DLDA) with regularization. Initially, a random 

Lp-norm was used to calculate the between-class and within-

class scatter for choosing an appropriate p-value. Then, the 

regularization term was adopted to improve generalization and 

prevent singularity. Also, an effective learning scheme was 

applied for G2LDA, which was resolved by a chain of convex 

issues with closed-type decisions. However, it has a high 

computational complexity as it requires many multiplication 

operations. 

Zhou et al. [20] developed Kernelization-based Generalized 

Discriminant Component Analysis (KGDCA)-Intrinsic-Space 

and KGDCA-Empirical-Space. But it needs to extend multi-

label dimensionality reduction and was computationally 

intensive. Xu et al. [21] developed a novel Saliency-based 
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Multi-Label LDA (SMLDA) for dimensionality reduction on 

actual data to improve the efficiency of multi-label classifiers. 

A probabilistic class saliency prediction was adopted to 

determine saliency-based weights for each instance, which 

redefines the between-class and within-class scatter matrices. 

Multiple variants of the SMLDA were developed based on 

various prior data on the significance of all instances for their 

classes mined from labels and features. But it has a high 

computational complexity since it needs to calculate the 

correlation among all pairs of classes. 

From the literature, it is apparent that most researchers 

solved the problems in dimensionality reduction algorithms by 

using distinct strategies, which have high computational 

complexity. In contrast with those algorithms, the proposed 

algorithm can reduce the time complexity by utilizing 

Nesterov’s accelerated gradient descent rather than the Stiefel 

manifold gradient in FHLDA. 

 

 

3. PROPOSED METHODOLOGY 

 

This section provides a brief overview of the AOFHLDA 

and AOFHLDAp algorithms. It presents a detailed 

methodology for the AO approach applied to the FHLDA and 

FHLDAp algorithms. The overall pipeline of these algorithms 

is illustrated in Figure 1. 
 

3.1 Preliminaries 

 

Let 𝒳 ∈ ℝ𝓅×𝓃  be the given data matrix and 𝒳 =
(𝓍1, … , 𝓍𝓃), wherein 𝓅  is the data dimension and 𝓃  is the 

total instances. Additionally, 𝓀  denotes the class number, 𝒸 

denotes the target subspace dimension, and 𝐾 denotes the total 

classes. Let 𝒢 ∈ ℝ𝓅×𝒸  is a conversion matrix to a 𝒸 -

dimensional subspace. The between-class scatter matrix (𝒮𝒷), 

within-class scatter matrix (𝒮𝓌), and the overall scatter matrix 

(𝒮𝓉) are determined together by the pairwise between-class 

matrix (ℬ𝓀ℓ) as in the study by Sreedharan and Nadarajan [13]. 

In this AOFHLDA algorithm, the discriminant value of all 

classes is calculated to get the best 𝒢. The objective function 

is given as: 

 

min
𝒢

𝒥1(𝒢) = ∑ 𝓃𝓀𝓃ℓ𝓀<𝑙
𝑇𝑟(𝒢𝑇𝒮𝓌𝒢)

𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢)
, s.t. 𝒢𝑇𝒢 = 𝐼 (1) 

In Eq. (1), 𝓃𝓀 is the total samples in 𝓀. The gradient of Eq. 

(1) is given by:  

 

∇𝒥1 ≜
𝜕𝒥1

𝜕𝒢
= 2 ∑ 𝓃𝓀𝓃ℓ𝓀<𝑙

𝒮𝓌𝒢

𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢)
−

∑ 𝓃𝓀𝓃ℓℬ𝓀ℓ𝒢𝓀<𝑙
𝑇𝑟(𝒢𝑇𝒮𝓌𝒢)

(𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢))
2  

(2) 

 

The constraint 𝒢𝑇𝒢 = 𝐼  applies 𝒢  on Nesterov’s 

accelerated gradient descent scheme to get the optimized 

Stiefel manifold. 

 

3.2 Accelerated gradient descent scheme on the Stiefel 

manifold for FHLDA 

 

This new accelerated optimization is used to optimize 

functions on the Stiefel manifold by generalizing the 

dynamically restart method. But two difficulties must be 

resolved while applying this scheme to the Stiefel manifold: (i) 

the non-convexity of the objective function, and (ii) it should 

obtain an efficient way of generalizing the momentum step to 

the manifold. 

 

3.2.1 Restart for non-convex functions 

While applying an accelerated gradient method on the 

Stiefel manifold, the problem is occurred that the manifold is 

compact and thus only the convex functions are constant. So, 

the functions being optimizing are essentially non-convex. In 

this scenario, the global convergence is not ensured. Rather, it 

is observed that in a small neighborhood of a local best 𝒢∗, the 

function can be robustly convex and smooth, given that the 

Hessian at 𝒢∗ is positive definite. 

Also, the ratio of the robust convexity and smoothness 

variables in this neighborhood can be the nearer to the 

condition number of ∇2𝑓(𝒢∗), represented as 𝜅(𝒢∗). 

Therefore, the accelerated gradient scheme recommends 

that a scheme must be designed that establishes a convergence 

rate of 𝑂 ((1 − 𝜅(𝒢∗)−1
2⁄ )

𝑡
)  after it is nearer to the local 

minimum 𝒢∗ . However, because this study copes with 

functions that are not globally convex, a scheme is designed, 

which ensures to converge to a local minimum even for non-

convex functions, and accomplishes the best convergence rate 

after it is nearer to the local minimum. 

 

 
 

Figure 1. Overall pipeline of the proposed study 
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The proposed scheme is to alter the function restart method 

and a below restart criterion is adopted, which forces an 

adequate reduction in the objective function. 

 

𝑓(𝑔𝑡+1) > 𝑓(𝑔𝑡) − 𝑙𝑅𝛾𝑡‖∇𝑓(𝑦𝑡)‖2 (3) 

 

In Eq. (3), 𝑙𝑅 denotes a variable, which is small constant, 

and 𝛾𝑡 denotes the step size at step 𝑡.  

This criterion is applied to the optimization issues on the 

Stiefel manifold, and its convergence for non-convex 

functions on Euclidean space is analyzed. 

Consider 𝑓  is a differentiable, 𝐿-smooth function on ℝ𝑛 , 

i.e., ∇𝑓 is Lipschitz with constant 𝐿. As well, consider that 𝑓 

is bounded below. 

Assume the iteration Eq. (4) with step size 𝛾𝑡  selected to 

satisfy 𝑙
𝐿⁄ ≤ 𝛾𝑡 ≤ 𝛾𝑡−1  for some 𝑙 ≤ 1  and 𝑓(𝑔𝑡+1) ≤

𝑓(𝑦𝑡) − (
𝛾𝑡

2⁄ )‖∇𝑓(𝑦𝑡)‖2
2.  

 

𝑔0 = 𝑦0, 𝑔𝑡+1 = 𝑦𝑡 − 𝛾𝑡∇𝑓(𝑦𝑡), 𝑦𝑡+1 = 𝑔𝑡+1 +
𝛼𝑡(𝑔𝑡+1 − 𝑔𝑡)  

(4) 

 

When this iteration is restarted whenever (3) holds, obtain 

 

lim
𝑡→∞

‖∇𝑓(𝑔𝑡)‖ → 0  (5) 

 

3.2.2 Exploration and interpolation on the Stiefel manifold 

Now, it is understood that how to obtain around knowing 

the robust convexity and smoothness variables and how to 

cope with non-convex functions in the process. Consider the 

difficulty of generalizing the momentum step of Eq. (4) to the 

manifold as: 

 

𝒴𝑡+1 = 𝒢𝑡+1 + 𝛼𝑡(𝒢𝑡+1 − 𝒢𝑡) (6) 

 

Consider the difficulty of effectively extrapolating and 

interpolating on the Stiefel manifold, i.e., given two points 

𝒢, 𝒴 ∈ 𝑆𝑝,𝑐  and 𝛼 ∈ ℝ , it is essential to determine points 

(1 − 𝛼)𝒢 + 𝛼𝒴  on a curve via 𝒢  and 𝒴 . By assigning 𝛼 ∈
(0,1), this gives a way of averaging points on the manifold and 

by assigning 𝛼 > 1 or 𝛼 < 0, it can extrapolate as in Eq. (6). 

A promising method would be to execute the extrapolation 

or interpolation in Euclidean space and then project back onto 

the Stiefel manifold. But this estimation process that 

comprises the orthogonal part from the joint diagonalization-

based decomposition of the matrix is highly expensive 

compared to the proposed algorithm, particularly for large 

matrices. One could also substitute the estimation by a 

reorthogonalization process like Gram-Schmidt. But this is 

fairly improper when 𝑘 (the number of vectors) is large and is 

also not as low-cost as this algorithm, which only comprises 

the matrix products and inversions. 

The method for generalizing (1 − 𝛼)𝒢 + 𝛼𝒴 is to solve for 

a 𝑉 ∈ (𝑇𝒢𝑆𝑝,𝑐)
∗
, which satisfies 

 

𝒴 = 𝑅 (𝒢, 𝜙𝑞(𝑉)) , 𝒴 = 𝒢 + 𝑉  (7) 

 

In Eq. (7), 𝑅 is a retraction, which is predetermined. Then, 

extrapolate or average by assigning 

 

(1 − 𝛼)𝒢 + 𝛼𝒴 = 𝑅 (𝒢, 𝜙𝑞(𝛼𝑉)), 

(1 − 𝛼)𝒢 + 𝛼𝒴 = 𝒢 + 𝛼𝑉 
(8) 

Observe that the utilization of 𝜙𝑞 enables the algorithm to 

execute in the dual tangent space. The problem with this 

solving Eq. (7) for 𝑉 , i.e., finding a 𝑉  such that 

𝑅 (𝒢, 𝜙𝑞(𝑉)) = 𝒴  for some given 𝒢  and 𝑌 . But when 

retraction is considered to be 𝑅1, then this solves Eq. (9) for 𝑉. 

 

(𝐼 +
1

2
(𝑉𝒢𝑇 − 𝒢𝑉𝑇)) 𝒢 = (𝐼 −

1

2
(𝑉𝒢𝑇 − 𝒢𝑉𝑇)) 𝒴  (9) 

 

Because 𝒢𝑇𝒢 = 𝒴𝑇𝒴 = 𝐼, one can simply verify that 𝑉 =
2 𝒴(𝐼 + 𝒢𝑇𝒴)−1 solves Eq. (8). Here, observing 𝑉 ∈ ℝ𝑝,𝑐 as 

an element of the dual tangent space via the Frobenius inner 

product. Also, verify that when 𝑉 is substituted by 𝑉′ = 𝑉 +
𝒢𝑆  for any symmetric 𝑐 × 𝑐  matrix 𝑆 , then 𝑉𝒢𝑇 − 𝒢𝑉𝑇 =
𝑉′𝒢𝑇 − 𝒢(𝒢 ′)𝑇 . This defines that 𝑉′  also satisfies Eq. (9). 

Particularly, 𝑉 is substituted by its orthogonal projection onto 

the dual tangent space (𝑇𝒢)
∗
, which then provides the target 

vector. 

One possible problem with this method is the probability 

that the matrix (𝐼 + 𝒢𝑇𝒴) could be singular or ill-conditioned. 

To solve this problem, the matrix (𝐼 + 𝒢𝑇𝒴)  is well-

conditioned providing 𝒢 and 𝒴 are not too far apart on 𝑆𝑝,𝑐 . 

Consider 𝒢, 𝒴 ∈ 𝑆𝑝,𝑐. The geodesic distance between 𝒢 and 𝒴 

w.r.t. the quotient metric as: 

 

𝑑
𝑆𝑝,𝑐

𝑄 (𝒢, 𝒴)2 = inf
𝐶(𝑡):[0,1]→𝑆𝑝,𝑐

∫ 𝑇𝑟 (𝐶′(𝑡) (𝐼 −
1

0

1

2
𝐶(𝑡)𝐶(𝑡)𝑇) 𝐶′(𝑡)𝑇) 𝑑𝑡  

(10) 

 

In Eq. (10), the infimum is taken over each path 𝐶(𝑡) that 

connect 𝒢  and 𝒴 , i.e., for which 𝐶(0) = 𝒢  and 𝐶(1) = 𝒴 . 

Likewise, the geodesic distance is written w.r.t. the embedding 

metric as: 

 

𝑑𝑆𝑝,𝑐
𝐸 (𝒢, 𝒴)2 = inf

𝐶(𝑡):[0,1]→𝑆𝑝,𝑐
∫ 𝑇𝑟(𝐶′(𝑡)𝐶′(𝑡)𝑇)

1

0
𝑑𝑡  (11) 

 

In Eq. (11), the infimum is taken over the same set where 

𝐶(0) = 𝒢 and 𝐶(1) = 𝒴. 

Thus, this method provides computationally efficient 

algorithm for averaging and extrapolating on the Stiefel 

manifold. 

 

3.2.3 Gradient restart method 

Remember that the gradient restart method reinitiates 

iteration (4) whenever ∇𝑓(𝑦𝑡−1) ∙ (𝒢𝑡 − 𝒢𝑡−1) > 0 . 

Observing that 𝒢𝑡 = 𝒴𝑡−1 − 𝛾𝑡−1∇𝑓(𝒴𝑡−1) and this criterion 

is rewritten as: 

 

−𝛾𝑡−1‖∇𝑓(𝒴𝑡−1)‖2
2 + ∇𝑓(𝒴𝑡−1) ∙ (𝒴𝑡−1 − 𝒢𝑡−1) >

0  
(12) 

 

It is observed that on the manifold ‖∇𝑓(𝒴𝑡−1)‖2
2  must 

become ‖∇𝑓(𝒴𝑡−1)‖𝑞∗
2 . Here, seeing ∇𝑓(𝒴𝑡−1) as an element 

of the dual tangent space. The difficult part is generalizing 

+∇𝑓(𝒴𝑡−1) ∙ (𝒴𝑡−1 − 𝒢𝑡−1). To solve for 𝑉 ∈ (𝑆𝒴𝑡−1
)

∗
, the 

method is presented such that 

 

𝒢𝑡−1 = 𝑅 (𝒴𝑡−1, 𝜙𝑞(𝑉))  (13) 

 

Then, this element 𝑉  acts as 𝒢𝑡−1 − 𝒴𝑡−1  and the 
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correspondent of the gradient restart criterion becomes 

 

−𝛾𝑡−1‖∇𝑓(𝒴𝑡−1)‖𝑞∗
2 − 〈∇𝑓(𝒴𝑡−1), 𝑉〉𝑞∗ > 0 (14) 

 

Eq. (13) can be effectively resolved for 𝑉  when the 

retraction is used as 𝑅1. 

 

3.2.4 Accelerated gradient descent on the Stiefel manifold 

The above-studied concepts are combined to design an 

accelerated gradient descent scheme with the gradient restart 

on the Stiefel manifold as in Algorithm 1. 

 

Algorithm 1 Accelerated gradient descent with gradient restart 

method 

Input: Smooth function 𝑓, tolerance 𝜖, initial step size 𝛾0, 

variables needed for line search 𝜆𝑑 , 𝑐𝐿 

Output: A point 𝒢𝑡 such that ‖∇𝑓(𝒢𝑡)‖𝑞∗ < 𝜖 

1. Initialize 

2. 𝒢0 ←initial point; 

3. 𝒴0 ← 𝒢0, 𝑡 ← 0, 𝑐 ← 0; 

4. 𝒘𝒉𝒊𝒍𝒆(‖∇𝑓(𝒢𝑡)‖𝑞∗ ≥ 𝜖) 

5.    𝒢𝑡+1 ← 𝑅1 (𝒴𝑡 , 𝜙𝑞(−𝛾𝑡∇𝑓(𝒴𝑡))) , execute a line 

search to guarantee the Armijo criterion 𝑓(𝒢𝑡+1) ≤

𝑓(𝒴𝑡) −
1

2
‖∇𝑓(𝒴𝑡)‖𝑞∗

2  is satisfied; 

6.    𝒘𝒉𝒊𝒍𝒆(𝑓(𝒢𝑡+1) ≤ 𝑓(𝒴𝑡) − 𝑙𝐿𝛾𝑡‖∇𝑓(𝒴𝑡)‖𝑞∗
2 ) 

7.       𝛾𝑡 ← 𝜆𝑑𝛾𝑡 

8.       𝒢𝑡+1 ← 𝑅1 (𝒴𝑡 , 𝜙𝑞(−𝛾𝑡∇𝑓(𝒴𝑡))); 

9.    𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

10.    𝒘𝒉𝒊𝒍𝒆 (𝑓(𝒢𝑡+1) > 𝑓(𝒴𝑡) −
1

2
𝛾𝑡‖∇𝑓(𝒴𝑡)‖𝑞∗

2 ) 

11.       𝛾𝑡 ←
𝛾𝑡

𝜆𝑑
⁄ ; 

12.       𝒢𝑡+1 ← 𝑅1 (𝒴𝑡 , 𝜙𝑞(−𝛾𝑡∇𝑓(𝒴𝑡))); 

13.    𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

14.    𝑊𝑡 ← 2𝒢𝑡(𝐼 + 𝒢𝑡
𝑇𝒴𝑡)−1; 

15.    𝑊𝑡 ← 𝑊𝑡 −
1

2
𝒢𝑡(𝑊𝑡

𝑇𝒢𝑡 + 𝒢𝑡
𝑇𝑊𝑡); 

16.    𝒊𝒇((∇𝑓(𝒴𝑡), 𝑊𝑡)𝑞∗ < −𝛾𝑡‖∇𝑓(𝒴𝑡)‖𝑞∗
2 ) 

17.       𝒢𝑡+1 ← 𝒢𝑡 , 𝒴𝑡 ← 𝒢𝑡+1, 𝑐 ← 0; 

18.    𝒆𝒍𝒔𝒆 

19.       𝑉𝑡 ← 2𝒢𝑡+1(𝐼 + 𝒢𝑡+1
𝑇 𝒢𝑡)−1; 

20.       𝑉𝑡 ← 𝑉𝑡 −
1

2
𝒢𝑡(𝑉𝑡

𝑇𝒢𝑡 + 𝒢𝑡
𝑇𝑉𝑡); 

21.       𝒴𝑡+1 ← 𝑅1 (𝒢𝑡 , (1 +
𝑐

𝑐+3
) 𝜙𝑞(𝑉𝑡)); 

22.       𝑐 ← 𝑐 + 1; 

23.    𝒆𝒏𝒅 𝒊𝒇 

24.    𝑡 ← 𝑡 + 1; 

25.    𝛾𝑡+1 = 𝛾𝑡; 

26. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

27. End 

After that, 𝒢 is retrieved to the manifold based on the joint 

diagonalization via Taylor expansion with less computational 

complexity [13]. Accordingly, the proposed accelerated 

optimization can achieve faster convergence and reduce the 

complexity of Stiefel gradient manifolds effectively. 

 
3.3 Accelerated optimization with FHLDAp  

 

For FHLDAp, a pairwise within-class scatter matrix (𝒲𝓀𝑙) 

is also determined along with ℬ𝓀ℓ. The objective function for 

FHLDAp is rewritten as: 

 

min
𝒢

𝒥2(𝒢) = ∑ 𝓃𝓀𝓃ℓ𝓀<𝑙
𝑇𝑟(𝒢𝑇𝒲𝓀𝑙𝒢)

𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢)
, s.t. 𝒢𝑇𝒢 = 𝐼  (15) 

 

Similar to the FHLDA, the accelerated gradient descent on 

the Stiefel manifold is applied to solve (15). Algorithm 2 

presents the overall steps in solving Eq. (1) or Eq. (15) 

iteratively. 

Algorithm 2 Accelerated optimization on FHLDA or 

FHLDAp algorithm 

Input: 𝒳 ∈ ℝ𝓅×𝓃, class matrix 𝒴 ∈ ℝ𝓃×𝐾 and 𝒸 

Output: Projection matrix 𝒢 ∈ ℝ𝓅×𝒸 

1. Initialize 𝒢  using standard LDA if 𝑐 ≤ 𝐾 − 1 , or 

using trace ratio LDA if 𝑐 > 𝐾 − 1; 

2. Calculate 𝒮𝓌 and ℬ𝓀ℓ; 

3. Calculate the discriminant value of all classes 

denoted as (𝛼𝓀
′ , 𝛽𝓀

′ ), 𝑖 = 1, … , 𝐾; 

4. 𝒘𝒉𝒊𝒍𝒆 (
𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸𝑞. (1) 𝑜𝑟

𝐸𝑞. (16) 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒
) 

5.    Determine the accelerated gradient descent on 

Stiefel manifold based on Algorithm 1; 

6.    Retrieve 𝒢  to the manifold utilizing the joint 

diagonalization; 

7. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

The algorithm initializes the projection matrix 𝒢  using 

standard LDA or trace ratio LDA based on the subspace 

dimension. It then performs an iterative optimization process 

using accelerated gradient descent on the Stiefel manifold 

(Algorithm 1). The optimization is guided by the specified 

objective function Eq. (1) or Eq. (16), and the resulting 𝒢 is 

retrieved to the manifold using joint diagonalization. The 

algorithm continues iterating until convergence of the 

objective function is achieved, aiming to accelerate the 

optimization process for FHLDA or FHLDAp and potentially 

enhance convergence speed and overall performance. 

Figure 2 illustrates the convergence behavior of various 

algorithms on the Steifel manifold. It compares the number of 

iterations to the condition number on a logarithmic scale. The 

accelerated approach shows superior convergence, with the 

number of iterations scaling slightly better than the square root 

of the condition number. Therefore, the accelerated gradient 

descent with gradient restart method outperforms others, even 

for small condition numbers. 

 

3.4 Complexity analysis 
 

The proposed algorithm involves joint diagonalization via 

Taylor expansion for initialization, resulting in a time 

complexity of 𝑂(𝑝2) . Calculating 𝒮𝓌  takes 𝑂(𝑛𝑝)  time, 

while calculating pairwise ℬ𝓀ℓ  takes 𝑂(𝐾𝑝)  time. Each 

iteration of the while loop, which involves the accelerated 

gradient descent on the Stiefel manifold based on Algorithm 1 

takes 𝑂(√𝑝) time. Therefore, the total time complexity for 

Algorithm 2 is 𝑂(𝑝2) + 𝑂(𝑡√𝑝), where 𝑡 is the number of 

loops until convergence. The proposed AOFHLDA and 

AOFHLDAp converge quickly, so 𝑡  is smaller than 𝑝 . In 

practice, the time complexity for Algorithm 2 is 𝑂(𝑝2). 
 

3.5 Key improvements and advantages 
 

Key improvements include reducing time complexity, 

improving convergence rate, and broadening applicability. 

The accelerated optimization scheme reduces the Stiefel 

manifold gradient complexity from 𝑂(𝑝2) to 𝑂(√𝑝), making 
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it faster and more scalable. The Nesterov accelerated gradient 

scheme achieves optimal convergence rates for smooth and 

strongly convex functions on manifolds. The proposed 

algorithms are applicable to both single-label and multi-label 

HDDs from diverse domains. These advancements offer faster, 

more accurate and broadly applicable dimensionality 

reduction for HDD analysis. 

 

 
 

Figure 2. Convergence behavior of different algorithms on Steifel manifold 

 

The subsequent section will focus on the empirical 

validation of the proposed AOFHLDA and AOFHLDAp 

algorithms. Extensive experiments are conducted on diverse 

benchmark datasets including facial images, object images, 

and video datasets. The performance of AOFHLDA and 

AOFHLDAp is compared against existing state-of-the-art 

LDA variants. Evaluation metrics and computational 

efficiency are reported to fully assess the effectiveness and 

practical utility of the proposed algorithms. Details including 

dataset statistics, experimental setup, and parameter tuning, 

will be provided to ensure transparency and reproducibility of 

the results. 

 

 

4. EXPERIMENTAL RESULTS 

 

This section assesses the performance of the proposed 

AOFHLDA and AOFHLDAp algorithms for dimension 

reduction in comparison to existing algorithms. 

 

4.1 Experimental setup 

 

Hardware: The experiments were conducted on a Windows 

10 64-bit system with 4GB of RAM, a 1TB hard disk, and an 

Intel® Core™ i5-4210 CPU running at 2.80GHz to ensure 

consistent and reproducible evaluations. 

Software: The proposed AOFHLDA and AOFHLDAp 

algorithms, along with the existing algorithms (FHLDA [13], 

FHLDAp [13], ALDA [17], G2DLDA [19], and SMLDA [21]) 

were implemented in MATLAB 2017b. This ensures a 

standardized environment for fair comparisons. 

Datasets: The evaluation covered both single-label and 

multi-label classifications using diverse datasets: 

• Single-label datasets: PIE [22] and UMIST [23], both 

of which are facial image datasets. 

• Multi-label datasets: Mediamill video dataset [24] and 

Barcelona [25] image dataset. 

The data distribution details for each dataset are provided in 

[13], ensuring transparency regarding the characteristics of the 

datasets. In this study, a data split ratio of 80:20 is used to 

analyze the performance of the proposed and existing 

algorithms.  

Parameter settings: In this experiment, we used the 

following parameters for the proposed AOFHLDA and 

AOFHLDAp algorithms: 𝜖 = 10−10, 𝛾0 = 0.1, 𝜆𝑑 = 1.7, and 

𝑐𝐿 = 0.7. The ALDA and SMLDA algorithms do not require 

initialization parameters. For G2DLDA, we used 

regularization 𝑝 = 0.5 and nonnegative tuning parameter 𝜎 =
0.001.  

 

4.2 Evaluation metrics 

 

The performance of single and multi-label classification 

using different algorithms is measured regarding the following 

metrics:  

• Accuracy: It is the ratio between correct categorization 

of labels and the total trials conducted. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
  

(16) 
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In Eq. (16), TP is the total correctly categorized positive 

labels, FP is the total incorrectly categorized positive labels, 

FN is the total incorrectly categorized negative labels, and TN 

is the total correctly categorized negative labels. 

• Precision: It is calculated as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (17) 

 

• Recall: It is calculated as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (18) 

 

• F-measure: It is defined by 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (19) 

 

In addition to these metrics, the performance of multi-label 

classification is measured according to the Hamming Loss 

(HL), Ranking Loss (RL), 1-Error (1-E), Coverage, and Mean 

Precision (MP). 

• HL: It analyzes the number of instance-label sets that 

are incorrectly categorized, meaning that either a label 

that belongs to the instance or one that does not is 

classified. 

• RL: It calculates the data's mean reverse-organized 

label percentage. Efficiency improves as RL decreases. 

• 1-E: 1-E is employed to calculate the instance's 

acceptable label's top-arranged label's absence 

frequency. Efficiency is correct when 1-E is zero, and 

effectiveness increases as 1-E decreases. 

• Coverage: It determines how far down a collection of 

labels is usually needed to cover all appropriate labels 

for the particular instance. A lower coverage range 

boosts efficiency. 

• MP: It measures the average fraction of higher-ranked 

labels. The higher the MP value, the higher the 

effectiveness. 

The main performance indicators chosen are accuracy, 

precision, recall, and F-measure. These indicators provide a 

balanced assessment of different aspects of quality. Accuracy 

measures overall effectiveness, precision shows the reliability 

of positive classifications, and recall measures the coverage of 

actual positives, emphasizing robustness. The F-measure 

provides a weighted aggregate view of these metrics. 

For multi-label settings, additional metrics such as HL, RL, 

1-E, coverage, and MP are considered to gain further insight 

into performance across classes with imbalance. These metrics 

have been commonly used to evaluate multi-label classifiers 

in various domains and reveal the model's capabilities in 

handling label dependencies. 

 

4.3 Statistical analysis 

 

Table 1 shows p-values for single-label classification 

problems under the null hypothesis, while Table 2 shows p-

values for multi-label classification problems under the null 

hypothesis. 

The performance of AOFHLDAp, AOFHLDA, FHLDA, 

FHLDAp, ALDA, G2DLDA, and SMLDA differs 

significantly from each other in all cases, except for 

AOFHLDAp and AOFHLDA, where their performance is 

statistically similar. Overall, these findings show that 

AOFHLDAp and AOFHLDA outperform other LDA methods 

such as FHLDA, ALDA, etc. for both single-label and multi-

label classification. The only instance where the differences 

are not significant is between AOFHLDAp and AOFHLDA, 

indicating comparable performance. 

 

Table 1. Wilcoxon tests for single-label classification 

problems 

 
Algorithms p-value Hypothesis 

AOFHLDAp vs ALDA 0.28 Rejected 

AOFHLDAp vs G2DLDA 0.31 Rejected 

AOFHLDAp vs SMLDA 0.58 Rejected 

AOFHLDAp vs FHLDA 0.13 Rejected 

AOFHLDAp vs FHLDAp 0.17 Rejected 

AOFHLDAp vs AOFHLDA 0.00 Not rejected 

AOFHLDA vs ALDA 0.62 Rejected 

AOFHLDA vs G2DLDA 0.36 Rejected 

AOFHLDA vs SMLDA 0.44 Rejected 

AOFHLDA vs FHLDA 0.21 Rejected 

AOFHLDA vs FHLDAp 0.15 Rejected 

FHLDAp vs ALDA 0.28 Rejected 

FHLDAp vs G2DLDA 0.44 Rejected 

FHLDAp vs SMLDA 0.19 Rejected 

FHLDAp vs FHLDA 0.37 Rejected 

FHLDA vs ALDA 0.95 Rejected 

FHLDA vs G2DLDA 0.53 Rejected 

FHLDA vs SMLDA 0.71 Rejected 

SMLDA vs ALDA 0.24 Rejected 

SMLDA vs G2DLDA 0.61 Rejected 

G2DLDA vs ALDA 0.47 Rejected 

 

Table 2. Wilcoxon tests for multi-label classification 

problems 

 
Algorithms p-value Hypothesis 

AOFHLDAp vs ALDA 0.71 Rejected 

AOFHLDAp vs G2DLDA 0.29 Rejected 

AOFHLDAp vs SMLDA 0.43 Rejected 

AOFHLDAp vs FHLDA 0.24 Rejected 

AOFHLDAp vs FHLDAp 0.19 Rejected 

AOFHLDAp vs AOFHLDA 0.00 Not rejected 

AOFHLDA vs ALDA 0.35 Rejected 

AOFHLDA vs G2DLDA 0.68 Rejected 

AOFHLDA vs SMLDA 0.54 Rejected 

AOFHLDA vs FHLDA 0.21 Rejected 

AOFHLDA vs FHLDAp 0.16 Rejected 

FHLDAp vs ALDA 0.39 Rejected 

FHLDAp vs G2DLDA 0.52 Rejected 

FHLDAp vs SMLDA 0.28 Rejected 

FHLDAp vs FHLDA 0.44 Rejected 

FHLDA vs ALDA 0.95 Rejected 

FHLDA vs G2DLDA 0.61 Rejected 

FHLDA vs SMLDA 0.33 Rejected 

SMLDA vs ALDA 0.27 Rejected 

SMLDA vs G2DLDA 0.66 Rejected 

G2DLDA vs ALDA 0.58 Rejected 

 

In conclusion, the Wilcoxon signed-rank test results in 

Table 1 and Table 2 provide statistical evidence that the 

proposed AOFHLDAp and AOFHLDA offer significant 

improvements in accuracy compared to current LDA 

techniques for single- and multi-label classification tasks, with 

only minor distinctions between the two proposed algorithms. 

 

4.4 Analysis on single-label classification 

 

Figure 3 depicts the comparison results of various versions 
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of LDA algorithms on the PIE dataset. The proposed 

AOFHLDA and AOFHLDAp algorithms outperform existing 

methods in terms of precision, recall, f-measure, and accuracy 

metrics. The precision of the ALDA, G2DLDA, SMLDA, 

FHLDA, FHLDAp, AOFHLDA, and AOFHLDAp algorithms 

is 70.28%, 73.65%, 78.82%, 86.1%, 86.72%, 89.36%, and 

90.01%, respectively. The recall of the ALDA, G2DLDA, 

SMLDA, FHLDA, FHLDAp, AOFHLDA, and AOFHLDAp 

algorithms is 67.19%, 70.91%, 75.44%, 79.85%, 81.52%, 

85.24%, and 86.1%, respectively. The f-measure of the ALDA, 

G2DLDA, SMLDA, FHLDA, FHLDAp, AOFHLDA, and 

AOFHLDAp algorithms is 69.28%, 72.25%, 77.09%, 82.57%, 

83.75%, 87.25%, and 88.01%, respectively. The accuracy of 

the ALDA, G2DLDA, SMLDA, FHLDA, FHLDAp, 

AOFHLDA, and AOFHLDAp algorithms is 65.92%, 70.54%, 

76.63%, 83.14%, 86.28%, 90.17%, and 91.28%, respectively. 

On average, AOFHLDA achieves absolute improvements 

of 12.95%, 13.68%, 13.33%, and 17.87% in precision, recall, 

f-measure, and accuracy respectively. Similarly, AOFHLDAp 

demonstrates absolute gains of 13.77%, 14.83%, 14.32%, and 

19.32% in precision, recall, f-measure, and accuracy 

respectively. These results highlight the competitive 

advantage of AOFHLDA and AOFHLDAp in efficiently 

producing optimal discriminant vectors through accelerated 

gradient descent on the Stiefel manifold. 

Figure 4 illustrates an assessment of various LDA 

algorithms on the UMIST dataset, utilizing precision, recall, f-

measure, and accuracy metrics. The findings indicate that the 

proposed AOFHLDA and AOFHLDAp algorithms 

outperform existing methods. The precision of the ALDA, 

G2DLDA, SMLDA, FHLDA, FHLDAp, AOFHLDA, and 

AOFHLDAp algorithms is 71.43%, 74.69%, 78.55%, 85.54%, 

86.1%, 89.21%, and 90.04%, respectively. The recall of the 

ALDA, G2DLDA, SMLDA, FHLDA, FHLDAp, AOFHLDA, 

and AOFHLDAp algorithms is 70.17%, 73.81%, 77.15%, 

81.45%, 82.66%, 86.38%, and 89.74%, respectively. The f-

measure of the ALDA, G2DLDA, SMLDA, FHLDA, 

FHLDAp, AOFHLDA, and AOFHLDAp algorithms is 

70.13%, 74.25%, 77.84%, 84.12%, 84.64%, 87.77%, and 

89.89%, respectively. The accuracy of the ALDA, G2DLDA, 

SMLDA, FHLDA, FHLDAp, AOFHLDA, and AOFHLDAp 

algorithms is 68.56%, 74.13%, 78.57%, 85.23%, 88.42%, 

90.15%, and 90.93%, respectively. 

On average, AOFHLDA shows absolute improvements of 

12.55%, 12.11%, 12.24%, and 14.14% in precision, recall, f-

measure, and accuracy, respectively. Similarly, AOFHLDAp 

achieves absolute gains of 13.65%, 16.47%, 14.95%, and 

15.13% on those evaluation metrics. These consistent 

improvements across multiple metrics demonstrate the ability 

of AOFHLDA and AOFHLDAp to efficiently reduce 

dimensionality while preserving discriminative information. 

By utilizing accelerated optimization on the Stiefel manifold, 

the algorithms extract higher-quality low-dimensional 

representations compared to traditional LDA approaches, as 

indicated by the various evaluation measures. 

 

 

 
 

Figure 3. Comparison of different dimensionality reduction algorithms on PIE dataset 

 

 
 

Figure 4. Comparison of different dimensionality reduction algorithms on UMIST dataset 
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(a) 

 
(b) 

 

Figure 5. Comparison of accuracy using different subspace dimension 𝑐 (𝑐 = 𝐾 − 1) for single-label classification. (a) PIE 

dataset and (b) UMIST dataset 

 

Figure 5 displays accuracy results for different subspace 

dimensions on the PIE and UMIST datasets. The AOFHLDA 

and AOFHLDAp algorithms consistently achieve higher 

accuracy compared to other algorithms. Furthermore, the 

accuracy of AOFHLDA and AOFHLDAp improves as the 

subspace dimension increases, outperforming other algorithms 

at higher dimensions. This indicates that AOFHLDA and 

AOFHLDAp are effective at utilizing larger subspaces to 

enhance recognition accuracy on the PIE and UMIST datasets. 

 

4.5 Analysis on multi-label classification 

 

Figure 6 illustrates the test results of various LDA 

algorithms on the Barcelona dataset, indicating that the 

proposed AOFHLDA and AOFHLDAp outperform existing 

techniques. The precision of the ALDA, G2DLDA, SMLDA, 

FHLDA, FHLDAp, AOFHLDA, and AOFHLDAp algorithms 

is 70.3%, 74.26%, 79.63%, 85.78%, 87.01%, 90.31%, and 

91.01%, respectively. The recall of the ALDA, G2DLDA, 

SMLDA, FHLDA, FHLDAp, AOFHLDA, and AOFHLDAp 

algorithms is 72.63%, 75.91%, 78.35%, 84.36%, 85.83%, 

89.14%, and 91.88%, respectively. The f-measure of the 

ALDA, G2DLDA, SMLDA, FHLDA, FHLDAp, AOFHLDA, 

and AOFHLDAp algorithms is 71.61%, 75.08%, 78.98%, 

85.64%, 86.42%, 89.72%, and 91.44%, respectively.  

The accuracy of the ALDA, G2DLDA, SMLDA, FHLDA, 

FHLDAp, AOFHLDA, and AOFHLDAp algorithms is 

68.63%, 74.95%, 79.47%, 85.41%, 86.01%, 90.45%, and 

91.21%, respectively. On average, AOFHLDA achieves 

absolute improvements of 13.75%, 12.24%, 12.79%, and 

363



 

14.65% on precision, recall, f-measure, and accuracy metrics, 

while AOFHLDAp obtains gains of 14.63%, 15.69%, 14.95%, 

and 15.61% on those metrics. These consistent margins are 

attributed to the use of accelerated gradient descent on the 

Stiefel manifold to efficiently reduce data dimensionality 

while retaining discriminative information. 

Figure 7 shows a comparison of different LDA algorithms 

on the MediaMill dataset. The precision of the ALDA, 

G2DLDA, SMLDA, FHLDA, FHLDAp, AOFHLDA, and 

AOFHLDAp algorithms is 72.13%, 75.03%, 79.66%, 85.45%, 

86.31%, 90.05%, and 90.84%, respectively. The recall of the 

ALDA, G2DLDA, SMLDA, FHLDA, FHLDAp, AOFHLDA, 

and AOFHLDAp algorithms is 68.23%, 72.18%, 77.52%, 

83.64%, 84.72%, 88.47%, and 90.6%, respectively. The f-

measure of the ALDA, G2DLDA, SMLDA, FHLDA, 

FHLDAp, AOFHLDA, and AOFHLDAp algorithms is 

70.41%, 73.58%, 78.58%, 84.67%, 85.51%, 89.25%, and 

90.72%, respectively. The accuracy of the ALDA, G2DLDA, 

SMLDA, FHLDA, FHLDAp, AOFHLDA, and AOFHLDAp 

algorithms is 68.17%, 74.94%, 78.81%, 83.45%, 85%, 90%, 

and 90.91%, respectively. 

On average, the precision of AOFHLDA and AOFHLDAp 

is 12.96% and 13.95% higher, respectively, than the other 

LDA algorithms. The recall of AOFHLDA and AOFHLDAp 

is 14.51% and 17.27% greater, respectively, than the other 

LDA algorithms. The f-measure of AOFHLDA and 

AOFHLDAp is 13.62% and 15.49% higher, respectively, than 

the other LDA algorithms. The accuracy of AOFHLDA and 

AOFHLDAp is 15.28% and 16.44% higher, respectively, than 

the other LDA algorithms. Therefore, it is evident that the 

AOFHLDA and AOFHLDAp algorithms achieve better 

efficiency on the MediaMill dataset by reducing data 

dimensionality for classification. 

Figure 8 illustrates the comparison of the complexity of 

different LDA algorithms on various datasets in terms of 

runtime. AOFHLDAp demonstrates lower runtimes compared 

to ALDA, G2DLDA, SMLDA, FHLDA, FHLDAp, and 

AOFHLDA by 32.12%, 27.7%, 15.68%, 9.9%, 6.3%, and 3.27% 

on the PIE dataset, 29.81%, 26.26%, 20.07%, 14.79%, 7.98%, 

and 0.9% on the UMIST dataset, 45.09%, 37.7%, 34.83%, 

23.23%, 22.17%, and 2.68% on the MediaMill dataset, and 

34.07%, 26.45%, 21.93%, 16.82%, 9.18%, and 4.3% on the 

Barcelona dataset. This consistent improvement in runtime 

across all datasets demonstrates the effectiveness of the 

proposed AO approach in optimizing the computational 

efficiency of the FHLDA and FHLDAp algorithms, which can 

have significant implications for real-world applications 

where processing time is critical. 

 

 
 

Figure 6. Comparison of different dimensionality reduction algorithms on Barcelona dataset 

 

 
 

Figure 7. Comparison of different dimensionality reduction algorithms on MediaMill dataset 
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Figure 8. Comparison of runtime for different dimensionality reduction algorithms on various datasets 

 

 
(a) 

 
(b) 

 

Figure 9. Comparison of accuracy using different subspace dimension 𝑐 (𝑐 = 𝐾 − 1) for multi-label classification. (a) Barcelona 

dataset and (b) MediaMill dataset 
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Table 3. Comparison of different LDA algorithms for multi-label classification 

 
Dataset Metrics ALDA G2DLDA SMLDA FHLDA FHLDAp AOFHLDA AOFHLDAp 

Barcelona 

HL 0.349 0.333 0.305 0.268 0.253 0.231 0.227 

RL 0.267 0.249 0.227 0.194 0.181 0.169 0.160 

1-E 0.105 0.082 0.070 0.052 0.046 0.035 0.029 

Coverage 2.215 2.194 2.151 2.019 2.005 1.988 1.925 

MP 0.792 0.811 0.855 0.916 0.928 0.936 0.944 

MediaMill 

HL 0.085 0.067 0.054 0.041 0.036 0.028 0.020 

RL 0.114 0.099 0.086 0.078 0.069 0.047 0.040 

1-E 0.142 0.130 0.122 0.114 0.105 0.092 0.085 

Coverage 25.50 25.29 25.17 25.06 24.97 24.11 23.96 

MP 0.655 0.683 0.696 0.712 0.724 0.741 0.753 

 

Figure 9 displays accuracy results for different subspace 

dimensions on the Barcelona and MediaMill datasets. The 

AOFHLDA and AOFHLDAp algorithms consistently achieve 

higher accuracy compared to other algorithms. Furthermore, 

the accuracy of AOFHLDA and AOFHLDAp improves as the 

subspace dimension increases, outperforming other algorithms 

at higher dimensions. This indicates that AOFHLDA and 

AOFHLDAp are effective at utilizing larger subspaces to 

enhance recognition accuracy on the Barcelona and MediaMill 

datasets. 

Table 3 presents the results of HL, RL, 1-E, coverage, and 

MP for different LDA algorithms on the Barcelona and 

MediaMill datasets. From these analyses, it is concluded that 

the proposed AOFHLDA and AOFHLDAp algorithms attain 

a minimum HL, RL, 1-E, coverage, and a maximum MP than 

the other LDA algorithms with the help of AO on the Stiefel 

manifold during data dimensionality reduction. 

 

4.5.1 Discussion 

The study could benefit from further analysis of how the 

proposed AOFHLDA and AOFHLDAp algorithms handle 

label dependencies in multi-label classification. This could 

involve updating the discrimination objective function and 

gradient descent optimization to minimize the correlation 

between uncorrelated labels and maximize the correlation 

between correlated labels. Additionally, label dependency 

graphs or association rules could be used to directly model 

label relationships and inform specialized regularizers or 

constraints during the optimization process. The algorithms 

could also be coupled with multi-task learning frameworks to 

learn multiple models with shared and distinct parameters, 

accounting for inter-label dependencies. Finally, performance 

could be evaluated on real-world multi-label datasets with 

known label correlations to quantify accuracy gains over 

traditional LDA algorithms. 

 

 

5. CONCLUSION 

 

This study introduces a Nesterov accelerated gradient 

descent scheme on the Stiefel manifold for optimizing 

functions with orthogonality constraints. The approach 

achieves faster convergence rates compared to traditional 

gradient descent methods by using momentum and an 

optimized step size sequence. By leveraging the geometry of 

the Stiefel manifold, it can elegantly handle the enforcement 

of orthogonality constraints during optimization. The 

proposed AOFHLDA and AOFHLDAp algorithms apply this 

scheme to efficiently search for the most discriminative 

vectors for dimensionality reduction. The accuracy results on 

multiple benchmark datasets show that this methodology 

enables superior dimensionality reduction performance 

compared to other methods. The proposed algorithms 

achieved over 90% accuracy on all test datasets, compared to 

ALDA, G2DLDA, SMLDA, FHLDA, and FHLDAp. These 

algorithms can extract low-dimensional representations for 

diverse conditions, enabling accurate applications such as 

automated video tagging, face recognition, etc. The 

optimization approach produces discriminant projections for 

complex dimensionality reduction tasks, with the potential to 

enhance automated analysis in various fields. 

The proposed algorithms extract features that are used in a 

separate classifier. However, this two-step process may hinder 

classification performance. Future work could explore an end-

to-end model that optimizes feature extraction and prediction 

together, integrating the proposed algorithms into deep 

learning methods to improve HDD classification. 
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