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An organisation needs to control its inventory efficiently and goods shelf life is a key 

factor. Goods can deteriorate due to various factors such as damage, rotting, and 

dryness, reducing their utility over time. The shelf life of goods refers to the maximum 

period for which they can be stored while maintaining their acceptable quality. This 

research paper focuses on selecting the best replenishment strategy for shelf-life stock 

with biquadratic time-dependent demand, accounting for inflation and shortages, where 

shortages are partially backlogged. The objective is to minimize the overall cost, which 

includes several inventory costs, using MATLAB to optimize the quantity and time. 

The investigation indicates that the average total cost is $483, the optimal order quantity 

is 461 units, and the replenishment quantity is 538 units, which occurs at a 

replenishment interval of 3.7 years. The model's elucidation is enhanced by a numerical 

example and a sensitivity analysis. 
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1. INTRODUCTION

Inventory management represents a cornerstone of 

operational excellence within the realm of business. Its 

fundamental role encompasses the intricate orchestration of 

goods, encompassing their production, sale, or procurement, 

all designed to ensure the seamless functioning of an 

organization. Complementing this indispensable operational 

facet is the power of mathematical models, a systematic tool 

enabling the elucidation, prediction, and control of a spectrum 

of internal and external processes. Across various industries, 

from management to operations research and engineering, 

these models find their application, shaping strategies and 

guiding decisions. 

Central to the domain of inventory management stands the 

concept of Economic Order Quantity (EOQ), a methodology 

wielding the capacity to ascertain the optimal quantity of 

goods to be produced or procured, predicated upon the mean 

rate of inventory consumption. This precision-driven approach, 

rooted in demand analysis and foresight of usage patterns, 

carries the dual objective of cost containment and the 

augmentation of customer satisfaction. 

The resonance of effective inventory administration 

reverberates deeply throughout the expanse of organizational 

performance and profitability. This resonance resonates even 

more profoundly within industries dealing with perishable 

goods, where the slightest degradation in product quality can 

engender ripples of discontent among consumers, tumultuous 

shifts in sales, and unwarranted escalations in operational 

overheads. This degradation assumes diverse forms, from 

deterioration to spoilage, moisture loss to vaporization, all 

conspiring to diminish product quality and, subsequently, 

customer contentment. In response, astute adjustments in 

inventory management strategies, ordering protocols, and 

replenishment schemes become imperatives. 

Yet, within the tapestry of inventory management, another 

thread of consideration, equally essential, is the specter of 

inflation. Inflation, the inexorable rise in the cost of goods and 

services over time, inexorably erodes the purchasing prowess 

of currency. Its impact on inventory control unfolds along 

multifaceted trajectories. Firstly, the escalating costs entailed 

in producing, transporting, and warehousing perishable 

commodities can exert monumental pressures on inventory 

maintenance expenses. Heightened prices of raw materials and 

energy sources may necessitate consumer price increments. 

Simultaneously, surging fuel expenses and ballooning rents 

contribute to the overall overhead of storing and distributing 

perishable products. The consequence: amplified inventory 

holding costs, exerting perturbations on the financial bottom 

line. 

Secondly, inflation wields the power to influence shifts in 

the demand for perishable goods. In a climate of inflationary 

growth coupled with diminished real wages, the demand for 

such goods may surge, mandating elevated inventory levels 

and more frequent restocking. Striking the balance between 

maintaining a sufficient stock to cater to fluctuating demand, 

while averting excess inventory that translates into augmented 

holding costs and wastage, metamorphoses into a formidable 

endeavor. 

Conversely, subdued inflation may engender a wane in the 

appetite for perishable products, leading to lower inventory 

levels and diminished aggregate order volume. Businesses 

previously equipped to meet high demand levels may grapple 

with underutilized infrastructure, a factor that can impact 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 2, February, 2024, pp. 446-456 

Journal homepage: http://iieta.org/journals/mmep 

446

https://orcid.org/0000-0002-3536-2031
https://orcid.org/0000-0002-3964-954X
https://orcid.org/0000-0002-5276-3080
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110216&domain=pdf


 

profitability as fixed costs persist. 

In response to these market dynamics, the proposed model 

is committed to improving inventory management for shelf-

life goods, accounting for factors including inflation, partial 

backlogging, and bi-quadratic demand. As our primary 

objective, we aim to achieve cost minimization while 

optimizing both quantity and time, providing a distinctive 

perspective in the domain of shelf-life inventory management. 

 

1.1 Role of MATLAB in constrained non-linear 

minimization 

 

MATLAB, an abbreviation for MATrix LABoratory, stands 

as an exceptionally versatile and widely-utilized software 

platform that has earned a reputation for its exceptional 

capabilities in numerical computing, data analysis, algorithm 

development, and data visualization. It emerges as an 

indispensable tool, revered by researchers and professionals 

hailing from a broad spectrum of disciplines, encompassing 

mathematics, engineering, physics, and numerous others. This 

comprehensive software platform presents a formidable array 

of resources, adeptly addressing the intricate computational 

challenges encountered within these diverse fields. 

Within the context of our research paper, MATLAB 

assumes a central and pivotal role, particularly when tasked 

with addressing intricate constrained non-linear minimization 

problems. To achieve this, we rely on the optimization toolbox 

integrated into MATLAB, which offers a set of robust tools 

explicitly designed for handling such complex tasks. In 

particular, our research leverages the capabilities of the 

"fmincon" solver, known for its high efficiency in managing 

constrained nonlinear minimization problems. 

 

 

2. LITERATURE REVIEW 

 

A successful business must effectively manage its inventory, 

and this is especially crucial when it comes to goods that are 

deteriorating. But managing deteriorating inventory can be 

difficult since there are so many things to take into account, 

including shifts in demand, holding costs, backlogs, shortages, 

and inflation. Numerous researchers have created models that 

attempt to optimise inventory management for degrading 

items by taking into consideration these issues in response to 

these difficulties. 

Mishra and Singh [1] employed a computational approach 

to optimize the total cost function of an inventory model that 

accounts for ramp-type demand and linear deterioration. 

Venkateswarlu and Mohan [2] developed a deterministic 

inventory model for deteriorating items that integrates 

quadratic demand functions and proportional deterioration 

rates. Meanwhile, Chauhan and Singh [3] investigated optimal 

replenishment and ordering policies for time-varying 

deterioration items with varying demand, utilizing a 

discounted cash flow approach. 

A model for calculating the Economic Order Quantity 

(EOQ) for non-instantaneously deteriorating items with stock-

dependent demand, inflation, and partial backlogging was 

introduced by Palanivel et al. [4], which utilizes two 

warehouses. In a separate study, Kumar and Chanda [5] 

presented a two-warehouse inventory model specifically 

designed for technology products. Yadav and Swami [6] 

developed a model for non-instantaneous deteriorating items 

that considers rented and owned warehouses. 

Shaikh et al. [7] suggested a two-warehouse inventory 

model that considers partial backlogging and advanced 

payment. Taghizadeh-Yazdi et al. [8] proposed a mathematical 

programming model that maximizes the profit of suppliers, 

manufacturers, and distributors in a three-echelon supply 

chain, accounting for the deteriorating nature of raw materials 

and final products. Meanwhile, Khan et al. [9] presented a two-

storage inventory model with advance payment, where 

demand is dependent on the selling price. The model also takes 

into account partial shortages with a fixed backlogging rate. 

Mashud [10] proposed an Economic Order Quantity (EOQ) 

inventory model that considers deteriorating items with stock-

dependent demand and full backlogged shortages, while also 

taking into account price changes. Suman [11] presented a 

deterministic inventory model for deteriorating items with a 

biquadratic demand function over time and allowing for 

shortages. A strategy where suppliers give price discounts to 

retailers that make advance payments was presented in Duary 

et al. 's [12] study. 

The review focuses on the problems that companies run into 

while trying to manage deteriorating inventories and the 

models that have been put out in various studies to solve these 

problems. By taking into account elements like demand 

volatility, holding costs, backlogs, shortages, and inflation, 

these models can aid in the optimisation of inventory decisions. 

These research' conclusions offer useful information about 

how to manage inventory for degrading goods, which can aid 

firms in making wise choices. In light of the effects of price 

variations on overall profit, recent researches have proposed 

novel models to manage supply chains with uncertain demand 

and inflation. Businesses can benefit from extra advice from 

the three-level supply chain model by Padiyar et al. [13] and 

the Stackelberg game-based model by Mahdavisharif et al. [14] 

to increase their inventory management and general 

profitability. The literature review provided corresponds to the 

data presented in Table 1. 

While some prior research has considered shelf-life goods 

in inventory management models, there remains a research gap 

in the development of comprehensive inventory models 

tailored specifically to address the intricate challenges posed 

by these goods. The existing literature may have touched on 

aspects of shelf-life management, but opportunities exist to 

refine and expand these models further. This research aims to 

bridge this gap by presenting an advanced and holistic 

inventory model that comprehensively accounts for factors 

specific to goods with a limited shelf life, such as biquadratic 

time-dependent demand, inflation, and partial backlogged 

shortages. 

The motivation behind this research is deeply rooted in the 

pressing need for efficient inventory management tailored 

specifically to goods characterized by a limited shelf life. 

Effectively managing these products poses a complex 

challenge, one that involves the careful consideration of 

several crucial cost components, namely holding cost, 

deterioration cost, shortage cost, and lost sale cost. 

At its core, the primary aim of this research is to craft a 

comprehensive inventory model meticulously designed to 

optimize the replenishment strategy for shelf-life goods, all 

while intricately addressing these fundamental cost elements. 

The ultimate aspiration is to provide invaluable assistance to 

companies in making judicious inventory decisions, ultimately 

culminating in the minimization of these indispensable costs. 

This research introduces a novel inventory model 

meticulously crafted to enhance the replenishment plan for 
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products subjected to the constraints of a limited shelf life. It 

meticulously factors in a spectrum of variables, including the 

intricacies of biquadratic time-dependent demand, the 

influence of inflation, and the implications of partial 

backlogged shortages. The paramount significance of this 

work lies in its profound ability to amalgamate these critical 

components into a unified and comprehensive model. In stark 

contrast to prior studies, which often scrutinized these factors 

in isolation, this research takes on a holistic perspective. 

One of the most compelling advantages inherent in the 

adoption of this model lies in its transformative capacity to 

guide companies in making well-considered inventory 

decisions, subsequently leading to the minimization of 

operational costs and the overarching enhancement of 

organizational efficiency. 

 

Table 1. Literature review for the proposed model 

 

Authors / Year 
Warehouse 

System 
Inflation Shortage Demand Deterioration 

Mishra and Singh 

(2012) 
Single No Not allowed Ramp-type Instantaneous 

Venkateswarlu and 

Mohan (2013) 
Single No 

Fully 

backlogged 
Quadratic Instantaneous 

Chauhan and Singh 

(2014) 

Two-

warehouse 
Yes 

Partial 

Backlogging 
Linearly time dependent Instantaneous 

Palanivel et al. (2016) 
Two-

warehouse 
Yes 

Partial 

Backlogging 
Stock dependent 

Non-

instantaneous 

Kumar and Chanda 

(2018) 

Two-

warehouse 
No Not allowed 

Known and governed by 

innovation process 
Instantaneous 

Yadav and Swami 

(2019) 

Two-

warehouse 
No 

Fully 

backlogged 
Linearly time dependent 

Non-

instantaneous 

Shaikh (2019) 
Two-

warehouse 
No 

Partially 

backlogging 
Price dependent Instantaneous 

Taghizadeh et al. 

(2020) 
Single No 

Partial 

Backlogging 
Price-dependent Instantaneous 

Khan and Shaikh 

(2020) 

Two-

warehouse 
No 

Partial 

Backlogging 
Price-dependent 

Non-

instantaneous 

Mashud (2020) Single No 
fully 

backlogged 
Multiple Instantaneous 

Suman (2021) Single No 
fully 

backlogged 
Biquadrate Instantaneous 

Duary et al. (2022) 
Two-

warehouse 
No 

Partial 

Backlogging 

Selling price, time and 

frequency of advertisement 

dependent 

Instantaneous 

Mahdavisharif et al. 

(2022) 
Single No 

Partial 

Backlogging 
Price and time Instantaneous 

Padiyar et al. (2022) Single Yes Not allowed Constant Instantaneous 

In this paper 
Two-

warehouse 
Yes 

Partial 

Backlogging 
Biquadratic time-dependent 

Non-

instantaneous 

 

 

3. ASSUMPTIONS 

 

The model introduced in this study is formulated based on 

the following notation and assumptions. 

 

(1). The demand in this study is represented as a biquadratic 

function of time. 

 

i.e. ( )
( )

( )

4    , 0
   

            , 0

t I t
D t

I t

 



 + 
= 



 

 

where, α, β>0 

 

(2). Deterioration are not allowed in RW whereas 

deterioration occurs in OW with constant rate 0<ζ<1 at time 

t∈[t2, t3]. 

(3). Holding cost per unit time and deterioration cost per 

unit time are constant. 

(4). Considering the continuous increase of t2 compared to 

t1 and t3 compared to t2, it is reasonable to make the assumption 

that: 

1 1 2 2 2 3 1 1 2 2,  ,  t l t t l t t l l t= = =   

 

where 𝑙1𝑙2 ∈ (0,1). 
(5). The replenishment rate is considered to be infinite, 

implying that there is no lead time, and orders are delivered 

instantaneously. 

(6). The framework accommodates shortages occurring 

within the time span 𝑡 ∈ [𝑡3, 𝑇] , during which a partial 

backlogging mechanism is employed at a constant rate ϒ. It is 

imperative to highlight that the fraction of shortages leading to 

sales loss is precisely quantified as 1-ϒ. 

(7). The impact of inflation on inventory costs is 

incorporated into the model. 

 

 

4. MODEL FORMULATION 

 

The objective of this model formulation is to analyze the 

inventory management system of a warehouse that stores a lot 

size of Q units. Among the Q units, L units are placed in an 

owned warehouse, and the remaining Q-L units are placed in 

a rented warehouse. The rented warehouse depletes due to 

448



 

demand only, as the product has a shelf-life, and becomes zero 

during the time period [0 t1]. On the other hand, the owned 

warehouse remains constant during this period. 

During the time interval [t1 t2], the owned warehouse starts 

depleting due to demand only. After this period, during the 

time interval [t2 t3], the owned warehouse becomes zero due to 

the combined effect of deterioration and demand. 

Subsequently, during the time period [t3 T], shortages occur, 

and the level of negative inventory during this time interval is 

represented by Is(t). 

 

 
 

Figure 1. Graphical representation of the proposed two-

warehouse inventory model 

 

To better understand the behaviour of this inventory 

management system over the time interval [0 T], a graphical 

representation has been provided in Figure 1. This model 

formulation takes into account various factors such as 

inventory level, demand, deterioration, and shortage to 

provide a comprehensive view of the inventory management 

system of the warehouse. 

The governing differential equations for above inventory 

model are represented by: 

 

( )
( ) 1, 0rdI t

D t t t
dt

= −    (1) 

 

( )
( ) 1 2,  odI t

D t t t t
dt

= −    (2) 

 

( )
( ) ( ) 2 3,  o

o

dI t
I t D t t t t

dt
+ = −    (3) 

 

( )
( ) 3,  sdI t

D t t t T
dt

= −     (4) 

 

The solutions to the aforementioned differential equation, 

determined by applying the specified boundary conditions 

Ir(t1)=0, Io(t1)=L, Io(t3)=0, Is(t3)=0 respectively, are as follows: 

 

( ) ( )
5 5

1
1 1,  0

5 5
r

t t
I t t t t t

 
= + − −    (5) 

 

( )
5 5

1
1 1 2,  

5 5
o

t t
I t t L t t t t

 
 = + + − −    (6) 

 

( )

( ) ( )

( )

3 4 4 4 3 3 2 2

3 3 2 3

5

4 4 3 2

5 2 3 4

2 3

4 12 24 24

,
24 4 12 24

 t

t t

o

e t t t t

I t

t t t t

t t


     



     

    

− − + − + − +
 
 

=  
+ − − + − +

 
 

 

 
(7) 

( ) ( )3 3,  sI t t t t t T= −  −    (8) 

 

By considering continuity at time t=t2 in the OW, it can be 

deduced from Eqs. (6) and (7) that: 

 

( ) ( )2 3

4 3 2

2 2 2 2
2 1 2 3 4

5 54

1 2

5

4 4 4 3 3 2 2

3 3 3 3

5

4 12 24

24

5 5

4 12 24 24
t t

t t t t
t t

t t
L

e t t t t


   
 

   

  



     



− −

 
 − − + − +
 
 +
 = − − + +
 
 

+ − + − + 
 
 

 (9) 

In the context of RW, there exists a quantity Q-L unit at the 

initial time t. To calculate the value of Q-L and putting the 

value of t=0 in the (5). we get: 
 

( )
5

1
10

5
r

t
I Q L t


= − = +  

Furthermore, by substituting t=T into Eq. (8), we can 

determine the maximum level of backlogging that occurs per 

cycle, i.e. S=-αϒ(T-t3). 

Hence, the total quantity to be replenished per cycle can be 

expressed as follows: TQC=Q-S. 
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( )2 3

4 4 4 3 3

3 3

2 2

3 3

5

3 2 4

2 2 2

2 3 4 5

5 5 5

1 2 1

4

2
2 1

31

4

12 24 24

4
 

(  -

12 24 24

5 5 5
 )

t t

T

t t
e

t t

t t t

t

Q

T
t t

t t

C

t t

t

   

 



 



    

   

  



 



− −
 + −
 

+ − + 
 
 
 +
+ − + − 
 
 
− + + + +  
 





− + − 



  


=





 
(10) 

The total cost per cycle comprises the following 

components: 

I. Ordering cost per cycle 

 

OC A=  

 

II. Inventory holding cost per cycle in the R.W 

 

( )
1

1

0

=  rt

rw r

t

HC H I t e dt−

  

1 1

1

1 1

4 4

2 2 3 3 41
1 16

5 5

4

5

1 1

1

1

120 120 5 5

60 20 5
5

120 5

rt rt

rt

rw

rt rt

e r r e
H e

HC r t r t r t
r

rt r t e r t e

   

  

  

−
 − + −
 

= + + + + 
 + + 

 

 

III. The inventory holding cost per cycle in OW 

 

( )
3

2

0

=

t

rt

oowHC H I t e dt−

  

( ) ( ) ( )
21 3

1 2

2

0
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t

r

ow

tt

rt rt t

o o o

t t

HC H I t e dt I t e dt I t e dt− − −
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IV. Worth shortage cost per cycle 

 

( )
3

T

rt

s

t

SC sc I t e dt−=   

( ) ( )3
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V. Lost sale cost per cycle under inflation 
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VI. The deterioration cost per cycle in OW 
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Therefore, the average total cost per unit time per cycle can 

be expressed as: 
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Let, t1=l1t2, t2=l2t3, t1= l1, l2t2, where l1, l2 are positive integer 

with time interval (0, 1) according to the assumption. 

By substituting the values of t1, t2, we get the result in 

Appendix A. 

To minimize the total cost of inventory per unit time in 

present value, the necessary condition is to minimize: TCU (t3, 

T). 
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which also satisfy the conditions: 
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5. SOLUTION PROCEDURE 

 

1) In order to proceed, it is imperative to input the precise 

parameters into Appendix B. This step is crucial for 

computing the total cost. 

2) The next step involves taking the first partial derivative 

of Appendix B with respect to each decision variable. 

Subsequently, these derived equations form a system 

that can be solved to ascertain the values of the decision 

variables. This iterative process is integral to the 

optimization procedure. 

3) The validation of Eqs. (12) and (13) is executed by 

substituting the calculated values of the decision 

variables into these equations. 

4) If the solution fails to satisfy Eqs. (12) and (13), it 

signifies a discrepancy in the proposed model, thereby 

making the minimization of the total cost unachievable. 
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In such a scenario, it is recommended to revisit the 

initial three steps outlined above. 

5) Upon fulfillment of the criteria outlined in Eqs. (12) and

(13), the solution's accuracy is substantiated,

conclusively establishing the optimality of the decision

variables.

6) Compute the average of total inventory cost per unit

time by substituting the determined values of the

decision variables into Appendix B.

Since the equations of the total cost function are non-linear, 

demonstrate the existence of a unique optimal solution using 

the convexity of the cost function. This optimal solution can 

be determined using MATLAB R2017b software. 

6. NUMERICAL EXAMPLE

The numerical analysis of the proposed model has been 

conducted using the given data, with the units of measurement 

being appropriate for the study (as shown in Table 2). 

Table 2. Values and units of parameters 

Parameters Value Units 

ϒ 0.85 % 

L 400 unit 

ζ 0.09 % 

sc 7 $/unit 

A 550 $/order 

D1 5 $/unit 

ls 8 $/unit 

r 0.06 % 

α 60 ---- 

β 10 ---- 

H1 1 $/unit 

H2 3 $/unit 

l1 0.6 ---- 

l2 0.75 ---- 

The optimal total inventory cost per unit time and ordering 

quantity are determined as 483.52≈$483 and 461.3646≈461 

units respectively. The optimal cycle interval is determined to 

be t1=0.9909, t2=1.6515, t3=2.202 and T=3.711yrs. 

2
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Appendix B illustrates a convex cost function, meticulously 

analyzed to reveal an optimal inventory cost of $483, 

accompanied by an optimal quantity of 461 units. Grounded in 

these meticulously determined optimal values, the total 

quantity recommended for replenishment is precisely 538 

units. It is imperative to recognize that these optimal figures 

pinpoint the exact juncture where costs are held to a minimum. 

Any divergence from this finely tuned equilibrium is 

inevitably associated with an escalation in costs. 

7. SENSITIVITY ANALYSIS

Sensitivity analysis is a widely used technique in research 

studies that aims to investigate the impact of changes in 

critical parameters on the model's output results A sensitivity 

analysis was carried out by changing each parameter by -10% 

to +10% and analysing the changes in total cost (TCU*(t3, T)), 

quantity (Q*), and cycle length in order to better understand 

the effects of these parameters. 

For (ϒ), when the backlogging rate was raised, then the 

total cost, quantity and total cycle length (T*) decreases along 

with the decrease in 𝑡1
∗, 𝑡2

∗ and 𝑡3
∗.

For demand’s parameter (α), the total cost and quantity is 

strictly increasing. The time 𝑡1
∗ , 𝑡2

∗  and 𝑡3
∗ are slightly 

increasing with decrease in cycle length. In case of demand’s 

parameter (β), the quantity, cycle length, 𝑡1
∗ , 𝑡2

∗  and 𝑡3
∗ 

decreases but the total cost increases. 

For increase in deterioration rate (ζ), total cost, is slightly 

increasing and the quantity, 𝑡1
∗, 𝑡2

∗ and 𝑡3
∗ is slightly decreasing.

For the quantity in OW increases (L), the total cost and 

quantity exhibit a strictly increasing trend. As for the time 

parameters 𝑡1
∗ , 𝑡2

∗  and 𝑡3
∗  they show a slight decrease with an 

increase in the cycle length. 

For (H1) and (H2) parameters the total cost is increasing and 

quantity is decreasing. The time parameters 𝑡1
∗ , 𝑡2

∗  and 𝑡3
∗  is 

slightly decreasing. In (H1), (T*) is decreasing while for (H2), 

T is increasing. 

When the shortage cost per unit parameter (sc) and the lost 

sale cost per unit (ls) increases then the total cost, quantity, 𝑡1
∗, 

𝑡2
∗ and 𝑡3

∗ increases with the decrease in cycle length.

Regarding the deterioration cost per unit, an increase in this 

parameter (D1) resulted in a slight increase in total cost and a 

slight decrease in quantity, 𝑡1
∗, 𝑡2

∗, 𝑡3
∗ and T.

 For, an increase in inflation (r) resulted in a decrease in 

total cost and an increase in quantity, cycle length, 𝑡1
∗, 𝑡2

∗ and 
𝑡3
∗.

Lastly, an increase in parameter (l1) an increase in quantity 

and 𝑡1
∗, as well as a decrease in total cost, cycle length, 𝑡2

∗ and 
𝑡3
∗ whereas increased in parameter (l2) resulted only decreased 

in total cost along with increased in other factors. 

The sensitivity analysis results presented above are based 

on a proposed model and are shown in below Table 3. The 

results indicate that some parameters have a significant impact 

on the total cost and quantity, while others have a minimal 

effect. These results can help decision-makers improve the 

system's overall performance by optimising the parameters of 

the suggested model. 

Table 3. Sensitivity analysis for the proposed model 

Parameters 
Variation by Percentage in the Parameters 

-10% -5% 5% 10% 

ϒ 

TCU*(t3,T) 487.57 485.60 481.364 479.11 

Q* 461.93 461.65 460.98 460.67 

𝑡1
∗ 0.999 0.995 0.985 .981 

𝑡2
∗ 1.665 1.658 1.642 1.635 

𝑡3
∗ 2.22 2.21 2.19 2.18 

T* 3.81 3.758 3.667 3.627 

𝛼 
TCU*(t3,T) 470.791 477.363 489.330 494.802 

Q* 454.734 458.062 464.664 467.992 
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𝑡1
∗ .980 .985 0.995 .999 

𝑡2
∗ 1.633 1.643 1.659 1.666 

𝑡3
∗ 2.178 2.191 2.212 2.222 

T* 3.842 3.773 3.653 3.6 

𝛽 

TCU*(t3,T) 481.589 482.58 484.427 485.282 

Q* 462.540 462.143 460.830 460.323 

𝑡1
∗ 1.010 1.000 0.981 0.973 

𝑡2
∗ 1.684 1.667 1.636 1.622 

𝑡3
∗ 2.246 2.223 2.182 2.163 

T* 3.752 3.731 3.692 3.674 

𝜁 

TCU*(t3,T) 483.088 483.309 483.747 483.964 

Q* 461.615 461.493 461.239 461.114 

𝑡1
∗ 0.994 .992 .989 .987 

𝑡2
∗ 1.657 1.654 1.648 1.645 

𝑡3
∗ 2.21 2.206 2.198 2.194 

T* 3.718 3.714 3.707 3.703 

L 

TCU*(t3,T) 463.557 473.602 493.339 503.034 

Q* 422.024 441.709 481.020 500.645 

𝑡1
∗ 1.000 .995 .985 .980 

𝑡2
∗ 1.667 1.659 1.643 1.634 

𝑡3
∗ 2.223 2.213 2.191 2.179 

T* 3.656 3.684 3.737 3.762 

H1 

TCU*(t3,T) 482.707 483.119 483.938 484.347 

Q* 461.521 461.458 461.270 461.208 

𝑡1
∗ .993 .99225 .98955 .98865 

𝑡2
∗ 1.655 1.65375 1.649 1.647 

𝑡3
∗ 2.207 2.205 2.199 2.197 

T* 3.714 3.712 3.709 3.708 

H2 

TCU*(t3,T) 462.180 472.956 493.906 504.095 

Q* 463.100 462.213 460.521 459.683 

𝑡1
∗ 1.015 1.003 .978 .966 

𝑡2
∗ 1.692 1.671 1.631 1.611 

𝑡3
∗ 2.257 2.229 2.175 2.148 

T* 3.688 3.7 3.721 3.732 

sc 

TCU*(t3,T) 473.808 478.847 487.893 491.972 

Q* 460.739 461.051 461.647 461.898 

𝑡1
∗ .981 .986 .994 .998 

𝑡2
∗ 1.636 1.644 1.658 1.664 

𝑡3
∗ 2.182 2.192 2.211 2.219 

T* 3.837 3.771 3.656 3.606 

ls 

TCU*(t3,T) 481.179 482.356 484.699 485.865 

Q* 461.145 461.270 461.458 461.552 

𝑡1
∗ .98775 .98955 .99225 .9936 

𝑡2
∗ 1.646 1.649 1.653 1.656 

𝑡3
∗ 2.195 2.199 2.205 2.208 

T* 3.715 3.713 3.709 3.706 

D1 

TCU*(t3,T) 483.141 483.336 483.721 483.911 

Q* 461.584 461.490 461.270 461.145 

𝑡1
∗ .994 .992 .989 .987 

𝑡2
∗ 1.656 1.654 1.649 1.646 

𝑡3
∗ 2.209 2.206 2.199 2.195 

T* 3.717 3.714 3.708 3.705 

l1 

TCU*(t3,T) 508.255 495.961 470.960 458.255 

Q* 454.690 458.017 464.761 468.218 

𝑡1
∗ 0.892 .942 1.039 1.086 

𝑡2
∗ 1.653 1.653 1.649 1.646 

𝑡3
∗ 2.204 2.204 2.199 2.195 

T* 3.811 3.762 3.658 3.603 

l2 

TCU*(t3,T) 480.932 482.789 482.048 474.619 

Q* 448.569 454.179 471.862 492.910 

𝑡1
∗ .79866 0.8849 1.134945 1.38105 

𝑡2
∗ 1.3311 1.4748 1.8915 2.3017 

𝑡3
∗ 1.972 2.07 2.402 2.79 

T* 3.444 3.56 3.928 4.33 

r 

TCU*(t3,T) 487.562 485.548 481.504 479.473 

Q* 460.864 461.114 461.615 461.867 

𝑡1
∗ .9837 .9873 .9945 .9981 

𝑡2
∗ 1.639 1.645 1.657 1.663 

𝑡3
∗ 2.186 2.194 2.21 2.218 

T* 3.665 3.668 3.734 3.758 

 

 

8. CONCLUSIONS 

 

The culmination of this research endeavour delves into the 

intricate realm of inventory management for shelf-life 

commodities within a two-warehouse framework. This 

meticulously designed model takes into account the nuanced 

dynamics of biquadratic time-varying consumption during 

shortages, all within the ever-present backdrop of inflation. In 

this comprehensive exploration, the model is thoughtfully 

structured to encapsulate a myriad of crucial components, 

ranging from holding costs and shortage costs to lost sale costs, 

deterioration costs, and inflationary forces. 

The insights gleaned from this study underscore the 

practicality and effectiveness of the proposed approach in the 

realm of shelf-life inventory management. This is particularly 

evident when addressing scenarios characterized by shortages 

that are partially backlogged, coupled with the temporal ebb 

and flow of demand for goods. Notably, the sensitivity 

analysis conducted in this research reaffirms the model's 

robustness across a spectrum of parameters, reinforcing its 

prowess as a reliable tool for steering inventory decisions. 

While this study achieves the noteworthy milestone of 

establishing a two-warehouse inventory model tailored to 

shelf-life stock, framed within the context of biquadratic time-

varying demand during shortages amid inflation, it merely 

scratches the surface of the vast landscape of inventory 

management. Future research endeavours beckon the 

opportunity to venture beyond these boundaries. Potential 

avenues of exploration may involve the development of more 

intricate inventory models, encompassing factors such as lead 

times, batch ordering, and the intricate web of supply chain 

disruptions. 

Additionally, the transformative potential of integrating 

artificial intelligence and machine learning techniques into 

inventory management cannot be overstated. These 

advancements hold the promise of revolutionizing the field by 

augmenting forecasting precision, optimizing inventory levels, 

and effecting cost reductions. Furthermore, the infusion of 

sustainability into inventory management practices offers 

organizations the prospect of reducing waste, lessening their 

environmental footprint, and bolstering their corporate 

standing. 

In response to the valuable feedback, a more explicit 

articulation of the model's specific enhancements over existing 

methods would certainly augment the clarity and depth of the 

conclusions drawn from this research. 
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NOMENCLATURE 

 
RW rented warehouse 

OW owned warehouse 

α coefficient parameter of demand 

β coefficient parameter of demand 

L maximum quantity level in OW 

Q total quantity in the proposed model at initial time 

Q-L maximum quantity level in RW 

S maximum backlogging level 

TQC total replenishment quantity per cycle 

Ir(t) inventory level of RW at time 𝑡 ∈ [0, 𝑡1] 
Io(t) inventory level of OW at time 𝑡 ∈ [0, 𝑡3] 
Is(t) inventory level of shortage at time 𝑡 ∈ [𝑡3, 𝑇] 
A ordering cost 

r inflation rate per unit time 

ζ deterioration rate in OW 

D1 deterioration cost per unit item in OW 

ϒ shortage rate per unit time 

sc shortage cost per unit time 

ls lost sale cost per unit time 

H1 holding cost per unit item in RW 

H2 holding cost per unit item in OW 

t1 time at which RW becomes zero 

t2 time at which deterioration occurs in OW 

 

Decision Variables 

 

t3 time at which OW becomes zero 

T length of the replenishment cycle 
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APPENDIX B 
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