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There are many methods to diagnose heart disease; the most effective way is to analyze 

electrocardiogram (ECG) signals. Generally, the automatic classification techniques 

based on ECG analysis consist of three steps: data preprocessing, feature extraction, 

and classification. This study designed eight hybrid model architectures using several 

types of deep neural networks, including Convolution Neural Network (CNN), Gated 

Recurrent Unit (GRU), and Bidirectional GRU (Bi-GRU), four of them without Fast 

Fourier Transform (FFT) and the rest using FFT. Firstly, the MIT-BIH arrhythmia 

database is cleaned using the wavelet (WT) thresholding method that separates the 

combined noise and signal frequencies, making it ideal for processing nonstationary 

ECG signals. Additionally, the imbalance problem in this database was addressed using 

the synthetic minority over-sampling technique (SMOTE), which is more suitable for 

medical data than random synthesis methods. Secondly, hybrid models FFT-CNN, 

FFT-GRU, FFT-CNN-GRU, and FFT-CNN-Bi-GRU are constructed using the new 

proposed architecture by concatenating resultant features from two paths, the first path 

using ECG in the time domain and the second path using the resultant spectrum of ECG 

from FFT as input. A comparative study of the performance of all models was created 

in terms of accuracy, training time, number of trainable parameters, and robustness 

against noise. The results show that the proposed CNN, GRU, CNN-GRU, and CNN-

Bi-GRU models without WT and FFT achieved 90%, 93%, 95%, and 96% accuracies, 

while the proposed FFT-CNN, FFT-GRU, FFT-CNN-GRU, and FFT-CNN-Bi-GRU 

models achieved 97%, 95%, 96%, and 97% accuracies with WT. So, the proposed FFT-

CNN model was the best, with less training time and parameters than other models, 

which significantly impacts designing a high-efficiency model with less complexity for 

a practical medical diagnosis system. On the other hand, using FFT improved all 

models' performance, accuracy and robustness against noise. 
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1. INTRODUCTION

Heart disease (i.e., coronary artery disease, arrhythmias) is 

a severe disease. Early detection is crucial in effectively 

managing these diseases and reducing the risk of fatal 

consequences [1]. The problem of heart rhythm is called 

arrhythmias which refers to an irregular and abnormal 

heartbeat [2]. There is more than one primary type of 

arrhythmias: atrial fibrillation (AF), where the heartbeat is 

faster than normal; supraventricular tachycardia, where the 

heartbeat is more rapid than normal at rest; bradycardia, where 

the heartbeat is slower than usual; heart block where the 

heartbeat is slower than expected which led to collapse, and 

ventricular fibrillation where the heartbeat is rapid and 

disorganized which may cause the patient to lose his 

consciousness or sudden death [3]. 

All these dangerous types can be treated, and the patient can 

be saved from them if detected early. In light of the preceding, 

automated techniques play an important role in detecting these 

diseases automatically, quickly, efficiently, and adequately. 

For example, early detection and appropriate treatment of 

Atrial Fibrillation can reduce the risk of stroke and lead to a 

near-normal life expectancy [4].  

The analysis of ECG signals is essential to detect 

arrhythmias, so many researchers use ECG datasets to design 

arrhythmias classification and prediction models based on 

machine and deep learning algorithms [5, 6]. 

ECG signals provide features like QRS complex, RR 

interval, and waveform similarity for machine learning models. 

Time and frequency domain features, along with statistical and 

morphology features, are used. Common algorithms include 

support vector machine, random forest, decision tree, k-

nearest neighbor, Bayesian algorithm, and artificial neural 

network [7, 8].  
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The challenge in using the mentioned above machine 

learning is feature extraction. This process requires time and 

experience, as any error in this step will diverge in all 

subsequent actions within the model, ultimately impacting its 

performance [9]. As a result, the other research category 

depends on a deep learning model with no feature extraction 

step [10]. 

CNN alleviated the obstacle of manual feature extraction. 

So many classification models were constructed based on 

CNN, which achieved good results [11]. 

Recurrent Neural Networks (RNN), Long Short-Term 

Memory (LSTM), GRU, and BiGRU are well-known deep 

learning architectures that manipulate time series signals. 

Hybrid models for the Arrhythmias classification were 

constructed based on these architectures and CNN [12]. 

Most of the research that used CNN and other deep learning 

techniques did not use Fourier transform (FT) to extract the 

features of the frequency domain based on CNN. So, in this 

work, four hybrid models based on FFT and CNN are designed 

using ANN, GRU, and Bi-GRU, with a comparative study to 

identify the best model. The key contributions of the paper are 

summarized as follows: 

•Features from the frequency domain of ECG signals are 

extracted and concatenated with extracted time domain 

features using the proposed CNN architecture. This network 

constructed from two parallel stages of convolution layers, one 

step for the original ECG signals (to extract time domain 

features) and a second stage for FFT spectrum of the original 

ECG signals (to extract frequency domain features).  

•A novel eight ECG classification hybrid model 

architectures of deep neural networks (CNN, GRU, Bi-GRU) 

for arrhythmia prediction are proposed. Four including FFT 

and the rest not, with the aim of extract deeper and more 

relevant and discriminatory features to improve the 

performance of CNN. 

•The effectiveness of using FFT on the performance of 

proposed CNN-based models is demonstrated by analyzing a 

comparative study for all proposed models in terms of four 

evaluation metrics. 

•Producing a comparative study of how a denoising method 

affects the performance of CNN models and highlights their 

robustness against noise. This study includes an analysis of the 

models' performance with and without the method.  

The rest of this paper is organized as follows. First, the 

related work is described in Section 2. Section 3 explains the 

materials and methods used in this paper. Section 4 defines and 

describes the proposed models. Section 5 discusses the results 

and analysis of the proposed techniques. Finally, the 

conclusions are presented in Section 6.  

 

 
2. RELATED WORK  

 
The most crucial information on signals is concentrated in 

the frequency domain, and this information is essential for 

accurate decisions the classification algorithms need to 

achieve high classification accuracy [13, 14]. 

The objective of hybridization is to improve classification 

evaluation results' performance by increasing the 

dimensionality of data and extracting more discriminatory 

features for designing classification models. This 

improvement was achieved for hybrid models trained on 

different datasets, not only the ECG dataset, where in literature 

[15] a hybrid deep learning model constructed from a 

convolutional neural network (CNN) and a long short-term 

memory (LSTM) layer for speech emotion recognition was 

proposed. The result of the evaluation of this work on four 

different speech datasets in terms of recognition accuracy was 

about 99% which proved the superiority of this work as 

compared with state-of-the-art models. 

Multiple classification models are constructed using a 

different version of recurrent neural network (RNN) combined 

with CNN as feature extraction. These versions include RNN, 

LSTM, and GRU, with additional layers in each model. For 

1000 epochs, the five-fold cross-validation accuracy was 

83,7% achieved using a hybrid model with three layers of 

CNN and GRU, considered the best among the multiple 

models designed in this work [16].  

Another work that combined CNN with the GRU in 

different architectures was produced in literature [17] to 

classify five types of heartbeat. This model was designed using 

one convolution layer and six local feature extraction modules 

(LFEM), then the resultant features passed to GRU, then to the 

Dense layer, and finally using the SoftMax layer as decision-

making to classify five types of heart rhythms. This model 

achieved a classification accuracy of about 99%. 

A new technique in combining two different deep learning 

algorithms to extract important features was developed in 

literature [18], where dilated CNN and two versions of 

Bidirectional RNN bidirectional Gated Recurrent Units (Bi-

GRU) and bidirectional long short-term memory (Bi-LSTM) 

were combined. The resultant features from Bi-GRU and Bi-

LSTM were concatenated and then passed to CNN for 

connection. This hybrid architecture improved the 

performance of dilated CNN and increased the classification 

accuracy to 99.9%. 

As we mentioned before, the features extracted from the 

frequency domain increase the discriminatory representation 

of the data since the frequency domain rich with more relevant 

features will improve the performance of the classification 

modes; this was confirmed in literature [19], where the 

proposed classification deep learning model based on time-

frequency representations (TFRs) of noisy non-stationary 

signals. In this work, the deep learning models were 

constructed using the most common CNN architectures: 

ResNet-101, EfficientNet, and Xception. The results achieved 

by these TFRs-based deep CCN models show significant 

performance improvement as compared with models trained 

with originals signals without using TFRs, where the 

classification results were evaluated by different metrics such 

as accuracy, recall, and precision which were about 97%, 95%, 

and 99 respectively. These metrics values were higher than 

those obtained using the base model with original data. 

Two dimensions-CNN was used to classify five types of 

heartbeat for the 1D time domain of ECG signal by converting 

it to a 2D time-frequency spectrum using a short-time Fourier 

transform. This technique achieved a high accuracy of about 

99% compared to the accuracy achieved in the case of using 

1D-CNN, which gained 90% classification accuracy [20]. 

Fourier transform plays an essential role in the performance 

improvement of 2D-CNN by concatenating the QRS complex 

in the time domain with the resultant spectrum of FFT of the 

signal to construct 2D input. The 2D concatenation input 

enters CNN's three convolution layers. This model raises the 

accuracy of classification to 99% [21]. 

According to our understanding and what we have read 

from the above studies, the ID frequency spectrum was not 

utilized as input to 1D-CNN to extract frequency domain 
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features and then concatenate them with time domain features 

using several deep learning approaches, as was done in this 

study. Compared to prior works, this study saves time and 

complexity by developing CNN architecture with fewer 

structural complexities, the number of layers, and trainable 

parameters. 

A comparison of the methods used in these studies 

including the proposed work in this paper are illustrated in 

Table 1. 

 

Table 1. The summary table of related previous works compared with the proposed work 

 
Ref. Type of Feature Domain Model Architecture #Epochs #Classes 

[16] 1-D data input of Time domain signal 
1-D CNN 3 layer with GRU 1 layer and 64 unit 

and fully conected network 
1000 2 

[17] 1-D data input of Time domain signal 
Convolution layer, followed by 6 LFEM, a GRU, 

and a Dense layer and a Softmax layer 
200 5 

[18] 1-D data input of Time domain signal 

Bidirectional RNN with multilayer Dilated CNN 

(BRDC), fully connected layer and Rectified 

Linear Unit (ReLU) 

100 5 

[21] 
2-D data input from Combination of the FFT-

based frequency and the RR interval features 

2-D CNN 3 convolution layers with 2 batch 

normalization and pooling layers follow by 2 

fully connected layers 

- 5 

[20] 
2-D time-frequency spectrograms of ECG 

segment 

2D-CNN with 3 convolution and 3 pooling layers 

follow by shallow neural network 
100 5 

Proposed 

model 

Seperated 1-D data input of Time domain signal 

and 1-D data input of FFT- based frequency 

domain signal  

Two path of 1-D CNN 3 covolution and 3 pooling 

layers following by flatten and softmax layer 
7 5 

 

As is clear from Table 1, the works in literatures [15-17] 

used only time domain features with a more complex network 

and a greater number of epochs. In contrast, the work in [20, 

21] increased its complexity by using 2-D data input using 

frequency domain features with a high complexity network 

and more epochs. So, the proposed work overcame these 

complexities by using time and frequency features as 1-D 

input data with simple network architecture and seven epochs 

only. 

 

 

3. MATERIALS AND METHODS  

 

This section explains all the methods and descriptions 

related to database and processing database and the method 

used for constructing classifier network. 

 

3.1 Database description 

 

The standard MIT/BIH arrhythmia database was used to 

implement this study. This database contains 48 out of 30 

minutes of two-channel ECG records for 47 patients. The 

sampling frequency of the ECG recordings was digitalized 

with 360 HZ and 11 bits resolution over a 10 Mv range. This 

database is available at 

(https://physionet.org/content/mitdb/1.0.0/). The total number 

of samples that represent the number of sampled beats was 

109446, with five categories [22]:  

 

['N': 0, 'S': 1, 'V': 2, 'F': 3, 'Q': 4] 

 

where,  

N: Non-Ectopic beats (normal beat), 

S: Supraventricular ectopic beats, 

V: Ventricular ectopic beats, 

F: Fusion Beats, and  

Q: Unknown Beats. 

These signals are preprocessed and segmented, with each 

segment corresponding to the heartbeat. 

 

 

3.2 Data preprocessing 

 

ECG signals were corrupted by different types of noise, 

such as Electromyography (EMG) interference, power 

frequency interference, and baseline drift, which affect 

classification accuracy. Therefore, the researchers first 

removed the noise using different method [23].  

Discrete Wavelet Transform (DWT) in literature [24] filters 

ECG signals from high-frequency noise, power line 

interference, and baseline wander. Important signal 

information can be obtained from wavelet transform [25]. The 

first set of coefficients is called Approximation Coefficients, 

which are low-frequency coefficients (containing the essential 

information of the signal), and the second set is called Details 

Coefficients, which are high-frequency coefficients (small 

values coefficients as compared with Approximation 

Coefficients which have large values) [26]. Since the noise is 

characterized by high band frequency, it focuses on high-

frequency Details Coefficients. As a result of these phenomena, 

wavelet transform can be used as a noise removal filter by 

thresholding the coefficients with appropriate threshold values 

[27]. There are multiple thresholding functions, such as hard 

and soft functions. The work-hard threshold function is used 

as follows [28]: 

 

𝑦(𝑥) = {
𝑥  |𝑥| > 𝛾

0  |𝑥| ≤ 𝛾
 (1) 

 

where, 𝛾  is the threshold value selected according to the 

universal threshold (VisuShrink) known for its simplicity and 

effectiveness. The formula is denoted as: 

 

𝛾 = 𝜎√2ln (𝑁) (2) 

 

where, N is the length of the signal, and 𝜎  is the average 

variance of the noise, which is computed as follows: 

 

 𝜎 =
𝑚𝑒𝑑𝑖𝑢𝑚|𝑊1,𝑘|

0.6745
 (3) 
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The wavelet family uses symlets. 𝑊1,𝑘  is all wavelet 

coefficients in scale one [28]. 

An imbalanced database means that the number of examples 

in each class is unequally distributed [29]. This work deals 

with the MIT imbalanced database where the number of 

samples belonging to a normal class is more than the number 

of samples in all reset classes. 

This problem caused the degradation of the classification 

model performance in terms of accuracy due to the biased 

results toward the majority class and ignoring the minority 

class due to considering it as noise data [30]. On the other hand, 

many machine learning algorithms are designed with the 

assumption that the database is balanced [31]. There are many 

solutions to this problem; one is under-sampling, where the 

number of samples is selected from a normal class (majority 

class) approximately equal to the number of samples in other 

classes (minority classes), for example, 10000 samples. This 

solution will reduce the total number of samples in the dataset 

(reduce the size of the database), and this will cause another 

problem, such as underfitting, as well as some of the 

information needing [32]. 

On the other hand, oversampling generates more samples 

for minority classes by replicating the examples in these 

classes and solves the imbalance problem, but it causes an 

overfitting problem [33]. 

Another solution is to consider the problem as a binary 

classification and solve the problem as follows: 

1-Collect samples of all abnormal classes in one class. 

2-Perform the binary classification as the first stage of 

classification of normal vs abnormal. 

3-Enter the abnormal test sample into the second 

classification stage to classify it into corresponding irregular 

classes from four types of abnormal classes. 

This solution takes more time and complexity, so this work 

went toward the best solution, the SMOTE-based 

augmentation method, without repeating samples [34]. 

The augmentation technique increases the size of the 

database by generating more samples using processing 

techniques such as scaling, rotation, cropping, flipping, etc. 

This processing technique is suitable for images, but it is not 

appropriate for ECG signals since it changes the morphology 

of the signal and then it loses original information [35].  

This work used the Synthetic Minority Oversampling 

Technique (SMOTE) as it is explained as follows: 

1-Under-sampling the majority of the class (normal class) 

from 70000 to 20000 samples. 

2-Passing minority classes to SMOTE function, which 

works as: 

-Determining the K-nearest neighbour for each 𝑋𝑖  sample in 

each minority class using Euclidian distance. 

-Determining the sampling ratio for each class, i.e., N. 

-For each 𝑋𝑖  determine N random numbers from their 

nearest neighbor, and for each 𝑋𝑛  generate a new sample 

according to Eq. (4) [6]: 
 

𝑋𝑁𝐸𝑊 = 𝑋𝑛 + 𝜇(𝑋𝑖 − 𝑋𝑛) (4) 

 

where, μ is a small random factor in the range of (0,1).  

-Repeat this Eq. (4) until generating N corresponding to 

each 𝑋𝑖 . If the total size of the minority class is M then the 

new size is NM. 

In this work, the NM=20000 samples for each minority class. 

Therefore, the entire training set increased from 87553 to 

100000 examples. 

3.3 FFT 

 

The signal's frequency content can be revealed using one of 

the most common transforms called the FT [35]. This 

frequency content is called spectrum and is expressed as [27]: 
 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
 𝑑𝑡  (5) 

 

𝑥(𝑡) = 𝐹−1{𝑋(𝑓)} = ∫ 𝑋(𝑓)𝑒+𝑗2𝜋𝑓𝑡∞

−∞
 𝑑𝑓  (6) 

 

The X(f) spectrum is represented by the magnitude spectrum 

denoted by |𝑋(𝑓)|  and the phase spectrum indicated by 

∠𝑋(𝑓) . Fast Fourier Transform (FFT) is the efficient 

algorithm used to compute Fourier transform, which was 

proposed in 1965 [36]. 

The motivation beyond the analysis of the signal in the 

frequency domain is that the essential characteristics and 

information of the signal can be revealed from the frequency 

domain. In addition, the frequency domain provides valuable 

tools to analyze the signal. However, the frequency domain 

will produce a better rich environment with features that 

classify the signal [27, 37]. All the preprocessing steps and 

calculating the FFT of ECG beats are illustrated and shown in 

Figure 1. 

 

3.4 CNN as feature engineering 

 

Convolutional neural networks consider a class of ANN that 

simulate the operation of the human brain's visual cortex and 

are used for feature engineering instead of manual feature 

extraction. The CNN handles the signal directly by applying a 

filter to it to produce the number of feature maps equal to the 

number of filters (array of weights called the kernel) [38, 39]. 

The mechanism of the works of CNN can be illustrated below 

steps: 

1-An input layer represents the direct data of a signal or 

image. 

2-Convolution layer: In this layer, the convolution operation 

applies input using several filters to produce feature maps. 

3-Applying rectified linear activation function (ReLU) 

activation function on resultant feature maps to process them 

as in an ordinary deep neural network. 

4-Reduce the dimensions of feature maps using the mean or 

max operation in the MaxPooling layer. The benefit of this 

layer is reducing the computational load as well as reducing 

overfitting. 

5-Converting the results from 2D to 1D Flatten vector that 

passes to the artificial neural network, which works as the 

classifier. Usually, this fully connected network (ANN) 

consists of three layers, input layers, a hidden layer, and an 

output layer. Figure 2 explains the main architecture of CNN. 

Through experimentation, it has been discovered that the 

selection of filters, their sizes, and their quantity can greatly 

impact the performance of a CNN. Typically, the upper 

convolution layer utilizes larger filter sizes, while subsequent 

layers use smaller filter sizes and increased numbers of filters. 

It has been observed that the accuracy of the results is 

negatively affected by larger filter sizes and positively 

impacted by a higher number of filters [40].  

It is typical for a larger filter to lose important patterns and 

detailed information compared to a smaller filter. The filter's 

small size allows for capturing the most important information 

and patterns, especially those with rapid changes. This is 

particularly true for the ECG signal, characterized by short 
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oscillation intervals. Therefore, a small-sized filter was chosen 

for this work to match the nature of the signal, which is (1*3) 

[41]. 

 

3.5 GRU and BIGRU 

 

RNN is a neural network designed to feed back the output 

of one layer to the input for layer output prediction [42, 43]. 

 

 
 

Figure 1. The preprocessing and FFT steps of ECG beats signals 
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Figure 2. The main architecture of CNN 

 

RNN handles sequential data (time series) so that the input 

x at any given time (t) is denoted by xt combined with the input 

from the previous time xt-1. So the output at any given time 

depends on current and previous input data [44]. 

Although the RNN plays a good role in solving time series 

problems such as time series prediction and in natural 

language processing, it  has several drawbacks; one of them is 

the vanishing problem, where the updating of deeper 

parameters became inaccurate when the gradient was too small. 

Another problem is that the RNN handles only short-term 

dependencies [42, 45].  

To address the issue of long-term dependencies, a superior 

version of RNN known as LSTM was developed. The idea of 

the LSTM based on it is to use three gates: input gate, forget 

gate, and output gate 

The first step in LSTM is implementing in forget gate to 

determine the unimportant information from the previous time 

step and delete it. The function of the forget gate is [42, 46]: 

 

𝑓(𝑡) = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (7) 

 

The second step is implementing an input gate to determine 

the important information and let it pass from the previous 

time step to the current action. The function of the input gate 

is [19]: 

 

𝑖(𝑡) = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (8) 

 

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (9) 

 

The third step is implementing an output gate to impact the 

output of the current time step by significantly passing 

information. The function of the output gate is [19]: 

 

𝑂(𝑡) = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (10) 

 

ℎ𝑡 = 𝑜(𝑡) ∗ tanh(𝐶𝑡) (11) 

 

A simplified version of LSTM is known as Gated Recurrent 

Units (GRUs) which is a gating mechanism based on RNN, 

considered an enhanced version of LSTM. In contrast to 

LSTM, GRU consists of only two gates: the update gate and 

reset gate, instead of three gates as in LSTM. So, it has fewer 

parameters easier to implement than LSTM [47].  

When comparing LSTM and GRU, the key differences lie 

in their architecture and trade-offs. LSTM is more flexible and 

expressive than GRU but more computationally costly and 

prone to overfitting. In contrast, GRU has fewer gates and 

parameters, making it faster, simpler, and less powerful. 

Additionally, LSTM can store and output different 

information since it has a separate cell state and output. 

Whereas GRU has a single hidden state for both functions, 

which may limit its capacity. It's important to note that LSTM 

and GRU may have varying sensitivities to hyperparameters 

like learning rate, dropout rate, and sequence length. 

When it comes to natural language processing tasks like 

sentiment analysis, machine translation and text generation, 

the performance of LSTM and GRU can depend on various 

factors such as the task, data and hyperparameters. Empirical 

studies have shown that these two models perform similarly in 

many cases. However, there are some tasks where one of them 

might be more beneficial than the other. For instance, tasks 

like speech recognition, image captioning or video analysis 

may benefit from the unique features of either LSTM or GRU. 

GRU is similar to LSTM in using a gate mechanism for 

information flow control, but it has a more straightforward 

structure than LSTM. Each time step takes only input xt and 

hidden state ht-1) from the previous step and passes ht as output 

for the next step (GRU unit) [12, 48]. 

The essential characteristic of the gates of GRU is keeping 

the information for a long ago without forgetting it over time 

as well as it doesn't remove irrelevant information with 

prediction. So, it can solve vanishing problems with better and 

more efficient performance than LSTM [49]. 

GRU works according to the following steps: 

1-Short-term memory is the Reset gate's responsibility, 

represented by a hidden state ht. The function of the Reset gate 

is [50]: 

 

𝑟𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑟 + ℎ𝑡−1 ∗ 𝑊𝑟) (12) 
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2-Generating the candidate's hidden state as [50]: 

 

ℎ̂𝑡 = tanh (𝑥𝑡 ∗ 𝑈𝑔 + (𝑟𝑡  ° ℎ𝑡−1) ∗ 𝑊𝑔) (13) 

 

The essential part of the Eq. (13) is rt which determines the 

value of the Reset gate, which is used to control how much the 

previously hidden state had an impact on the candidate's 

hidden state, that is: 

If rt=1, all information from the previous state ht-1 will be 

considered. 

If rt=0 then all information from the previous state ht-1 will 

be ignored. 

3-Long-term memory is the responsibility of the update gate. 

The function of the update gate is [50]: 

 

𝑢𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑢 + ℎ𝑡−1 ∗ 𝑊𝑢) (14) 

 

4-Generating the currently hidden state ht as [50]: 

 

ℎ𝑡 = 𝑢𝑡ℎ𝑡−1 + (1 − 𝑢𝑡)ℎ̂𝑡 (15) 

 

An essential part of the above equation is the value of the 

update gate ut, which controls both information from the 

candidate's state ℎ̂𝑡  and the historical information ht-1 as 

follows: 

If ut=0, then ut ht-1 will vanish, so the information from the 

previous state ht-1 is ignored, and the information from the 

candidate's state ℎ̂𝑡 is considered, and vice versa if ut=1. 

Clearly, the GRU has only one hidden state to capture past 

information. To overcome this limitation, the enhancement 

version of GRU was developed, known as Bidirectional GRU 

(Bi-GRU), with the idea of constructing two neural networks. 

A Bi-GRU has two hidden states, one for each direction. A 

forward neural network and a backward neural network allow 

past and future information to impact the current state. Finally, 

the output layer connects the two outputs from the two 

networks [12, 51]: 

In the forward layer, the output of the hidden layer is 

calculated each time from forward to backward. While in the 

backward layer, the output of hidden layers is calculated in 

opposite directions from backward toward forward. In the 

output layer, the two outputs resultant from the two layers are 

normalized and composed each time. 

The functionality equations of forwarding and backward 

network layers in Bi-GRU are expressed as [51, 52]: 

 

ℎ𝑡
⃗⃗  ⃗ = 𝐺𝑅𝑈𝑓𝑤𝑑(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (16) 

 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐺𝑅𝑈𝑓𝑤𝑑(𝑥𝑡 , ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (17) 

 

𝑦𝑡 = ℎ𝑡
⃗⃗  ⃗⨁ℎ𝑡

⃖⃗ ⃗⃗  (18) 

 

where, 

ℎ𝑡
⃗⃗  ⃗ is the output of forward hidden states, the forward layer 

in Bi-GRU is calculated. 

ℎ𝑡
⃖⃗ ⃗⃗  is the output of backward hidden states, the backward 

layer in Bi-GRU has calculated it. 

The ⨁ symbol refers to concatenating between ℎ𝑡
⃗⃗  ⃗ and ℎ𝑡

⃖⃗ ⃗⃗ , 

done in the output layer. 

In practice applications, Bi-GRUs are commonly utilized 

for tasks such as natural language processing. This is because 

the model needs to comprehend the context of a word in a 

sentence to provide precise predictions. 

 

 

4. PROPOSED MODELS 
 

This work includes two stages: the first stage is based on the 

time domain feature to construct four classification models, as 

in the below steps: 

1-The raw beat segment of ECG is entered into CNN as a 

feature extraction technique which is constructed from three 

convolution layers and three MaxPooling layers of size (2*1). 

The top convolution layer has 16 filters, the second layer has 

32 filters, and the third layer has 64 filters. Each filter has a 

size of (3*1).  

2-The Flatten vector resultant from the first step is entered 

into ANN of single layer as a multiclass classifier with five 

classes of arrhythmias using the SoftMax activation function. 

3-Repeat steps 1 and 2 to create two separate hybrid models, 

namely CNN-GRU and CNN-Bi-GRU, use a single layer of 

GRU and BI-GRU with 128 and 256 units respectively instead 

of using flatten layer. Final layer in these models is SoftMax 

layer with 5 units. 

4-For the fourth model, the raw beat segment of ECG is 

inputted directly to three layers of GRU without using CNN. 

The top layer has 32 units, followed by 64 units in the second 

layer, and 128 units in the third layer. The final layer is 

SoftMax with 5 units. 

For this study, the GRU was selected to tackle complexity 

and overfitting concerns as it is known for this ability. The 

objective is to develop a more efficient model for short ECG 

segments without having to capture long-term dependencies. 

As previously mentioned, Bi-GRUs are often used in 

natural language processing tasks. This is due to the model's 

ability to understand the context of a word in a sentence, which 

results in accurate predictions. This feature is also beneficial 

for ECG, which is why the proposed work utilizes this model. 

The Bi-GRU combines the advantages of both GRU and 

LSTM. 

In the second stage of our proposed work, four hybrid 

models based on FFT of raw ECG and beat segments are 

constructed. The architecture design for the proposed models 

is illustrated in the below steps. 

1-Inputting the original signal x(t) as a first path to the first 

CNN (with the same architecture of CNN in the first stage) to 

extract time domain features as a vector of time domain 

features. 

2-Transforming ECG beat segment x(t) to the frequency 

domain using FFT to obtain X(f).  

3-Inputting the resultant signal X(f) as a second path to the 

second CNN (with the same architecture of CNN in first stage) 

to extract frequency domain features as vector of frequency 

domain features. 

4-Concatenating the resultant two vectors from steps 1 and 

3 to obtain the final hybrid vector of time and frequency 

domain features and then construct flatten vector via flatten 

layer. 

5-Inputting the final hybrid Flatten vector to single SoftMax 

layer of five units as a multiclassification classifier. 

6-The sixth model comprises of two paths, with each path 

having two GRU layers consisting of 32 and 64 units, 

respectively. The original time domain signal x(t) enters the 

first path, and the frequency domain signal X(f) enters the 

second path. The resulting feature vector is then combined and 

enters the third GRU layer with 128 units. Then the SoftMax 
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layer is used with 5 units as a multiclass classifier. 

7-To create two distinct hybrid models, namely FFT-CNN-

GRU and FFT-CNN-Bi-GRU, repeat steps 1to 5. Instead of 

using a flatten layer, utilize a single layer of GRU and BI-GRU 

with 128 and 256 units, respectively. 

In order to classify the various types of ECG samples that 

have high overlap and correlation, CNN was utilized to extract 

deeper features that can act as discriminators. To achieve this, 

frequency features that based on FFT were extracted using 

CNN. The signal frequencies' spectra offer distinct and precise 

data with more details from the frequency domain that can 

serve as a foundation for decision-making. 
 

 
 

Figure 3. General framework for the first stage of the proposed work 
 

 
 

Figure 4. General framework for the second stage of the proposed work 
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The final step of the two stages is comparing the above 

models' results to identify the best method for accuracy, recall, 

precision, F1-score, and the number of parameters in each 

architecture. In addition, statistical analysis across different 

runs based on mean, standard deviation, and Friedman test was 

used. This statistical analysis helps for multiple model 

comparison. 

When there is a significant imbalance between classes, such 

as in Arrhythmia detection using ECG heartbeat classification, 

it is important to consider the recall (sensitivity) metric as it is 

the most reliable in medical diagnosis. Recall refers to the 

number of correctly classified samples, and is particularly 

important for the abnormal ECG class. This is because it 

reflects how well the models are able to detect abnormalities. 

When the recall is low, this means that abnormalities may go 

undetected, leading to delayed diagnosis and even death. 

Figure 3 and Figure 4 illustrate the general proposed 

framework for constructing hybrid models. 

 

 

5. RESULTS AND DISCUSSIONS  

 

The dataset is divided randomly into a training dataset and 

a testing dataset, with a ratio of 8:2. The training set is used to 

train the classification model in the proposed model, while the 

testing set is used to evaluate the performance of the model's 

classification effect. 

The models are trained using 7 epochs, Adam optimizer, 

learning rate is 0.001, and the categorical cross entropy loss 

function. 

During model training, the loss function compares predicted 

results to actual data to determine accuracy. A smaller loss 

function during training indicates a more precise model 

classification. In this work, the Categorical-Cross-entropy 

function is used as the cost function to overcome the 

traditional loss function's slow parameter updates. The Adam 

optimizer, proposed by Kingma and Leiba in 2014, is a 

stochastic gradient descent method that calculates update step 

size based on adaptive estimation of first-order and second-

order moments is used in this project since it combines the 

benefits of Adagrad and Rmsprop. The Adam optimizer can 

automatically adjust the learning rate with minimal 

computation, making it well-suited to datasets with large 

samples. 

 

5.1 Performance results of CNN model without using 

SMOTE technique  

 

Without using the augmentation technique, the result of the 

overfitting problem appeared clearly due to an imbalanced 

dataset. Figure 5 shows the classification results for the CNN-

ANN model. The degradation in the model's generalization 

performance, caused by overfitting, appears despite using 50 

epochs. 

 

 
 

Figure 5. CNN Training results without augmentation 

SMOTE method 

 

Not all datasets, especially medical data, can be augmented 

using augmentation techniques based on reddening samples, 

flipping, rotation, etc., of operations since this operation has 

led to the loss of important information. On the other hand, 

augmentation methods based on repeated samples will solve 

the imbalance dataset problem, but it causes overfitting. 

 

 
 

Figure 6. The architecture of the first CNN-ANN model 
 

 
 

Figure 7. The architecture of the second GRU Mode 
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Figure 8. The architecture of the third CNN-GRU Model 

 

 
 

Figure 9. The architecture of the fourth CNN-Bi-GRU model 

 

 
 

Figure 10. Validation results in terms of accuracy without 

using thresholding denoising method for (A) CNN-ANN 

model, (B) GRU model, (C) CNN-GRU model, (D) CNN-Bi-

GRU model 

 

5.2 Performance results of hybrid models without FFT 

 

The four proposed models were designed to manipulate the 

dataset and use it to classify five types of arrhythmias without 

using FFT to extract frequency domain features. The 

architectures of the four models are shown in Figures 6-9. 

All the above four models were trained and tested with and 

without the denoising process to evaluate the robustness of the 

models against the noise. Figure 10 shows the training process 

results for the four models (without wavelet threshold 

denoising process) in terms of training accuracy and validation 

accuracy. 

As is clear from the above figures, the Bi-GRU is the most 

robust model against noise than other models where it has the 

highest accuracy.  

 

 
 

Figure 11. Validation results in terms of accuracy by using 

thresholding denoising method for (A) CNN-ANN model, 

(B) GRU model, (C) CNN-GRU model, (D) CNN-Bi-GRU 

model 

 

In terms of training time, the GRU model spent the highest 

amount of time on training and required more trainable 

parameters than other models. In contrast, the vanilla CNN 

needed less time and parameters for training. For this reason, 

we focus on enhancing the first model's performance in terms 
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of accuracy to obtain an efficient model. Figure 11 shows the 

training process results for the four models (with the denoising 

process) in terms of training accuracy and validation accuracy. 

The thresholding wavelet method was our first attempt to 

improve the first model (CNN-ANN).  

The results in the above figures show that the performance 

of the first model, CNN-ANN, was improved, and the 

accuracy was raised with a clear impact of the thresholding 

method. In contrast, the third CNN-GRU model and the fourth 

CNN-Bi-GRU model had an effect. This thresholding method 

did not affect the performance of the second GRU model since 

the accuracy was fixed at 93% in both cases. 

 

 
 

Figure 12. The architecture of the fifth hybrid FFT-CNN-ANN model 

 

 
 

Figure 13. The architecture of the sixth hybrid FFT-GRU model 

 

5.3 Performance results of hybrid models with FFT 

 

The second attempt to improve the first CNN model is to 

use FFT as the first step in the design of the model, where the 

signal is transformed into the frequency domain, and the 

resultant 1D spectrum is entered into CNN. All details of the 

proposed architecture are illustrated in Figures 12-15.  

Thresholding method. In contrast, the third CNN-GRU 

model and the fourth CNN-Bi-GRU model had an impact. 

This thresholding method did not affect the performance of the 

second GRU model since the accuracy was fixed at 93% in 

both cases. 

As it is clear from the above figures, the fifth, sixth, seventh, 

and eighth models were constructed from two paths. The first 

path has input from the time domain 1D-signal, and the second 

path has information from the resultant 1D spectrum from FFT. 

The consequent features from two paths are concatenated to 

produce a hybrid Flatten vector containing both time and 

frequency domain features. Finally, this vector is passed to the 

classification network using the SoftMax activation function 

layer to classify five types of the heartbeat. The training 

process results for proposed models using FFT (without and 

with wavelet thresholding denoising process) in terms of 
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training accuracy and validation accuracy are shown in 

Figures 16 and 17. 

Approximately all models were robust against noise, and 

the use of FFT has a clear impact on that robustness where the 

noise can be detected in the frequency domain more than the 

time domain since it has a high-frequency band, so the network 

can train itself to exclude these bands as irrelevant features. 

Using FFT has a noticeable impact on the performance of 

CNN-ANN and GRU methods, especially with the 

thresholding wavelet denoising method, where there is good 

classification accuracy. The summary of the comparative 

analysis for all models in this work is shown in Table 2.

 

 
 

Figure 14. The architecture of the seventh hybrid FFT-CNN-GRU model 

 

 
 

Figure 15. The architecture of the eighth hybrid FFT-CNN-Bi-GRU model 
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Figure 16. Training results in terms of accuracy without 

using thresholding denoising method for (A) FFT-CNN-

ANN model, (B) FFT-GRU model, (C) FFT-CNN-GRU 

model, (D) FFT-CNN-Bi-GRU model (CNN) 

 

 
 

Figure 17. Training results in terms of accuracy by using 

thresholding denoising method for (A) FFT-CNN-ANN 

model, (B) FFT-GRU model, (C) FFT-CNN-GRU model, 

(D) FFT-CNN-Bi-GRU model (CNN) 

The hybrid FFT-CNN-ANN model has superior 

performance in terms of the highest accuracy, less training 

time, and fewer trainable parameters as compared with other 

models in this work. Table 3 represents the performance 

metrics of a classification model across different classes using 

hybrid FFT-CNN-ANN model after training for 50 epochs. 

The metrics evaluated include precision, recall, and F1-score. 

Additionally, the number of testing samples in each class is 

provided. It is voted as the most efficient model that can be 

used as a light model suitable for a wearable medical device. 

 

Table 2. The summary of comparative analysis for all proposed models 

 

Models 

Metrics of Models Without Wavelet Threshold Metrics of Models with Wavelet Threshold 
# Trainable 

Parameter 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN - ANN 90 94 90 91 96 97 96 96 15,205 

GRU 93 96 93 94 93 96 93 94 97,317 

CNN - GRU 95 96 95 95 97 97 97 97 82,981 

CNN-Bi-GRU 96 97 96 97 97 97 97 97 158,117 

FFT-CNN-

ANN 
95 96 95 96 97 98 97 97 30,405 

FFT - GRU 96 97 96 96 95 96 95 96 119,493 

FFT-CNN-

GRU 
95 96 95 96 96 96 96 96 90,821 

FFT-CNN-Bi-

GRU 
96 97 96 97 97 97 97 97 165,957 

 

Table 3. The values of evaluation metrics of each class for arrhythmia classification achieved by hybrid FFT-CNN-ANN model 
 

Class Precision Recall F1-Score Number of Testing Samples in Class 

N 99% 98% 99% 18118 

S 72% 82% 77% 556 

V 95% 96% 96% 1448 

F 79% 98% 87% 162 

Q 98% 100% 99% 1608 

 

Table 4. The accuracy range values across different runs for proposed model without FFT 
 

#Trial  CNN-ANN Model GRU Model CNN-GRU Model CNN-Bi-GRU Model 

1 90.14 93.8 95.5 96.9 

2 94.4 93 96.5 97.3 

3 93.5 93 94 96.5 

4 95.5 92.9 95.1 96.2 

5 93.1 91.6 96.4 95.9 

6 95.8 94.3 96.1 96.6 

7 89.7 95.8 96.1 96.1 

8 94.6 95.6 95 97.8 

9 95.6 91.5 95.2 96.4 

10 94.3 93 95.6 97.9 

Mean Value 93.66 93.45 95.55 96.76 

Standard Deviation Value 2.159749 1.457738 0.764853 0.699524 
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Table 5. The accuracy range values across different runs for proposed model with FFT 
 

#Trial  FFT-CNN-ANN Model FFT-GRU Model FFT-CNN-GRU Model FFT-CNN-Bi-GRU Model 

1 97.9 95.6 95.9 97.1 

2 96.5 95.2 94.7 96.9 

3 95.8 95 94.2 97.8 

4 96.1 94.1 93.6 97.8 

5 96.4 93.9 94.3 97.4 

6 94.2 92.5 92.7 97.3 

7 93.1 95 95.7 97.6 

8 94.7 95.9 97.1 98 

9 93.7 95.5 97 96.8 

10 96.3 95.5 96.1 96.7 

Mean Value 95.47 94.82 95.13 97.34 

Standard Deviation Value 1.490004 1.035803 1.461392 0.45753 
 

It is worth noting that incorporating the Fourier Transform 

(FFT) greatly enhances the efficiency of the CNN model. This 

results in an accuracy range of 90% to 97%, which is 

equivalent to the accuracy achieved by the FFT-CNN-Bi-GRU 

model. However, unlike the latter, the CNN-ANN model does 

not require additional complexity in terms of gated unit 

network difficulty, layers, or parameters. The CNN-ANN 

model is known to be easier, more efficient and less in 

complexity of its architecture, unlike the FFT-CNN-Bi-GRU. 

The proposed models were run ten times each. Statistical 

metrics were computed for every model, including the mean 

and standard deviation, which are shown in Table 4 and Table 

5 to show the range of accuracy values across different runs. 

After reviewing the results in Table 4 and Table 5, it's clear 

that the classification accuracy values during the ten 

experiments converged. This is shown by the low standard 

deviation values, particularly for the two models FFT-CNN-

ANN, and FFT-CNN-Bi-GRU. It's evident that the FFT has 

significantly enhanced the performance of these proposed 

models. 

Statistical analysis based on Friedman test to compare the 

performance of the multiple proposed models across the ten 

experiments was discussed. This analysis would help us 

understand the differences in performance between the models, 

with a significance level (denoted as α or alpha) of 0.1: 

1-Between CNN-ANN and FFT-CNN-ANN, between GRU 

and FFT-GRU, and between CNN-Bi-GRU and FFT-CNN-

Bi-GRU: the p-value (which is given by P(chi-square≥ 

Friedman test statistic Q)) is 0.05778 where the result is 

significant at p<0.1. Since p-value is less than 0.1, the null 

hypothesis that the performance of the two proposed models is 

the same can be rejected. So, the performance of the two 

proposed models differs and that shows the effect of FFT in 

enhancing the performance of CNN which is the original aim 

of this research. 

2-Between CNN-GRU and FFT-CNN-GRU: the p-value is 

1 where the result is not significant at p<0.1. Since p-value is 

more than 0.1, the null hypothesis that the performance of the 

two proposed models is the same can be accepted. That means 

there is no significant effect of FFT on enhancing the 

performance of the CNN-GRU model. 

3-Between FFT-CNN-ANN, FFT-GRU, FFT-CNN-GRU, 

and FFT-CNN-Bi-GRU: the p-value is 0.00116 where the 

result is significant at p<0.1 Since p-value is less than 0.1, the 

null hypothesis that the performance of these proposed models 

is same can be rejected. So, the performance of the proposed 

models is differed. 

The confusion matrix with the FFT-CNN-ANN model on 

test data was calculated to show the number of corrected 

predicted samples from the total actual samples for each class, 

as in Figure 18. In this figure, 0 indicates normal beat (N), 1 

indicates Supraventricular ectopic beats (S), 2 indicates 

Ventricular ectopic beats (V), 3 indicates Fusion Beats (F), and 

4 indicates Unknown Beats (Q).  

 

 
 

Figure 18. The confusion matrix with the FFT-CNN-ANN 

model FFT-CNN-Bi-GRU model 

 

 

6. CONCLUSIONS AND FURTHER WORK 

 

In conclusion, this paper aims to produce a proposed 

efficient model architecture based on FFT of the input 

heartbeat of ECG signal to enhance and improve the 

performance of the CNN model. These models are constructed 

by hybrid CNN and another deep neural network that 

manipulates time series signals such as GRU and Bi-GRU. We 

denoted these models as CNN-ANN, GRU, CNN-GRU, CNN-

Bi-GRU, FFT-CNN-ANN, FFT-GRU, FFT-CNN-GRU, and 

FFT-CNN-Bi-GRU.  

The performance of models is evaluated with and without 

using the thresholding denoising method to test their 

robustness against noise. All models constructed using FFT of 

input signals achieve the highest classification accuracy 

without using the wavelet thresholding method compared to 

models based only on time domain features.  

The results of the comparative study show that the accuracy 

achieved with the CNN-ANN model, FFT-CNN-ANN, and 

FFT-CNN-Bi-GRU was 90%, 97%, and 97%. So, the FFT-

CNN-ANN has superior performance to other models in terms 

of accuracy, training time, and trainable parameters, where the 

accuracy achieved with this model is highest with less train 

time and less trainable parameters compared with other 

models. The results give a good argument for using FFT to 

improve the performance of CNN, where the accuracy 

increase from 90% to 97%. On the other hand, FFT-CNN-Bi-
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GRU Still requires so many trainable parameters and training 

time compared to the FFT-CNN-ANN model, so the last 

model is the most efficient model. 

One limitation of the research is that including the Fourier 

transform as an extra input to the model, alongside the signal 

input, increases the size of the network's input layer. This, in 

turn, increases the total number of trainable parameters for the 

CNN architecture. The proposed model, which uses the FFT 

technique, comprises two paths, each with a separate input 

layer of size 187. One path is for the time domain, and the 

other is for the frequency domain based on FFT. Additionally, 

all 187 FFT information should be saved because the spectrum 

results from FFT are symmetric. As a result, the FFT-CNN 

model's resultant architecture consists of double the number of 

layers and dimensions of the input data. Despite this, including 

the FFT technique is necessary to improve the model's 

accuracy. By doing so, more discriminatory features are 

obtained from the frequency domain, which contains the most 

information on the signal.  

The other limitation is the issue of imbalanced data, where 

there are many more normal samples than abnormal samples. 

To address this problem, an augmentation method like 

SMOTE can generate artificial samples. However, these 

artificial samples may not accurately reflect the clinical 

context and the feature of testing samples. The model may not 

perform as well on actual abnormal samples during testing. 

This limitation can decrease performance for minority classes 

due to the lack of variety in the abnormal sample used during 

training. 

This work paved the way, in the near future, to manipulate 

the mentioned limitations by using the wavelet transform (WT) 

instead of FFT with the compressed band instead of the entire 

187-information to produce a more efficient classification 

model where the input layer size will be reduced in the same 

time the more relevant frequency domain features are obtained 

where the essential frequency features using WT can be 

concentrating in the low band not in the whole spectrum as in 

FFT. On the other hand, we plan to solve the imbalance 

problem by using down-sampling methods such as the one-

side selection method (OSS) where this method removes all 

the redundant, overlapped and borderline sample which causes 

the misclassification of abnormal samples to produce a more 

robust model against this problem or by gathering more 

clinically abnormal samples to enrich the minority abnormal 

classes. 

The proposed future work aims to create more efficient 

models that are less complex and highly accurate, especially 

for essential rare minority classes. These models would be 

suitable for wearable medical devices and yield promising 

results in detecting newly discovered diseases. 
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