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In the realm of numerical simulations for heat transfer problems, the precision of 

iterative solutions is paramount. This study introduces an innovative hybrid 

methodology designed to refine iteration error estimation and ameliorate the accuracy 

of numerical solutions in heat transfer models encompassing diffusion and advection 

phenomena. Central to this methodology is the development of a novel estimator, 

predicated on the rate of iterative convergence. The efficacy and versatility of the 

proposed estimator and the overarching hybrid approach are scrutinized through the 

analysis of two distinct one-dimensional and a singular two-dimensional heat transfer 

model. In these applications, it has been demonstrated that the application of the refined 

methodology significantly enhances the precision of iteration error estimates, 

particularly in the initial phases of iteration. This improvement in accuracy and 

reliability of iteration error estimates was consistently observed across all examined 

models and pertinent variables. Notably, the incorporation of this methodology into 

existing simulation frameworks is straightforward, marking a substantial advancement 

in the domain of iteration error estimation. The findings underscore the utility of the 

proposed hybrid approach in achieving more precise and reliable numerical solutions 

in a wide array of heat transfer models, thereby contributing to the fidelity and 

robustness of computational simulations in thermal engineering. 
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1. INTRODUCTION

Computational Fluid Dynamics (CFD), a field that 

encompasses computer-based methods for simulating fluid 

movements with or without heat exchange [1], is crucial for 

optimizing designs, reducing operational costs, and enhancing 

system performance through the prediction of velocity, 

pressure, and temperature distributions. However, these 

numerical simulations are inherently subject to various 

numerical errors, such as round-off, truncation, and iteration 

errors [2]. Thus, it becomes vital not only to obtain numerical 

solutions but also to ascertain the accuracy of these solutions 

[3, 4]. While discretization error has been the primary focus 

and widely studied, the 2017 and 2018 American Society of 

Mechanical Engineers (ASME) Verification and Validation 

Symposiums highlighted the significant impact of iteration 

errors on the accuracy of numerical solutions in flow 

simulations [5]. The work of Eça et al. [6, 7] underline this 

point, demonstrating that iterative errors can profoundly 

influence the estimation of discretization errors, potentially 

leading to erroneous conclusions. 

Furthermore, Martins and Marchi [8] advocate for precise 

estimation of iterative errors, emphasizing its relevance in 

terminating the iterative process once a predefined error 

threshold for targeted variables is reached. This approach not 

only conserves computational resources but also prevents the 

exacerbation of numerical errors due to elevated levels of 

iterative errors. This study introduces methodologies for both 

estimating and mitigating iteration errors encountered in 

iterative methods used to solve discretized equations. 

Specifically, in this study, the Finite Difference Method 

(FDM) is utilized. Iteration errors are defined as the 

discrepancy between the direct solution of the discretized 

equations and the numerical solution at each iteration, with an 

expectation of a decrement in these errors as the iterative cycle 

progresses [3]. The estimation of iterative errors is conducted 

using specific error estimators [3, 8, 9], a practice of 

paramount importance in CFD for ensuring solution 

reliability, resource optimization, and the validation or 

enhancement of mathematical models. To quantify the error 

magnitude of the solutions obtained, verification techniques 

are employed [8, 9]. 

Ferziger et al. [10] have demonstrated that the convergence 

of the iterative cycle can be analyzed through the eigenvalues 

and eigenvectors of the matrix associated with the iterative 

method. This analysis facilitates the approximation of 
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eigenvalues and the determination of whether they are real or 

complex. Complementing this approach, Roy and Blottner 

[11] developed an estimator for predicting iteration error in the 

SACCARA code, a tool designed for solving turbulent flow 

equations. This estimator is based on the exponential decrease 

of iteration errors over time [12]. Additionally, it has been 

observed that iteration errors exhibit a monotonic 

convergence; as the number of iterations increases, the error 

decreases logarithmically [9]. A study by Martins and Marchi 

revealed that the performance of estimators could be 

categorized into three levels of iteration according to the 

accuracy of the estimates [8]. However, a common limitation 

among these methods is the reduced accuracy of estimates at 

both the initial and final stages of the iterative cycle. 

Therefore, the primary objective of this study is to enhance the 

accuracy of predictions in these critical ranges and to achieve 

solutions with minimized iteration errors. This goal is pursued 

through a novel procedure that segments the iterative cycle 

into intervals based on the behavior of the convergence ratio, 

analyzing each segment independently. To the authors' 

knowledge, this method has not been previously reported in 

the literature. 

The structure of this study is organized into five main 

sections. Section 2 elucidates the three mathematical models 

selected for examining the proposed procedure, detailing the 

domain discretization and numerical schemes employed for 

equation discretization. Section 3 delves into various 

numerical errors - discretization, round-off, and iteration 

errors - with a particular focus on iteration errors, the 

estimation and reduction of which form the crux of this 

research. Section 4 outlines the methodology applied to the 

selected models, encompassing the verification techniques for 

the codes, the mathematical derivation of the psi-medium 

estimator, the demarcation of iteration intervals, and the post-

processing of the results. The findings are presented and 

discussed in Section 5, organized according to model and the 

procedures delineated in the methodology. Finally, the study 

culminates with a conclusion section, summarizing key 

insights and contributions. 

 

 

2. MATHEMATICAL AND NUMERICAL MODELS 
 

This section delineates the mathematical models that have 

been employed to evaluate the efficacy of the proposed 

methodology. The selection of these models is based on their 

representation of key phenomena in heat transfer problems, 

arranged in ascending order of complexity. The models, all of 

which are in a steady state, range from one-dimensional to 

two-dimensional configurations. 

Model 1: The initial model is characterized by a one-

dimensional heat diffusion equation [13], representative of 

Poisson’s equation in a steady state with heat generation. This 

equation is articulated as follows: 

 

𝑑2𝑇

𝑑𝑥2
= 12𝑥2 (1) 

 

Accompanying this model are Dirichlet boundary 

conditions 𝑇(0) = 0 and 𝑇 (𝐿)  =  1, 𝐿 =  1. 

Model 2: The subsequent model encapsulates one-

dimensional advection-diffusion in a steady state. The 

governing equation of this model is expressed as: 

 

𝑃𝑒
𝑑𝑇

𝑑𝑥
=

𝑑2𝑇

𝑑𝑥2
 (2) 

 

where, 𝑃𝑒 is the Peclet number. This model also adheres to 

Dirichlet-type boundary conditions, identical to those applied 

in the first model, 𝑇(0) = 0 and 𝑇 (𝐿)  =  1, 𝐿 =  1. 

Model 3: The third model under consideration is derived 

from Laplace’s equation [14], which is an adaptation of the 

heat equation. This model encompasses a set of specific 

conditions: it assumes a continuum medium, focuses on two-

dimensional heat conduction, operates under a steady state, 

and presumes constant physical properties without any heat 

generation. The mathematical representation of this model is 

as follows: 

 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0. (3) 

 

For this model, the computational domain is designated by 

𝛺 =  {0 <  𝑥 <  𝐿𝑥; 0 <  𝑦 <  𝐿𝑦} . Dirichlet boundary 

conditions are imposed, defined by 𝑇(0, 𝑦), 𝑇(𝑥, 0), 𝑇(𝐿𝑥, 𝑦) 

and 𝑇(𝑥, 𝐿𝑦), with the parameters 𝐿𝑥  = 𝐿𝑦  = 1 ∶  𝑇(0, 𝑦) =

0, 𝑇(𝑥, 0) =  0,  𝑇(1, 𝑦)  =  0 , and 𝑇(𝑥, 1)  =  𝑠𝑖𝑛 (𝜋𝑥) . 

These conditions are essential for the integrity and accuracy of 

the model's predictions. 

Furthermore, the application of the mean value theorem for 

integrals [15], allows for the determination of the average 

value of a continuous function within a given interval. This 

theorem is particularly relevant in the context of a function of 

two variables, defined over domain lengths 𝐿𝑥 and 𝐿𝑦 in the 𝑥 

and 𝑦 directions, respectively. The formula for this calculation 

is presented as: 

 

𝑇𝑚 =
1

𝐿𝑥

1

𝐿𝑦

∫ ∫ 𝑇(𝑥, 𝑦)𝑑𝑥𝑑𝑦.

𝐿𝑥

0

𝐿𝑦

0

 (4) 

 

2.1 Numerical models 

 

For the resolution of complex engineering problems, the 

utilization of numerical methods is indispensable [16]. The 

initial step in applying these methods entails generating a grid, 

which constitutes a set of discrete points at which the problem 

is solved [1]. The grid step size, denoted as h, is determined by 

the ratio of the domain length (L) to the number of grid points 

(N), expressed as h = L/N. In the context of two-dimensional 

problems, where 𝐿𝑥  and 𝐿𝑦  represent the domain lengths in 

the x and y directions, and 𝑁𝑥  and 𝑁𝑦  are the corresponding 

numbers of grid points, the grid step sizes are defined for each 

direction: ℎ𝑥  =  𝐿𝑥/𝑁𝑥  for the 𝑥 direction and ℎ𝑦  =  𝐿𝑦/𝑁𝑦 

for the 𝑦 direction. 

 

 
 

Figure 1. One-dimensional grid with uniform step size per 

direction 
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An illustrative example of a one-dimensional grid with 

uniform step size is depicted in Figure 1. This figure 

showcases a reference point 𝑖 alongside its neighboring points: 

𝑖 + 1 and 𝑖 + 2 on the right, and 𝑖 − 1 and 𝑖 − 2 on the left. 

Each grid point, or node, signifies a specific region within 

the computational domain. The generation of an effective grid 

is critical for accurately representing fluid flow in numerical 

simulations. It necessitates attention to both geometric 

intricacies and the required level of precision. Following the 

discretization of the calculation domain, the next step involves 

the discretization of the equation, achieved through an 

approximation method. 

Ferziger et al. [10] highlight that the FDM is particularly 

suitable for domains with simple geometries. FDM involves 

reformulating the equation into arithmetic operations that can 

be resolved via computational codes [17]. It is important to 

note that the solutions obtained through FDM are not exact, 

akin to those derived from analytical methods, due to their 

susceptibility to various sources of numerical errors. 

The approximations in FDM are derived from the Taylor 

series expansion [1, 17]: 

 

𝑇𝑥 = 𝑇𝑖 + 𝑇𝑖
(1) (𝑥 − 𝑥0)

1!
+ 𝑇𝑖

(2) (𝑥 − 𝑥0)2

2!

+ 𝑇𝑖
(3) (𝑥 − 𝑥0)3

3!
+ ⋯ 

(5) 

 

Upon expanding the series at each grid point (e.g., 𝑖 − 1, 𝑖 +
1, . ..), diverse equations for approximations are derived. The 

complexity of these numerical approximations is directly 

proportional to the number of grid points involved, a factor 

delineated by the order of the scheme. In selecting specific 

equations, one determines the numerical scheme to be 

implemented. For multidimensional equations, this method 

entails executing approximations in each distinct direction. 

In the current study, a variety of differencing schemes have 

been adopted, including the upstream differencing scheme 

(UDS), the downstream differencing scheme (DDS), and the 

central differencing scheme (CDS), both of the first and 

second orders, as applicable to each model. The computational 

cost of the FDM is influenced by the size of the problem and 

the chosen discretization scheme. Particularly for extensive 

and intricate problems, the method may necessitate 

considerable computational resources and the application of 

optimization techniques. 

The mathematical models in this study were discretized 

using FDM, selected for its high accuracy and straightforward 

implementation. This choice was further justified by the 

simplicity of the geometries of the chosen problems, where 

FDM is known to yield accurate results. For problems 

involving more complex geometries, alternative methods, 

such as finite element analysis, are recommended. 

The average value of the function ( 𝑇𝑚 ) was calculated 

employing the trapezoidal rule for all models. This method 

was chosen for its second-order accuracy [18]. The results of 

the discretization process are presented below. 

Model 1: In the case of Poisson's equation, the 

discretization was accomplished using a CDS with second-

order approximations (CDS-2) on a uniform grid. This 

approach yielded the following discretized form: 

 

𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1 = 12𝑥𝑖
2ℎ2 (6) 

 

This expression represents the discretized version of the 

mathematical model as per Eq. (1). A comparison of Eq. (6) 

with a standard discretized format: 

 

𝑎𝑖−1,𝑗
𝑇 𝑇𝑖−1 + 𝑎𝑖,𝑗

𝑇 𝑇𝑖 + 𝑎𝑖+1,𝑗
𝑇 𝑇𝑖+1 = 𝑏𝑖

𝑇 (7) 

 

facilitated the derivation of coefficients (𝑎𝑖−1,𝑗
𝑇 , 𝑎𝑖,𝑗

𝑇 , 𝑎𝑖+1,𝑗
𝑇 ) and 

the source term (𝑏𝑖
𝑇) for the interior points of the grid. The 

coefficients and the source term for the boundary points were 

determined by applying the respective boundary conditions. 

Model 2: Similarly, the advection-diffusion equation was 

discretized using second-order schemes, specifically the CDS, 

in conjunction with a uniform grid: 

 

(1 +
ℎ

2
𝑃𝑒) 𝑇𝑖−1 − 2𝑇𝑖 + (1 +

ℎ

2
𝑃𝑒) 𝑇𝑖+1 = 0 (8) 

 

A comparative analysis of Eq. (8) with Eq. (7) allowed for 

the extraction of coefficients ( 𝑎𝑖−1,𝑗
𝑇  , 𝑎𝑖,𝑗

𝑇 , 𝑎𝑖+1,𝑗
𝑇 ) and the 

source term (𝑏𝑖
𝑇) for the internal grid points. The coefficients 

and source term for the border points were ascertained through 

the implementation of boundary conditions. 

Model 3: The discretization of Laplace's equation was 

similarly executed using the FDM. In multidimensional 

problems, this method entails approximating each term of the 

equation separately in each direction. Employing the CDS 

with second-order approximations (CDS-2) for the second-

order derivatives, the following result was obtained: 

 
𝑇𝑖−1,𝑗 + 𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗

ℎ𝑥
2

+
𝑇𝑖,𝑗−1 + 𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗

ℎ𝑦
2

= 0. (9) 

 

In this instance, a uniform grid (ℎ𝑥 =  ℎ𝑦) was utilized. By 

comparing Eq. (9) with a standard discretized format: 

 

𝑎𝑖−1,𝑗
𝑇 𝑇𝑖−1,𝑗 + 𝑎𝑖+1,𝑗

𝑇 𝑇𝑖+1,𝑗 + 𝑎𝑖,𝑗
𝑇 𝑇𝑖,𝑗 + 𝑎𝑖,𝑗−1

𝑇 𝑇𝑖,𝑗−1

+ 𝑎𝑖,𝑗+1
𝑇 𝑇𝑖,𝑗+1 = 𝑏𝑖,𝑗

𝑇  
(10) 

 

The coefficients and source terms for all grid points were 

derived. 

For all models under consideration, the gradient at the right 

border was calculated. To achieve this, the UDS (UDS-2) with 

second-order approximation was applied for one-dimensional 

models. For the two-dimensional model, the derivative with 

respect to 𝑥  at 𝑥 =  1  was integrated with respect to 𝑦 , 

ranging from 𝑦 =  0 to 𝑦 =  1. 

Iterative methods, often referred to as relaxation methods 

[14], are highly recommended for solving non-linear, large, 

and sparse systems of equations. These methods are 

fundamentally based on sequences of approximations [19]. 

The systems of algebraic equations resulting from the 

discretization of the aforementioned three models were solved 

using either the tridiagonal matrix algorithm (TDMA) [20] or 

the pentadiagonal matrix algorithm (PDMA) [21, 22], 

alongside the Gauss-Seidel (GS) method [19]. 

For the numerical determination of the average value within 

an interval, the function can be approximated to a first-degree 

polynomial. This approach leads to the derivation of the 

trapezoidal rule for continuous functions of two variables [17]: 

 

𝑇𝑚 =
ℎ𝑥ℎ𝑦

4𝐿𝑥𝐿𝑦

∑ ∑(𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗 + 𝑇𝑖−1,𝑗−1 + 𝑇𝑖,𝑗−1)

𝑁𝑥

𝑖=2

𝑁𝑦

𝑗=2

 (11) 
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where, 𝐿𝑥 and 𝐿𝑦 represent the lengths of the domain, while 

𝑁𝑥  and 𝑁𝑦  denote the numbers of grid points in the 𝑥 and 𝑦 

directions, respectively. 

To streamline the presentation, the variable 𝜙  will 

henceforth be used to represent the physical property involved 

in the numerical approximation. 

 

 

3. NUMERICAL ERRORS 
 

In the realm of engineering problem-solving, whether 

through experimental, analytical, or numerical methods, the 

occurrence of errors is inevitable [23, 24]. Specifically, 

numerical error (𝐸𝑛) is defined as the deviation between the 

exact analytical solution (Φ𝑎) of a variable of interest and its 

numerical counterpart (𝜙) [3]. 

 

𝐸𝑛(𝜙) =  Φ𝑎 − 𝜙 (12) 

 

Such errors may arise from a confluence of sources, 

including discretization errors (𝐸ℎ), iteration errors (𝐸𝑘), and 

round-off errors (𝐸𝜋) [4, 10, 25]: 

 

𝐸𝑛(𝜙) =  𝐸(𝐸ℎ , 𝐸𝑘 , 𝐸𝜋) (13) 

 

The acceptable threshold for numerical error is contingent 

upon several factors: the purpose of the numerical solution, 

financial constraints, the time allocated for simulations, and 

the computational resources at hand [23]. 

According to Fortuna [1], the discretization error (𝐸ℎ ) is 

identified as the local truncation error resulting from the 

truncation of the Taylor series (Eq. (5)) used to approximate 

derivatives with algebraic expressions. This error can be 

estimated in two distinct ways: a priori and a posteriori. A 

priori estimates enable the prediction of the error’s asymptotic 

behavior in relation to the grid step size (ℎ) and the asymptotic 

error order (𝑝0), as illustrated in Eq. (14): 

 

𝐸(𝜙) =  𝑐0ℎ𝑝0 +  𝑐1ℎ𝑝1 +  𝑐2ℎ𝑝2 + ⋯ (14) 

 

where, 𝑐0, 𝑐1, 𝑐2, …  are coefficients dependent on 𝜙  but 

independent of ℎ, while 𝑝0, 𝑝1, 𝑝2, … are the actual orders (𝑝𝑉) 

of 𝐸(𝜙) . The term 𝑝0  represents the error slope on a 

logarithmic scale graph of |𝐸(𝜙)|  ×  ℎ against ℎ → 0. 

In scenarios where 𝜙  encompasses solely 𝐸ℎ , the 

discretization error is determined as the difference between the 

exact analytical solution and the numerical solution [3].  

A posteriori estimates, which are predicated upon numerical 

solutions obtained from multiple grids, serve to gauge the 

magnitude of the discretization error. Such estimates are 

instrumental in ascertaining whether the discretization error 

diminishes in accordance with the truncation error's 

asymptotic order. When the analytical solution (Φ𝑎) is known, 

the effective equivalent order (𝑝𝐸ℎ
∗ ) of the discretization error 

can be computed using the following expression [26, 27]: 

 

𝑝𝐸ℎ
∗ =

log (|
Φ𝑎 − 𝜙1

Φ𝑎 − 𝜙2
|)

log(𝑟)
, (15) 

 

where, 𝑟 signifies the grid refinement ratio 𝑟 =  ℎ1/ℎ2, while 

𝜙1  and 𝜙2  denote the numerical solutions derived from the 

coarser grid ℎ1 and the finer grid ℎ2, respectively. 

In instances where the analytical solution remains unknown, 

the apparent equivalent order can be calculated by employing 

the numerical solutions from three distinct grids 𝜙1, 𝜙2, and 

𝜙3. This calculation is conducted as per the following equation 

[26, 27]: 

 

𝑝𝑈ℎ
∗ =

log (|
𝜙2 − 𝜙1

𝜙3 − 𝜙2
|)

log(𝑟)
 

(16) 

 

This equation assumes a constant grid refinement ratio 𝑟 =
 ℎ1/ℎ2  =  ℎ2/ℎ3. 

Discretization error is acknowledged as the most substantial 

among numerical errors. Consequently, extensive research 

efforts have been directed towards estimating and minimizing 

this error [21, 23]. Marchi et al. [28] have posited that 

discretization errors can be mitigated by refining grids, 

enhancing the order of accuracy in numerical approximations, 

or applying Richardson extrapolation [4, 29]. 

The genesis of round-off error (𝐸𝜋 ) primarily lies in the 

finite representation of real numbers during computation. It is 

influenced by the precision level of the simulation software; 

an increase in accuracy inversely impacts the round-off error. 

However, this enhancement in accuracy concurrently 

necessitates an escalation in computational memory for data 

storage [23]. 

Furthermore, the amplification of round-off error is often 

observed due to the propagation of errors originating from an 

increased number of arithmetical operations required to 

achieve the numerical solution. For instance, a reduction in the 

grid step size (ℎ) typically results in an elevated round-off 

error. One strategy to mitigate its effects involves enhancing 

the calculation accuracy, such as adopting quadruple precision. 

In the realm of round-off error estimation and analysis, 

notable contributions include Jézéquel and Chesneaux’s work 

[30], which delineates methodologies for estimating this type 

of error. Additionally, Kaneko and Liu [31] have explored the 

ramifications of round-off errors in computational processes. 

The study by Moro and Marchi [32] delves into the 

implications of utilizing various computers and software on 

the propagation of round-off errors. 

 

3.1 Iteration error 

 

Iteration error typically manifests during the resolution of 

nonlinear equations and mathematical models comprising two 

or more equations that are solved independently. Particularly 

in numerical simulations, this error is observed when iterative 

methods are employed to solve systems of equations or when 

multigrid methods are utilized to enhance these iterative 

processes [23]. 

The primary cause of iteration error is identified as the 

application of iterative methods in solving equation systems. 

Additionally, it arises in the context of nonlinear equations and 

models involving multiple, separately solved equations [23].  

As delineated by Ferziger et al. [10], the iteration error is 

quantified as the discrepancy between the exact solution of the 

discretized equations and the solution obtained at the current 

iteration: 

 

𝐸(𝜙𝑘) =  Φ − 𝜙𝑘 (17) 

 

where, 𝑘 represents the iteration number, Φ denotes the exact 

solution, and 𝜙𝑘  signifies the numerical solution at the 𝑘-th 
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iteration.  

Generally, iteration errors tend to diminish with an increase 

in the number of iterations, implying that if 𝑘 → ∞ , then 

𝐸(𝜙𝑘) →  0. 

Moreover, early studies on numerical errors, such as the 

study of Ferziger and Peric [3], have demonstrated that the 

convergence of the iterative cycle can be analyzed through the 

eigenvalues and eigenvectors of the matrix associated with the 

iterative method. If the dominant eigenvalue, labeled as 𝜆1 

(the one with the greatest magnitude), is real, the estimation of 

iterative error can be expressed as: 

 

𝑈(𝜙𝑘) =
𝜒𝑘

𝜆1 − 1
 (18) 

 

where, 𝜒𝑘 is the variation between numerical solutions at two 

consecutive iteration levels 𝜒𝑘 = 𝜙𝑘+1 − 𝜙𝑘 . The dominant 

eigenvalue can be approximated using the formula: 

 

𝜆 ≈
|𝜒𝑘|

|𝜒𝑘 − 1|
. (19) 

 

In instances where the dominant eigenvalue is complex, the 

iteration error estimates are determined by the following 

relationship: 

 

|𝑈(𝜙𝑘)| =
|𝜒𝑘|

√𝑙2 + 1 
 (20) 

 

where, 𝑙2 =  𝑧𝑘/𝑧𝑘+1 and 𝑧𝑘 = 𝜒𝑘−2. 𝜒𝑘 − 𝜒𝑘−1. 𝜒𝑘−1. 

To ascertain whether the dominant eigenvalue is real or 

complex, an analysis of the ratio is conducted: 

 

𝑟𝑒  =  
|𝑧𝑘|

|𝜒𝑘|2
. (21) 

 

A real dominant eigenvalue is indicated by 𝑟𝑒  <  10−2 , 

while a complex one is suggested by 𝑟𝑒  ≈  1. Although this 

method was not originally devised for nonlinear systems, it is 

posited by the authors that its applicability extends to such 

cases. Separately, Roy and Blottner [11] observed oscillatory 

behavior in the 𝐿2  norm of momentum and turbulence 

equations while exploring various approaches to solving two 

and three-equation turbulence models. This observation 

necessitated an alternative method to monitor the convergence 

of numerical solutions.  

Consequently, they developed an estimator predicated on 

the exponential decrease of iteration error over time (𝑡): 

 

𝐸(𝜙𝑘)  = 𝛼 𝑒−𝛽𝑡𝑘 (22) 

 

where, α and β are constants.  

Integrating the error as defined in Eq. (17) with the 

formulation in Eq. (22), the expression for the estimator was 

derived: 

 

𝑈(𝜙𝑘) =
−(𝜙𝑘+1 − 𝜙𝑘)

1 − Ψ𝑘

 (23) 

 

where, Ψ𝑘  =  (𝜙𝑘+1 − 𝜙𝑘) / (𝜙𝑘 − 𝜙𝑘−1). 

Roy and Blottner [11] discerned a correlation between their 

findings and the estimator proposed by Ferziger and Peric. 

However, they noted that their approach was not applicable in 

cases where the eigenvalues were complex.  

An alternative method was considered for scenarios where 

iteration errors demonstrated monotonic convergence. As the 

number of iterations increased, these errors were observed to 

decrease on a logarithmic scale [8]. This relationship can be 

expressed as: 

 

𝑈(𝜙𝑘)  =  𝐶10−𝑘𝑝𝑈 , (24) 

 

where, 𝐶 represents a constant, and 𝑝𝑈 is the apparent order of 

accuracy of the estimates, reflecting the local slope in a graph 

of estimate against the number of iterations. 

Applying Eq. (24) across three distinct iterative levels, 

alongside the equation for estimates: 

 

𝑈(𝜙𝑘) = 𝜙∞ − 𝜙𝑘   (25) 

 

This enabled the researchers to derive an expression for the 

estimator: 

 

𝑈(𝜙𝑘3
) =

(𝜙𝑘3
− 𝜙𝑘2

)

𝜓 − 1
. (26) 

 

where, 𝑝𝑠𝑖  denotes the convergence rate of a variable of 

interest, calculated as: 

 

𝜓 =
𝜙𝑘2

− 𝜙𝑘1

𝜙𝑘3
− 𝜙𝑘2

. (27) 

 

In their study, Martins and Marchi [8] observed that the 

performance of the iteration error estimator could be 

categorized into three distinct intervals. The initial range is 

characterized by lower accuracy of estimates, whereas in the 

final range, despite the increasing significance of round-off 

errors, the accuracy of the estimates remains relatively high. 

The intermediate interval, situated between these two ranges, 

exhibits an improvement in accuracy as the number of 

iterations increases. Furthermore, they deduced that 

employing this estimator in conjunction with multigrid 

methods is inadvisable. 

Additionally, Martins and Marchi [8] emphasized the 

paramount importance of reliable and precise iteration error 

estimation in the practical application of computational 

simulations. This accuracy allows for the iterative process to 

be halted once the desired error level for the variable of interest 

is achieved, thereby conserving Central Processing Unit 

(CPU) time by avoiding undue prolongation of the iterative 

cycle. 

 

 

4. METHODOLOGY 

 

4.1 Verification 

 

Initially, all implemented codes underwent a verification 

process as outlined by standard procedures [4, 9, 25, 29]. This 

involved a comparative analysis between numerical and 

analytical solutions, focusing on the asymptotic ( 𝑝0 ), the 

effective equivalent (𝑝𝐸ℎ
∗ ), and the apparent equivalent (𝑝𝑈ℎ

∗ ) 

orders of discretization errors, as delineated by Eqs. (14)-(16) 

respectively. 

Subsequent to code verification, a detailed examination was 

conducted specifically for iteration error. For one-dimensional 
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problems, the numerical value of the converged solution (the 

discretized system solution Φ) was derived using the TDMA 

solver [20], a variant of Gaussian elimination tailored for 

tridiagonal systems. In the context of the two-dimensional 

problem, the PDMA solver [21, 22] was utilized, employing 

an iterative scheme until the residual norm matched the 

machine error. Despite the significant demand on CPU time 

and computational resources, this approach yielded a 

numerical solution with minimized iteration error. 

Following this, iteration estimates were generated using the 

GS solver, iteration by iteration. This incorporated estimators 

from literature [3, 8, 11], and the estimator proposed in this 

study. The GS method, under suitable conditions, produces a 

convergent sequence toward the solution of the equation 

system. This enables the monitoring of iteration error (Eq. 

(17)) at each iteration and facilitates a comparison with the 

calculated estimates. 

The convergence criterion selected was the machine error, 

taking into account the number of grid elements for each 

model. To evaluate the precision of the estimates, two key 

aspects were analyzed: reliability and accuracy [23]. The 

effectiveness (θ), as defined by: 

 

𝜃 =
𝑈

𝐸
 (28) 

 

where, 𝑈 is the estimate and 𝐸 is the error, serves as a measure 

of an estimator’s reliability. Following the guidelines of Zhu 

and Zienkiewickcz [31], an estimate is deemed ideal if 𝜃 = 1, 

considered accurate when 𝜃 is close to 1, and reliable if 𝜃 ≥
 1. 

 

4.2 The proposed psi-medium estimator 

 

In this study, a novel iterative error estimator, termed the 

psi-medium estimator, has been developed. This estimator 

predicts errors based on the convergence rate, as delineated in 

Eq. (27) and akin to the approach in reference [8]. The error 

estimates for a numerical solution can be articulated as: 

 

𝐸(𝜙𝑘)  = 𝜙∞  − 𝜙𝑘 (29) 

 

where, 𝜙∞ represents the converged solution of a discretized 

system of equations. 

Acknowledging the exponential behavior of errors [11], the 

following expression can be formulated: 

 

𝐸(𝜙𝑘) = 𝜆10
−𝑘𝑝𝑈 . (30) 

 

Integrating Eqs. (29) and (30) and considering three distinct 

iterative levels 𝑘1, 𝑘2 and 𝑘3, with 𝑘1  <  𝑘2  < 𝑘3 and 𝛥𝑘 =
 𝑘3 − 𝑘2  =  𝑘2 − 𝑘1, leads to the derivation of the equation 

system: 

 

{

𝜙∞ − 𝜙𝑘1
= 𝜆10−𝑘1𝑝𝑈

𝜙∞ − 𝜙𝑘2
= 𝜆10−𝑘2𝑝𝑈 

𝜙∞ − 𝜙𝑘3
= 𝜆10−𝑘3𝑝𝑈 

. (31) 

 

Analyzing each equation within system (31) yields: 

 

𝜆 =
𝜙∞ − 𝜙𝑘𝑛

10−𝑘𝑛𝑝𝑈 
 (32) 

 

Equating the first and second equations and rearranging the 

terms facilitates the formulation of: 

 

𝜙∞ − 𝜙𝑘1

𝜙∞ − 𝜙𝑘2

=
10−𝑘2𝑝𝑈 

10−𝑘1𝑝𝑈 
= 10(𝑘2−𝑘1)𝑝𝑈  (33) 

 

where, 𝛥𝑘 = 𝑘2 − 𝑘1.  
Continuing the derivation process with the second and third 

equations of the system (31) results in the following equation: 

 

𝜙∞ − 𝜙𝑘2

𝜙∞ − 𝜙𝑘3

=
10−𝑘3𝑝𝑈 

10−𝑘2𝑝𝑈 
= 10(𝑘3−𝑘2)𝑝𝑈  (34) 

 

where, Δ𝑘 = 𝑘3 − 𝑘2. 

By equating Eq. (33) and Eq. (34) and isolating 𝜙∞ , the 

subsequent expression is obtained: 

 

𝜙∞ =
𝜙𝑘2

2 − 𝜙𝑘1
𝜙𝑘3

2𝜙𝑘2
− 𝜙𝑘3

− 𝜙𝑘1

. (35) 

 

Subsequently, incorporating Eq. (35) into Eq. (34) and 

amalgamating similar terms leads to: 

 
𝜙𝑘2

− 𝜙𝑘1

𝜙𝑘3
− 𝜙𝑘2

= 10𝛥𝑘𝑝𝑈 . (36) 

 

The application of logarithm to base 10 to both sides of the 

equation yields the expression for 𝑝𝑈: 

 

𝑝𝑈 =
log 𝜓

𝛥𝑘
  (37) 

 

where, 𝜓  is derived from Eq. (27). Further algebraic 

manipulation facilitates the derivation of: 

 

𝜙𝑘  = 𝜙𝑘2 
+  

( 𝜙𝑘2
 − 𝜙𝑘1

 )

𝜓 −  1
. (38) 

 

Upon integrating Eq. (32) into Eq. (25), the equation for the 

psi-medium estimator is derived as follows: 

 

𝑈(𝜙𝑘2
)  =

( 𝜙𝑘2
 − 𝜙𝑘1

 )

𝜓 −  1
. (39) 

 

A mathematical comparison of the proposed psi-medium 

estimator with established estimators in the literature reveals 

notable observations: 

(a) In relation to the Ferziger and Peric [3] estimator, despite 

differing derivation methodologies, when the dominant 

eigenvalue is real, a displacement in the index of numerical 

solutions used in the numerators of Eqs. (18) and (39) is 

evident. Regarding the denominators, 𝜆1  is the inverse 

modulus of 𝜓. 

(b) In comparison to the Roy and Blottner [11] estimator, an 

analysis of the numerators of Eqs. (23) and (39) indicates an 

index displacement along with a change in sign. For the 

denominators, it is observed that Λ𝑘 is the inverse of 𝜓. 

(c) Pertaining to the relationship with the Martins and 

Marchi [8] estimator, an examination of Eqs. (27) and (39) 

shows that the denominators align, and the numerators again 

display an index displacement. A critical distinction is that the 

estimates computed using the estimator correspond to the third 
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iterative level (𝑘3), whereas those calculated by the proposed 

estimator pertain to the second iterative level (𝑘2). 
 

4.3 Iteration error analysis through interval delimitation 
 

In the analysis of iteration error for each variable of interest, 

the performance of the psi-medium estimator was scrutinized 

within specific iteration intervals. This examination was 

guided by two criteria: 

(i) The convergence rate 𝜓, as outlined in Eq. (27), and 

(ii) The iteration ranges where the impact of round-off 

errors was minimized. 

Derived from Eq. (32), the psi-medium estimator is 

conceptualized as the culmination of an infinite geometric 

series. For accurate error prediction, the condition |1/𝜓| < 1 

is essential. Consequently, the iteration ranges where the 

estimator demonstrates optimal performance are delineated by 

the condition: 
 

{
𝜓 > 1 or
𝜓 <  −1.

 (40) 

 

During the iterative process, variations in the convergence 

rate were observed and utilized to define performance 

intervals for the estimator. The number of iterations per 

interval, along with the total number of intervals, varied for 

each problem and respective variable of interest. Additionally, 

certain variables exhibited transition iterations, characterized 

by a reversal in the sign of 𝜓 within a single iteration. This 

phenomenon reflects the unique convergence rate behavior for 

each problem and variable. 

Generally, across all problems, the convergence rate 𝜓 

eventually exhibited monotonic convergence towards a value 

marginally greater than 1. This pattern of monotonic 

convergence was employed to demarcate the interval offering 

the most precise iteration error estimates. 

However, it was noted that round-off errors became 

increasingly pronounced after a specific number of iterations, 

correlating with the number of grid elements. These errors 

introduced minor fluctuations in the numerical solutions, 

potentially affecting the accuracy of iteration error estimates. 

The abundance of mathematical operations in the 

computational process contributes to this effect, resulting in 

the loss of numerical precision [23]. 

To ascertain the commencement of the interval exhibiting 

optimal estimation performance, an analysis was conducted on 

the difference between the convergence rates of successive 

iterations. This difference was calculated using: 

 

|𝜓𝑘  − 𝜓𝑘−1|. (41) 

 

Initially, this difference was observed to decrease, 

approaching the magnitude of the machine error (|𝜓𝑘  −
𝜓𝑘−1 | →  0), indicating that 𝜓𝑘  and 𝜓𝑘−1  were converging. 

Subsequently, an increase in this difference was noted, 

signifying a divergence of 𝜓𝑘 from 𝜓𝑘−1 and highlighting the 

onset of round-off error propagation. The iteration at which the 

initial rise in the difference (Eq. (41)) occurred marked the 

endpoint of the interval yielding the most reliable estimates. 

In the final interval, only the latter iterations of the process 

remained. Despite these iterations demonstrating 𝜓 >  1, they 

were significantly affected by round-off errors. The extent of 

these errors was more discernibly assessed through the 

computation of: 

 

|𝑈(𝜙𝑘)  −  𝐸(𝜙𝑘)|. (42) 

 

4.4 Post-processing: iteration error reduction and estimate 

improvement 

 

Upon the successful identification of intervals 

demonstrating the psi-medium estimator's optimal 

performance, corrected solutions with reduced iteration error 

were computed. This computation utilized Eq. (25), 

reformulated for 𝜙∞ at each iteration: 

 
(𝜙∞)𝑘  =  𝑈(𝜙𝑘) + 𝜙𝑘. (43) 

 

With these corrected solutions determined, new iteration 

error estimates were derived using the solutions from the 

previously delimited best interval for estimates.  

In the process of iteration error estimation, the interval 

yielding the most accurate estimates was identified. This 

interval begins at iteration 𝑘1 and concluded at iteration 𝑘2 in 

𝑚 iterations. Extensive testing determined that the numerical 

solution corresponding to iteration 𝑘2  represented the most 

precise outcome within this range. 

Consequently, this solution was selected for the calculation 

of new estimates. By setting (𝜙∞)𝑘  = 𝜙𝑘2
 and resolving for 

𝑈(𝜙𝑘) in Eq. (43), the following equation was obtained: 

 

𝑈(𝜙𝑘)  =  𝜙𝑘2
− 𝜙𝑘1

. (44) 

 

Eq. (44) was then employed to recalculate the iteration error 

estimates for all iterations, leading to enhanced estimates, 

particularly for the initial ranges of the iterative process. 

The table below presents the numerical errors calculated 

with the original and the corrected solutions for various cases 

and variables: 

 

Table 1. Numerical errors for Model 1 cases 

 

Variable Case 
Numerical Error Calculated 

with 𝚽 

Numerical Error Calculated 

with 𝝓𝒌 

𝑇 (1/2) 

1 6.103515625000000E-05 6.103515624999999E-05 

2 3.814697265625000E-06 3.814697265624999E-06 

3 2.384185791015625E-07 2.384185791015624E-07 

∇𝑇(1) 

1 2.174377441406250E-03 2.174377441406250E-03 

2 1.369714736938476E-04 1.369714736938476E-04 

3 8.577480912208557E-06 8.577480912208558E-06 

𝑇𝑚 

1 1.220583915710449E-04 1.220583915710449E-04 

2 7.629347965121269E-06 7.629347965121269E-06 

3 4.768369763041846E-07 4.768369463041846E-07 
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5. RESULTS AND DISCUSSION 

 

This section delineates the outcomes of the implemented 

methodology, categorically divided into code verification, 

interval delimitation, and post-processing for each model and 

variable of interest.  

The computational codes were developed in FORTRAN 95, 

utilizing both double and quadruple precision. Compilation 

was executed using Microsoft® Visual Studio® 2008 

compiler v. 9.0.21022.8 RTM. The computational framework 

included a 3.4 GHz Intel Core (TM) i7-6700 processor with 16 

GB of RAM, operating on a 64-bit Windows® 10 platform. 

Selected variables of interest comprised the function value 

at the central point of the computational domain (𝑇(1/2)), the 

average function value 𝑇𝑚 , and the gradient at the right 

boundary (𝛻 𝑇(1)) . For each variable, the following were 

analyzed: the numerical solution (𝜙𝑘), iteration error (𝐸(𝜙𝑘)), 

iteration error estimates (𝑈(𝜙𝑘)), estimator effectiveness (𝜃), 

and the convergence rate ( 𝜓 ), evaluated iteratively. All 

calculations were executed with quadruple precision for 

enhanced accuracy. 

Numerical solutions were derived for varying numbers of 

grid elements, denoted as cases: grids with 𝑁 =  64 (case 1), 

256 (case 2), and 1024 (case 3) elements for one-dimensional 

models, and 𝑁 =  642 (case 1) and 2562 (case 2) for the two-

dimensional model. The discussion herein primarily focuses 

on the results from the largest grid element number, with other 

cases exhibiting analogous outcomes. 

The equation systems resulting from the discretization of 

one-dimensional models were resolved using the TDMA and 

GS solvers. For the two-dimensional model, the PDMA and 

GS solvers were employed. Subsequent to the verification 

procedures, the iterative intervals were segmented based on 

the convergence rate. The methodology employed for estimate 

enhancement demonstrated notable efficacy, particularly in 

the initially delimited intervals, as elucidated in the ensuing 

subsections. 

 

5.1 Code verification 

 

This subsection presents the verification procedure of the 

computational codes, with results categorized by model. 

Model 1: The analytical solution for this model is derived 

through integration: 

 

𝑇(𝑥) = 𝑥4 (45) 

 

At the central point of the computational domain 𝑥 =  1/2, 

the analytical solution yields 𝑇(1/2) = 6.25𝐸 − 02 . 

Derivation at point 𝑥 = 1  results in 𝛻 𝑇(1) = 4.00𝐸 + 00 . 

Furthermore, employing the mean value theorem for integrals, 

the analytical solution for the average temperature is 𝑇𝑚 =
 0.20𝐸 + 00. 

The numerical errors, calculated via Eq. (12) using the 

numerical solutions from the TDMA (𝛷) and GS (𝜙𝑘) solvers 

for all cases, are tabulated in Table 1 (columns two and three). 

A systematic refinement of the grid was observed to decrease 

numerical errors, indicating that the numerical solutions were 

converging towards the analytical solution. 

The discretization of this model to obtain 𝑇(1/2), 𝛻 𝑇(1) 

and 𝑇𝑚 , utilized CDS-2, UDS-2, and the trapezoidal rule, 

respectively. This allowed for an a priori determination of the 

asymptotic orders of discretization error, 𝑝0  =  2 . The 

effective equivalent orders ( 𝑝𝐸ℎ
∗ ) and apparent equivalent 

orders (𝑝𝑈ℎ
∗ ) were also computed for all variables. It was noted 

that with grid refinement, both 𝑝𝐸ℎ
∗  and 𝑝𝑈ℎ

∗  increased, 

signifying that the discretization error was diminishing at the 

anticipated order. 

Model 2: The analytical solution for Model 2 was obtained 

through the method of separation of variables: 

 

𝑇(𝑥) =
𝑒𝑥𝑃𝑒 − 1

𝑒𝑃𝑒 − 1
. (46) 

 

For this model, solving Eq. (40) for 𝑥 =  1/2 and 𝑃𝑒 =
 10  yields 𝑇(1/2)  =  6.69𝐸 − 03 . The derivative, when 

applied at 𝑥 =  1 , results in 𝛻𝑇(1)  =  1.00𝐸 + 01 . 

Moreover, the average temperature, derived using the mean 

value theorem for integrals, is 𝑇𝑚 =  9.99𝐸 − 02. 

The numerical solutions acquired using the TDMA (𝛷) and 

GS ( 𝜙𝑘 ) solvers facilitated the computation of numerical 

errors as per Eq. (12). These errors, for all cases, are cataloged 

in Table 2. 

In the context of numerical approximations employed for 

discretizing the variables of interest (CDS, CDS-2, UDS-2, 

and trapezoidal rule), the a priori asymptotic orders of 

discretization error were established as 𝑝0 =  2. The effective 

equivalent orders (𝑝𝐸ℎ
∗ ) and apparent equivalent orders (𝑝𝑈ℎ

∗ ) 

were computed for all variables. It was observed that with grid 

refinement, both 𝑝𝐸ℎ
∗  and 𝑝𝑈ℎ

∗  increased, indicating that the 

discretization error was diminishing as anticipated. 

 

Table 2. Numerical errors for Model 2 cases 

 

Variable Case 
Numerical Error Calculated 

with Φ 

Numerical Error Calculated 

with 𝝓𝒌 

𝑇(1/2) 

1 6.753553520144197E-05 6.753553520144197E-05 

2 4.226362297601038E-06 4.226362297601038E-06 

3 2.641686381739967E-07 2.641686381739968E-07 

𝛻𝑇(1) 

1 5.252149018900815E-02 5.252149018900815E-02 

2 3.670683771622287E-03 3.670683771622287E-03 

3 2.361540172088184E-04 2.361540172088184E-04 

𝑇𝑚 

1 9.177426544629048E-07 9.177426544629048E-07 

2 5.771074502080518E-08 5.771074502080517E-08 

3 3.608298103740286E-09 3.608298103740279E-09 

Model 3: The analytical solution for Laplace's equation, 

under the specified boundary conditions, is established as: 

 

𝑇(𝑥, 𝑦) = sin(π𝑥)
sinh(π𝑦)

sinh(π)
. (47) 

 

356



 

Applying 𝑥 =  𝑦 =  1/2  yields 𝑇(1/2,1/2)  =  1.99𝐸 −
01. Differentiating with respect to 𝑥 at 𝑥 =  1 and integrating 

with respect to 𝑦 from 𝑦 =  0 to 𝑦 =  1 provides the gradient 

at the east boundary 𝛻𝑇(1, 𝑦)  =  9.17𝐸 − 01. Furthermore, 

the average temperature is calculated as 𝑇𝑚  =  1.86𝐸 − 0. 

Utilizing these analytical solutions, numerical errors for 

Model 3 were computed, as shown in Table 3. 

 

 

Table 3. Numerical errors for Model 3 cases 

 

Variable Case 
Numerical Error Calculated 

with Φ 

Numerical Error Calculated 

with 𝝓𝒌 

𝑇(1/2, 1/2) 
1 5.763339684236667E-05 5.763396842366658E-05 

2 3.602743819843009E-06 3.602743819843009E-06 

∇𝑇(1, 𝑦) 
1 1.111365953070167E-02 1.111365953070167E-02 

2 2.609340021479620E-03 2.609340021479620E-03 

𝑇𝑚 
1 4.945457214625245E-03 4.945457214625245E-03 

2 1.241684562228318E-03 1.241684562228319E-03 

The proximity of the numerical solutions to the analytical 

solutions, coupled with the observation that the discretization 

error diminishes at the expected order, indicates convergence. 

Following the verification of the computational codes, the 

solutions were subjected to a verification process focused on 

the estimation and reduction of iteration error. 

 

5.2 Code verification 

 

The iteration process was segmented into intervals for 

estimation analysis, as delineated in the methodology. This 

section reports the findings for each variable, categorized by 

model. Unlike the approach by Martins and Marchi [8], who 

based their interval division on the estimator's performance 

alone, this study utilizes a more defined criterion based on the 

convergence for itself, enhancing the precision in analyzing 

the estimator’s performance. 

Model 1: For the variable 𝑇(1/2) , it was essential to 

categorize the iterations into five distinct intervals. The initial 

interval (I) encompassed the early iterations where −1 ≤
 𝜓 ≤  1, indicating a non-convergent geometric series from 

which the psi-medium estimator was derived. This interval 

commenced from the third iteration, necessitated by the 

requirement of three iterative levels to compute the 

convergence rate 𝜓 (Eq. (27)). 

Interval II was identified where 𝜓 > 1  (indicative of a 

convergent geometric series), exhibiting satisfactory estimator 

performance. This was followed by a single transition iteration 

marked by 𝜓 <  −1  and the onset of interval III, 

characterized by −1 ≤  𝜓 ≤  1  (indicating a divergent 
geometric series). 

Subsequently, 𝜓  stabilized, demonstrating monotonic 

convergence towards a value marginally above 1 (convergent 

series) until the iterative process achieved machine error, 

delineating interval IV. Interval V encompassed the final 

iterations, predominantly influenced by round-off errors. A 

similar analytical process was applied to all variables. Table 4 

provides a summary for case 3 of each variable. Accordingly, 

the interval yielding the most accurate iteration error estimates 

was identified: interval IV for variable 𝑇(1/2), interval I for 

variable 𝛻 𝑇(1), and interval III for variable 𝑇𝑚.

 
Table 4. Iteration intervals for psi-medium estimator analysis in Model 1 Case 3 

 
Variable Interval Criterion Iterations 

T(1/2) 

I −1 ≤ 𝜓 ≤ 1 3 : 7142 

II 𝜓 > 1 7143 : 29721 

transition 𝜓 < −1 29722 

III −1 ≤ 𝜓 ≤ 1 29723 : 59181 

IV 𝜓 > 1¹ 59182 : 457815 

V 𝜓 > 1² 457816 : 6421415 

∇𝑇(1) 
I 𝜓 > 1¹ 3 : 726608 

II 𝜓 > 1 726609 : 6542996 

𝑇𝑚 

I −1 ≤ 𝜓 ≤ 1 3 : 145317 

II 𝜓 > 1³ 145318 : 166153 

III 𝜓 > 1¹ 166154 : 678463 

IV 𝜓 > 1² 678464 : 6373437 
Notes: ¹monotonic convergence of 𝜓 without significant round-off errors; ²monotonic convergence of 𝜓 with significant round-off errors; ³no monotonic 

convergence of 𝜓. 

 

Figure 2 displays the modulus of iteration error (𝐸𝑘) and its 

estimates ( 𝑈𝑘 ) in a logarithmic scale for all iterations 

necessary to reach machine error in Case 3 of the selected 

variables for this model. Due to the extensive number of 

iterations, it is challenging to discern variations in the 

estimates within these figures. The overlap of symbols in the 

graph suggests a similarity in estimator performance. 

Figures 2(b) and 2(c) reveal that in the final iteration 

interval, the propagation of round-off errors creates an illusion 

of dual estimate lines. However, these apparent lines are solely 

constituted by error estimates exhibiting oscillatory behavior, 

an anomaly observed in all figures depicting later iterations of 

the process. 

Figure 3 focuses on the modulus of estimates (𝑈𝑘 ) and 

iteration error (𝐸𝑘) in logarithmic scale, but limited to intervals 

I-III and IV for 𝑇(1/2), interval I for 𝛻𝑇(1) and intervals I 

and II for 𝑇𝑚 . This figure reveals that estimators did not 

perform optimally in these ranges, leading to either 

overestimation or underestimation of iteration error. 
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(a) 

 
(b) 

 
(c) 

Figure 2. Iteration error and estimator performance in Model 

1 Case 3 across all iterations 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Estimator performance for variables in Model 1 

Case 3 

 

 
 

Figure 4. Estimates and iteration error for variable 𝑇𝑚 in 

interval III of Model 1 Case 3 
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In evaluating the effectiveness of the estimators (Eq. (28)), 

it was ascertained that for approximately 56% of the iterations, 

the estimators were deemed reliable, as exemplified by 

variable 𝑇(1/2)  of Model 1, Case 3. This outcome 

underscores the necessity for a more granular analysis of the 

intervals. Consequently, detailed insights into specific ranges 

delineated for this case are presented below. 

The intervals where the estimates closely aligned with the 

iteration error were identified as yielding the most accurate 

estimates. For instance, interval III for variable 𝑇𝑚, as depicted 

in Figure 4, exemplifies this alignment. 

The impact of round-off error was a determinant factor in 

defining the endpoint of the optimal estimation intervals. The 

prominence of round-off error becomes more apparent in 

Figure 5, particularly when the number of iterations 

approaches the order of 5 × 106 . Across all graphs in this 

range, a substantial disparity between the estimates and the 

iteration error is observable. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Modulus of difference between estimates and true 

iteration error for variables in Model 1 Case 3 

Model 2: The delimitation of intervals was conducted in 

accordance with the criteria set forth in Eq. (40). The outcomes 

of this delimitation process for variables and are summarized 

in Table 5. 

It was observed that for variables 𝛻𝑇(1)  and 𝑇𝑚 , a 

convergent series (𝜓 >  1) persisted throughout the iterative 

process, barring the final stages where round-off errors were 

significant. Consequently, the delineation of only two 

intervals was required, differentiated primarily by the presence 

or absence of substantial round-off errors. 

For variable 𝑇(1/2) , the most accurate iteration error 

estimates were identified within interval II, whereas for 

variables 𝛻 𝑇(1) and 𝑇𝑚, interval I was determined to be the 

most precise. 

 

Table 5. Delimited iteration intervals for psi-medium 

estimator analysis in Model 2 Case 3 

 
Variable Interval Criteria Iterations 

𝑇(1/2) 

I −1 ≤ 𝜓 ≤ 1 3 : 29942 

II 𝜓 > 1¹ 29943 : 354533 

III 𝜓 > 1² 354534 : 1743056 

∇𝑇(1) 
I 𝜓 > 1¹ 3 : 441845 

II 𝜓 > 1² 441846 : 1852409 

𝑇𝑚 
I 𝜓 > 1¹ 3 : 492493 

II 𝜓 > 1² 492494 : 1745953 
Notes: ¹monotonic convergence of 𝜓 without significant round-off errors; 

²monotonic convergence of 𝜓 with significant round-off errors. 

 

The modulus of iteration error (𝐸𝑘) and its estimates (𝑈𝑘) 

for all necessary iterations until machine error was reached in 

this case were computed and are represented in logarithmic 

scale (refer to the appendix – Figure 1A). Due to the extensive 

number of iterations, the analysis of estimates was performed 

post interval delimitation. 

An analysis of the initial intervals revealed inaccuracies in 

the estimates, as corroborated by the estimator effectiveness 

(Eq. (28)), which stood at 64% for variable 𝑇(1/2) and 22% 

for variable 𝑇𝑚.  

It should be noted that in this model, the solver necessitates 

several iterations for the integration of boundary conditions 

into the calculations of local variables. However, the iteration 

count required to achieve machine error was lower compared 

to the previous model. Similar to Model 1, the presence of 

round-off error in Model 2 was also evident in the final 

iteration range for each variable, manifesting a graph behavior 

akin to that observed in Figure 5 of Model 1. 

Model 3: The delimitation of iteration intervals was based 

on the criteria of 𝜓's monotonic convergence and the minimal 

impact of round-off errors. Table 6 summarizes these intervals. 

The optimal interval for variable 𝑇(1/2,1/2) was identified as 

Interval II, while for variables 𝛻 𝑇(1, 𝑦) and 𝑇𝑚, Interval III 

was deemed most effective. 

The evaluation of the iteration error estimates across all 

iterations revealed a need for enhancement in the initial and 

final ranges. This observation is further illustrated in the 

appendix (Figure 2A), which presents the behavior of these 

estimates for Model 3. 

In the first two models, variable 𝑇(1/2) required the most 

effort in interval characterization due to its non-monotonic 

behavior of 𝜓 , contrasting with variables 𝛻𝑇(1)  and (𝑇𝑚) , 

where 𝜓 exhibited less variation. To refine the estimates, as 

proposed in the methodology, corrected numerical solutions 

were computed. The results of this corrective approach are 

discussed in the following subsection. 
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A comparison of the estimates reveals a similarity in the 

performance of the psi-medium estimator with those 

documented in the literature [3, 8, 11]. The methodology of 

this study aims to enhance these estimates by calculating 

corrected numerical solutions, the outcomes of which are 

detailed in the subsequent subsection. 

 

Table 6. Delimited iteration intervals for psi-medium 

estimator analysis in Model 3 Case 2 

 
Variable Interval Criteria Iterations 

𝑇 (
1

2
,
1

2
) 

I −1 ≤ 𝜓 ≤ 1 129 : 4526 

II 𝜓 > 1¹ 4527 : 60015 

III 𝜓 > 1² 60016 : 435850 

∇𝑇(1, 𝑦) 

I 𝜓 > 1 3 : 18475 

II 𝜓 > 1³ 18476 : 21076 

III 𝜓 > 1¹ 21077 : 92635 

IV 𝜓 > 1² 92636 : 440370 

𝑇𝑚 

I 𝜓 > 1 3 : 15160 

II 𝜓 > 1³ 15161 : 17764 

III 𝜓 > 1¹ 17765 : 87281 

IV 𝜓 > 1² 87282 : 429852 
Notes: ¹monotonic convergence of 𝜓 without significant round-off errors; 

²monotonic convergence of 𝜓 with significant round-off errors; ³no 

monotonic convergence of 𝜓. 

 

5.3 Post-processing 

 

This subsection delineates the post-processing of results as 

outlined in the methodology. Specifically, the solution 

corresponding to the last iteration of the best estimates interval 

( 𝜙𝑘2
) was deemed the most accurate. Subsequently, this 

solution was employed in Eq. (44) to compute enhanced 

estimates. 

Model 1: Table 7 presents the solutions obtained at the final 

iteration of the optimal interval estimates for each case of 

Model 1. 

 

Table 7. Solutions at the last iteration of optimal interval 

estimates for Model 1 

 

Variable Case Iteration 𝝓𝒌𝟐
 

𝑇(1/2) 

1 2854 6.256103515625000E-02 

2 36832 6.250381469726562E-02 

3 457815 6.250023841857927E-02 

∇𝑇(1) 

1 5480 3.997825622558593E+00 

2 66428 3.999863028526306E+00 

3 726608 3.999991422535594E+00 

𝑇𝑚 

1 5470 2.001220583915710E-01 

2 64392 2.000076293479651E-01 

3 678463 2.000004768370261E-01 

 

Utilizing these findings, solutions were recalculated across 

all intervals using Eq. (43), resulting in new solutions with 

diminished iteration errors. A marked improvement was 

observed in the initial phase of the iterative cycle upon 

comparing the numerical solutions. 

Subsequent to the calculation of new estimates, results were 

systematically presented, aligned with the pre-defined 

intervals to facilitate enhanced visualization. For variable 

𝑇(1/2), intervals I, II, and III predominantly harbored less 

precise estimates as per the psi-medium estimator. As 

illustrated in Figure 6 (a), both the initial and recalculated 

estimates are depicted, revealing notable improvements in the 

accuracy of error predictions within these specific intervals. 

Analogous enhancements were also discernible for other 

variables of interest, as evidenced in Figures 6 (b) and 6 (c). 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. Comparison of original estimates, iteration error, 

and improved estimates for Model 1 Case 3 

 

For variable 𝑇(1/2) , an initial divergence between the 

estimates and the iteration error was observed at the onset of 

interval IV. Subsequent recalculations of estimates, as detailed 

in the methodology, yielded significant improvements. This 

enhancement is depicted in Figure 7. The recalculated 

estimates exhibited higher accuracy compared to the initial 

estimates derived from the estimators. A similar trend of 

improved accuracy was noted in the other models, as 

illustrated in the appendix (Figures 3A and 4A). 

Toward the terminal phase of each interval delineated for 

the respective variables, the pronounced emergence of round-

off errors precluded the full alignment of all estimates. This 

limitation is exemplified in Figure 8, particularly in Figure 8 

(a), where recalculated estimates begin to deviate from the 

360



 

actual iteration error around the iteration of order 3.6 × 106. 

Analogous patterns are observable in Figures 8 (b) and 8 (c), 

underscoring a consistent trend across the variables. 

 

 
 

Figure 7. Enhanced estimate alignment for variable 

𝑇(1/2)in Model 1 Case 3. 
 

Despite these challenges, the recalculated estimates in 

earlier intervals closely matched the true iteration error, 

surpassing the accuracy of initial estimates. However, for the 

ultimate interval, reliance solely on the estimator is 

recommended. The corrective solution procedure proved 

insufficient in mitigating the impact of round-off errors in this 

final stage. Figure 9 introduces the hybrid procedure, 

amalgamating the two estimation methodologies. In Figure 

9(a), for instance, the corrected solution is applied in intervals 

I to IV, while only the estimator is utilized in interval V. This 

hybrid approach, as depicted in Figures 9(b) and 9(c), 

represents an optimized strategy for estimating iteration errors 

throughout the entire iterative process. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Estimates, iteration error and improved estimates 

for variables in Model 1 Case 3 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 9. Hybrid procedure for variables in Model 1 Case 3 
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Model 2: The recalculated solutions for all intervals, 

utilizing the numerical solution 𝜙𝑘2
 indicated in Table 8, 

demonstrated substantial improvements, particularly in the 

initial iterations. 

 

Table 8. Final iteration solutions for all cases 

 

Variable Case Iteration 𝝓𝒌𝟐
 

𝑇(1/2) 

1 2226 6.625315389083413E-03 

2 28800 6.688624561987254E-03 

3 354533 6.692586755646682E-03 

∇𝑇(1) 

1 3353 9.947932529721088E+00 

2 40567 9.996783336138475E+00 

3 441845 1.000021786589429E+01 

𝑇𝑚 

1 3489 9.995551575164478E-02 

2 43358 9.995465571973533E-02 

3 492493 9.995460161728745E-02 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 10. Hybrid Procedure Implementation for variables in 

Model 2 Case 3 

Utilizing these solutions, new estimates were calculated. 

However, similar to previous models, the final iteration 

intervals for variables 𝑇(1/2) (Interval III), and 𝛻𝑇 and 𝑇𝑚 

(Interval II) did not exhibit marked improvements due to the 

presence of round-off errors. Therefore, the corrected solution 

approach is advised for recalculating estimates in intervals 

minimally affected by round-off errors. For other intervals, the 

psi-medium estimator is recommended (Figure 10). 

Model 3: The application of the hybrid procedure in Model 

3 is presented through the analysis of solutions with reduced 

iteration errors, as summarized in Table 9. 
 

Table 9. Last iteration Solutions for variables for all cases 
 

Variable Case Iteration 𝝓𝒌𝟐
 

𝑇(1/2) 
1 4738 1.993260416376170E-01 

2 60015 1.992720104130132E-01 

∇𝑇(1) 
1 8041 9.282659951979760E-01 

2 92635 9.197616756887540E-01 

𝑇𝑚 
1 7826 1.809084632456606E-01 

2 87281 1.846122358980575E-01 
 

The recalculated estimates, derived using Eq. (44), 

exhibited notable improvements in accuracy during the initial 

intervals of the iterative process. This advancement is 

particularly evident in the early stages of the iterative cycle, 

showcasing the efficacy of the new estimates. 

Nonetheless, similar to the challenges encountered with 

previous models, the final interval of Model 3 did not show 

any substantial enhancement in estimates due to the 

prevalence of round-off errors. Consequently, it is advised to 

employ the corrected solutions for estimate calculation in the 

early intervals and utilize the psi-medium estimator for the 

latter interval. This approach is encapsulated in Figure 11, 

which illustrates the implementation of the hybrid estimation 

method. 

 
(a) 

 
(b) 
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(c) 

 

Figure 11. Application of the hybrid procedure for variables 

in Model 3 Case 2 

 

 

6. CONCLUSIONS 

 

In this research, rigorous techniques were employed to 

verify computational codes, involving grid refinement and 

juxtaposition of numerical solutions against analytical 

counterparts. Analyses, both a priori and a posteriori, were 

conducted to assess the decay order of discretization errors. It 

was observed that the effective and apparent equivalent orders 

invariably aligned with the asymptotic orders of the numerical 

schemes utilized, fulfilling the initial objectives of this study. 

This accomplishment paved the way for subsequent phases. 

The initial estimates, derived using the psi-medium 

estimator, exhibited a close resemblance to those reported in 

extant literature [3, 8, 11]. In pursuit of enhancing these 

estimates, iteration intervals for each variable of interest were 

meticulously delineated. The criteria for this delineation 

hinged on the values of the convergence rate ψ and the impact 

of round-off errors. 

Across all variables, the optimal range for estimates was 

identified as the interval characterized by a monotonic 

convergence of ψ and minimal influence from round-off errors. 

Subsequently, a novel procedure was implemented to reduce 

iteration errors, leading to the calculation of corrected 

solutions. The final corrected solution within the most 

favorable interval, deemed as the most precise, was utilized for 

recalculating the estimates. 

The re-evaluated estimates exhibited a marked 

enhancement in the accuracy of iteration error predictions 

across all defined intervals for each variable under study. This 

improvement was noted in contrast to earlier obtained 

estimates, with the exception of the final interval. The 

precision of these new estimates was found to be contingent 

upon the accuracy of the corrected solutions used for their 

calculation, and was also affected by the presence of round-off 

errors. To address this limitation, two strategies were proposed: 

firstly, selecting the iteration that yielded the minimum value 

in the difference calculated by Eq. (41), and secondly, 

applying the empirical psi-medium estimator as a post-

processing tool on the obtained numerical solutions. 

Consequently, it was discerned that a hybrid procedure, 

integrating the use of corrected solutions to enhance estimates 

in the initial intervals, combined with the exclusive application 

of the psi-medium estimator in the terminal intervals, offered 

a distinct advantage. This approach notably surpassed the 

performance of other estimators, particularly in the early 

phases of the iterative cycle. The study's final objectives were 

thus fulfilled, underscoring the efficacy of monitoring the 

convergence rate ψ as a means to facilitate a more 

comprehensive analysis of the iterative cycle's intervals, 

ultimately leading to more accurate estimation outcomes. 

In the realm of CFD, the finite volume method 

predominates for discretizing model equations. However, in 

the initial phase of this research, the FDM was selected. Future 

endeavors will incorporate a diverse array of discretization 

techniques, alongside varying solvers, including the modified 

strongly implicit procedure (MSI), both with and without the 

integration of multigrid methods, to rigorously evaluate the 

methodology. 

The enhancement of the hybrid procedure will involve the 

application of mathematical models featuring coupled 

equations. Notably, the study plans to engage with the two-

dimensional Burgers and Navier-Stokes equations, employing 

a range of Reynolds numbers. Furthermore, efforts will be 

directed toward computing iteration error estimates across the 

complete spectrum of the numerical solution field. The 

overarching goal remains steadfast: to refine the accuracy of 

these estimates and achieve a reduction in iteration error. 
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NOMENCLATURE 

 

𝑎𝑛
𝑇   coefficients of the discretized equation system of 

the mathematical model 

𝑏𝑇  source term of the discretized equation system of 

the mathematical model 

c coefficients that depend on Φ and do not depend on 

ℎ 

𝐸(𝜙𝑘)  iteration error in the current iteration 𝑘 

𝑈(𝜙𝑘)  estimate of iteration error in the current iteration 𝑘 

𝐸𝜋  round-off error 

𝐸ℎ  discretization error 

𝐸𝑘  iteration error 

𝐸𝑛  numerical error 

ℎ  grid step size  
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𝑘  iteration number 

𝑙2 𝑧𝑘/𝑧𝑘+1 

𝐿  domain length 

𝑁  number of grid points 

𝑃𝑒  Péclet number 

𝑝0 asymptotic order decay of iteration error 

𝑝𝐸ℎ
∗   effective equivalent order of discretization error 

𝑝𝑈  apparent order of estimates 

𝑝𝑈ℎ
∗   apparent equivalent order of discretization error 

𝑟 grid refinement ratio 

𝑟𝑒  |𝑧𝑘|/ |𝜒𝑘2
| 

𝑇 continuous function that represents the exact 

analytical solution of the dependent variable 

𝑇(𝑛)  n-th derivative of the exact analytical solution 

𝑇𝑚  exact analytical solution of the mean value of 𝑇 

𝑥 independent variable’s continuous function 

𝑦 independent variable’s continuous function 

𝑧  𝜒𝑘−2. 𝜒𝑘 − 𝜒𝑘−1. 𝜒𝑘−1 

 

Greek symbols 

 

𝛼  Constant 

𝛽  Constant 

𝜆1 dominant eigenvalue 

𝛷𝑎   analytical solution of a variable of interest 

𝜙 numerical approximation of a variable of interest 

𝛺  calculation domain 

𝜓 convergence rate 

𝜃 estimates effectiveness 

∇ Gradient 

 

Subscripts 

 

𝑎  analytical solution 

𝑖 reference grid point on 𝑥 direction 

𝑗 reference grid point on 𝑦 direction 

𝑘  current iteration 

𝑘1 first iteration of the best interval estimates 

𝑘2  last iteration of the best interval estimates 

𝑚  mean value 

𝑥  𝑥 direction 

𝑦  𝑦 direction 

∞  converged/estimated solution 
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Figure 1A. Estimates and iteration error at each iteration for 

the variables 𝑇(1/2) (a), 𝛻𝑇(1) (b) and 𝑇𝑚 (c), of model 2, 

case 3, in all iterations 
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Figure 2A. Estimates and iteration error at each iteration for 

the variables 𝑇(1/2,1/2) (a), 𝛻𝑇(1, 𝑦) (b) and 𝑇𝑚 (c), of 

model 3, case 2 
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Figure 3A. Estimates, iteration error and improved estimates 

at each iteration for the variables 𝑇(1/2) in the intervals I 

and II (a); 𝛻 𝑇(1) in the interval I; and 𝑇𝑚 of model 2, case 3, 

in the interval I. 
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Figure 4A. Estimates, iteration error and improved estimates 

at each iteration for the variables 𝑇(1/2,1/2) in the intervals 

I (a); 𝛻 𝑇(1, 𝑦) in the interval I and II; and 𝑇𝑚 of model 3, 

case 2, in the interval I and II 
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