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Exploring some characteristics of differential subordination and superordination of
analytic univalent functions in an open unit disc is the aim of this work and additionally,
we have the form's normalized Taylor-Maclaurin series: f(2) = z + Y-, a,z™. It also
aims to clarify the results of the sandwich. By utilizing the integral operator's properties
to examine forth-order differential subordination and superordination of analytic
univalent functions, some fascinating results are found and explore forth-order
subordinations and superordinations in respect to the convolution. Ultimately, we
acquired multiple outcomes concerning fourth-order sandwich theorems inside the open

1. INTRODUCTION

Suppose that C be a complex plane and R = R(U) be the
classof functions which are analytic in the open unit disk U =
{z:3 € Cand |3| < 1}. Regarding an integer number that is
positive 7 and a € C, we assume that R[a,n] be the R
subclass made up of functions with the structure f(z) = a +
anz"™ + an12"t + -+, (z € U), and Ri=[1,1]. Let f and k
are analytic in U, if there is a Schwarz function w in U such
that w(o)=o, then we say that the function f’is subordinate to £,
or that & is superordinate to f, and |w(z) | < 1 (zeU) where
f(z)=k(w(z)). When that occurs, we write f < k or f(z) <
k(z) (z € U).

Specifically, in cases when the function g is univalent in U,
then f < g if and only if f(0)=g(0) and f(U)cg(U).

Let Du represent the class of functions of the form [1]:

f() =z+3X0-;a,3", (1)

Darweesh [2] presented and examined the new integral
operator:

‘7((1,[3): Du 4 Du,

which is defined as follows:

r'(a+n-1)

— 5o n
Tapf(2) =2+ 2= ((m(ﬁ))"-lr(a)) EnZ "
where, f € D, fora e Nand 8 = 2.

It is easily verified from Eq. (2), that

5 (Yap @) = aliaripf @) — (@ - -
DIiap) f (2).

In recent times, for example, a number of authors [3-15]
have developed and talked about the idea of superordination
and second-order differential subordination. In addition, a
number of writers covered topics such as the theory of third-
order differential subordination and superordination [16-19].
The theory of the second-order differential subordination in
the open unit disk, first introduced by Miller and Mocanu [12],
was expanded to the third instance by Antonino and Miller
[16] in 2011. The third-order instance was extended to fourth-
order differential subordination by Atshan et al. [20, 21], who
also identified the features of functions g that fulfill the
subsequent fourth-order differential subordination:

¢ (9(2),29'(2),2%9"(2),2°3" (2),2*9""" (2); 2) < H(2),

where, h beanalytic univalent function in U, g is
analytic function and ¢: C> x U - C. Now, we identified
characteristics of the function g that satisfy the subsequent
fourth-order differential superordination after extending the
third-order case to a fourth-order case:

h(z) < d(g(2),29'(2),3°9" (2),5°9""(2),3*¢"" (2); 2),

where, h be analytic univalent function in U, g isanalytic
function ¢: C> x U — C. To prove ourmain result, weneed the
basic conceptsin the theoryof fourth-order.

Definition (1) [16]: Let Q represent the collection of all
univalent and analytic functions q on the set U \ E(q), where
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E(q) = {Z € 6U:lirr% q(z) = oo}, such that, min|q'(3)| =
Z—

p > 0for { € U\ E(q). Furthermore, let Q(a) be the subclass
of Q for which q(o)=a, where, Q(0)=0Q,, Q(1)= Q,, and
Q,={q€Q: q(0)=1}.

Definition (2) [20, 21]: Assume that h(z) is a univalent
function in U and let ¢p: C> X U — C. Assume that g(z) is an
analytic function in U that fulfills the fourth-order differential
subordination listed below:

b(g(2).2¢'(2).5°9"(2),5°¢" (2), 5°¢"" (2);2) (5
<5(2),

g(2) is therefore referred to as a differential subordination
(3) solution. A dominating of the solutions of (3) is a univalent
function q(z). or, simpler, a dominant q(z) if ¢(z) < q(z)
for all g¢(z) satisfying (3). A dominant §(z)which satisfies
§(2) < q(3), the best dominant for all dominants is q(z) of (3).

Definition (3) [21]: Assume that h(z) is an analytic function
in U and that ¢: C*> x U — C. Given g(z) and:

d(9(2),29'(2),2%3" (2),5°¢"" (2), 5* 9" (2); 2),

Meet the requirements for the following univalent functions
in U and fourth-order differential superordination:

h(z) < @)
$d(¢(2),29'(2),2%9" (3),2°9"" (3), 2% 9" (3); 2),

Thus, g(z) is called a differential superordination (4)
solution. An analytical position to put it another way, ¢(z) is a
subordinant of the solution to (4) if, for every g(z) satisfying
4), q(2) < g(z) . The univalent subordinant g (z) that
satisfies q(z) < G(z)for all subordinants of (4) is the finest
subordinant. It is noted that up until U rotates, the optimal
subordinant is unique.

Definition (4) [20, 21]: Consider a set 2 in C, q in Q, and
nin N\{2). Functions ¢:C°x U — C that meet the
subsequent admissibility requirement are included in the class

v, [Q, q]of admissible functions:

o(uw,v,x,4,9;0) € Q,

whenever

u=q(), v =k{a'((), Re{Z+1} 2 kRe {<:,’;g> 1),
and

Re (4] 2 k2Re {C07D) o (#) 2 ke (C17E),

where, ze U, € dU \ E(q) and k = 3.

Definition (5) [21]: Given a set 2 in C, q(z) € R[a, n] and
q(z) £0 , functions ¢:C5x U — C which fulfill the
following admissibility requirement are included in the class
‘P;L [, g] of admissible functions:

olu, v, x,4,9;0) €EQ,

whenever

_ _ zd'(2) x
u=q(z), v = - Re {U + 1}

386

and ,
1 I/I( )
Re {%} = W:Re {%},
3.1
Re{t} 2 Sre {52,

where,z €U, €dUandm = n = 3.

The following lemma contains the fundamental outcome for
the theory of fourth-order differential subordination.

Lemma (1) [6]: Assume that g € R[a,n] and thatn € N \
{2} and g € Q(a) both meet the requirements listed below.

>

m

z2p" (2)
q' ()

=

Z = k?,

)

@ = 0and

where,z € U,{ € U\ E(q) and k = n. If N is a set in C,
b eW,[Qq] and:

d(9(2),29'(2),3°9" (3),2%3""(2),5*9""(3); ) € Q,
then

¢(z) <q(z), (z€l).
The fundamental outcome of the idea of fourth-order
differential superordination is found in the following lemma.
Lemma (2) [21]: The basic result in the theory of fourth-
order differential subordination is found in the following
lemma.

q(z) € Rla,n] with ¢ € ¥,,[Q, q].
If ¢(g(2),2¢'(2),3°¢" (2),2°¢" (2),2%¢"" (3); 2), s
univalent in U and g(z) € Q(a) fulfills the requirements

listed below for admissibility:

z2p"'(2)

q' ()

<

zqull(z) -
Re {—q’(c) } = 0, and

1
ﬁ!
where, z € U,{ € U and m 2 n = 3, then

0 c
{d(g(2),2¢'(2),3%9"(3),5°¢" (3),5%¢""" (3); 2): 5 € U},

implies that

q(z) < ¢(2),(z € ).

This concept's major goal is to identify the necessary
requirements that certain normalized analytic functions f must
meet in order to satisfy:

41(2) < Japf(3) < g2(2),
41(8) <37 g5 f(3) < 2(2),

where, ¢, (2) and g,(z) are given univalent functions in U
with g1 (0) = g,(0) = 1.

2. FOURTH-ORDER DIFFERENTIAL
SUBORDINATION RESULTS USING 74 4 (2)

Prior to proving the differential theorems connected to
J(ap) Provided by Eq. (1), we establish the class of admissible



functions that follow.

Definition (6): Let g € QoNJ, Q, be a set in C. Functions
$:C5xU—C, that meet the following admissibility
requirements make up the class M,[Q,q] of admissible
functions:

olu,v,x,4,9;2) € Q,
when

! -
w=q@), v= k&q (f)+;€l 1)@(5)'
rrau+(a-Duw)) 2q"'(©)
:Re( a(uta(v—u) ) = kRe{ q'(D + 1}'

Re (y+a(3x+u)+2a20—(v+u)) > k2Re {izq”’(()}

a?(v—-u)+adu q’' (D

and

(g +2ay + 3x) — (¢ + 4x) + 5a%x + (a — D*((2a® — D?v + u))
Re
a3(v + (a — Duw)

> pap, (£47Q)
2k Re( q' () )'

where, z € U,{ € U\ E(q) and k = 3.

Theorem 1: Let ¢ € M;[Q, q]. If the following criteria are
met and f and g both fall inside D,, and Q,:

24" > Ta+2.pf @) ;2
Re( ql({) ) = Y q,(() = k ) (5)
and
{¢ (j(ayﬁ)f(z)r7(a+1,ﬁ)f(Z),7(a+z,ﬁ)f(Z),7(a+3,5)f(z),-7(a+4,5)f(z))} (6)

cQ,
then

Japf (@) < a(z) (z € ).

Proof: Give the definition of the analytic function p(z)in U.

p(2) =J@upf(@) (z€U). (7)
Next, employing Eqg. (3) and differentiating Eq. (7) with

regard to z, we have

zp' (@) +(a-1)p(z)
—

7(a+1,ﬁ)f(z) = 3

Further computations show that

Jasapyf(3) =
22" (5)+(2a-1)zp () +(a—1)?p(z)
6{2

)

Jar3pyf(3) =
2393 (2)+3az2p" (2)+(2a2-1)zp’ () +(a—-1)3p(z)
3

(10)

’

and

7(a+4-,6)f(z) =
3 W (@) +22a+1)z%p®) () +(5a2 +6a-4)z%p"" (2)
a‘l-
+ (2a2-1)%(@-1)"zp’ () +(a-1)*p(2)
a* )

(11)
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We now define the transformation C° to C,

u(r,st,w,b) =1, v(,5tw,b) = @

_ _1)2
(1,51, w,b) = TEEDHEDE (12)
w+3at+(2a?-1)s+(a—1)3r
a3

y(r, 5t w,b) =

and
g(r,5,t,w,b) =

b+22a+1)w+(Ga+6a-1)t+(2a%-1)° (a-1)*s+(a—1)*r
a’

(13)

)

let

x5t w,0;2) = dp(u,v,2,4,9;,3) =
. s+(a-1r t+Qa—-1)s+(a—1)%r \

) ’
a

a?

(14)

w+3at+(2a?-1)s+(a—1)3

a3

¢ ,
b+2Q2a+D)w+(Ga?+6a—Nt+2a?-1)?(a-1)*s+(a—1)*r z

’

at

Lemma (1) will be used in the proof. Eq. (14) gives us, using
Egs. (7)-(11), that

x(p(2), 20" (2), 520" (2), 2°p®(2), 24P (2); z) =
" (j(a,ﬁ)f(z)'j(a+1,,8)f(z)'g(a+2,,8)f(z)')
Jarapyf (@), Jarapyf(3) '

(15

Thus, it follows that Eq. (6) becomes:

1(p(2),29'(2), 29" (3), 2°p®)(2), 2% (2); z) € Q,
we observe that

r+au+(a-Du) w _ y+aBrt+uw)+2a?v—(v+u)

fy1= ,
S

a(u+a(v—u) s ’

a?(v-u)+adu
and

b

g +2ay +3x) — (y + 4x) + éazx + (a— D*((2a? - D*r +u)
ad(v + (a— Du) ’

The admissibility condition for ¢, in Definition (6) is
therefore equal to the admissibility condition for y in
Definition (4) with n = 3, for y € W5[Q, q]. Thus, applying
Lemma (1) and (5), we get

P(2) = Jap)f (3) < a(2).

This concludes Theorem (1)'s proof.

The next corollary extends Theorem (1) to the situation
where q(z) € dU behavior is unknown.

Corollary (1): Assume that Q c C and that g(z) is a
univalent function in U such that g(0) = 1. Forany p € (0,1),

let ¢ € M;[€, q], where q,(z) = a(pz). If both g and f €
D,, meet the requirements listed below:

% (S0

I(a+2,8)f ) < 1,2
= € €
)51 e ug

ou \ S(qp) andk Zn)

>

=Y,

(16)



and

o <‘7(a,,8)f(z)’7(a+1,,8)f(z)’7(a+2,,8)f(z)'

7(a+3,5)f(z),7(a+415)f(z) ) <h(z),

17)
then
Japf(2) < a(z) (z € U).
Proof: By using Theorem (1), yield
Japf (@) <q,(2) (z €U),
then, we get the outcome from
9,(2) <a(z) (z€l).
This concludes Corollary (1)'s evidence.

Q = h(U) for some conformal mapping h(z) of U on
to 2 if 2 =+ C is a simply connected domain. In this instance,
a M;[p,q] is written for the class M,[h(U),q]. The
following two results are immediate consequence of Theorem
(1) and Corollary (1).

Theorem (2): Let ¢ € M;[b,q] . Assuming that f €
D, and g € Q, meet condition (5), and

Czq’”(()> Jarzpf ()
Re|—=—]20, |[—~—|=kK, 18
e( G) "es) (18)
7<a.ﬁ>f(z)'7<a+1.5>f(z),7<a+z,mf(z),>
¢ ( Ta+3,6)f @), Tasapyf(2) <), (19
then
Japf(@) <a(z) (z€0).

Corollary (2): Assume that Q c C and that q is a univalent
function in U such that g(0) = 1. For any p € (0,1), let ¢ €

M;[,q], where qp(z) = q(pz). If both q,and f € D, meet
the requirements (18):

[} (7(a,ﬁ>f(z),7(a+1,ﬁ)f(Z),7(a+z,ﬁ)f(Z),7(a+3,5)f(5),7(a+4,5)f(5))

20
<b(2), (20)

then
Japyf(3) < a(z)(z € U).

The best dominant of differential subordination is produced
by the following finding (17).

Theorem (3): Assume that h is a univalent function in
U. Additionally, let

a a?
2343)(2)+3az2q" (2)+(2a2-1)zq’ (z)+(a—-1)3q(z)
a3
¢ 2*q® (D) +22a+1)z34® (2)+(5a2+6a—4)z%q" (z)
a4
(2a?-1)?(a-1)*zq' (z)+(a—1)*q(z)
a4

/q(z), 29" (z)+(a-1)q(z) ) 32" (5)+(2a-1)zq' (z)+(a—1)%q(z) ’w

21

% =h(z),

388

has a solution q(z) that meets condition (5) because q(0) = 1.
If the condition (16) is met by f satisfying D,,, and if
Japf (Z)'j(a+1,ﬁ)f(z):7(a+2,ﬁ)f(z);) : .
, IS analytic in U, then
d)( Jar3,0)f (), I@rapf(2) y

Japf(2) <a(z) (z€l).
where the best dominant is q(z).

Proof: As may be shown from Theorem (1), q(2) is a
dominant of Eg. (17). Moreover, q(z) is a solution of (17)
since it satisfies (20). Consequently, all dominating will
dominate q(z). As a result, the best dominating is q(z).

Definition (7): Let Q a setin C and g € Q,NJ;. Functions
¢:C>xU - C, that meet the following admissibility

requirements make up the class M;;[Q, q] of admissible
functions:

o(u,v,x,4,9;2) € Q,

when
u=q(§),
o = qu'(§)+aq(€),
a
(x+v)+a(Br+au) > 29" Q)
Re ( a(v+au) 2 = k:Re{ (D) + 1}' "
(y—3x+v)+aBx+5v)+a*Ru+au > 1,2 729" (D)
:Re( a?(v+au) ) =k :Re{ (D }

and

2 (g +v —52) + a?(5x + 7v) + 2a(4x + 3v) + a®* Qv + au)
¢ a3 (v + au)

2 0% ()

when, z € U,{ € dU \ E(q) and k = 3.

Theorem (4): Explain how ¢ € M;[h,q]. If both g€
Q, and f € D,,, and meet the requirements listed below,

yauiii
Re <ﬂ> =0,
q'(9)
27 T (ar2,p)f (3)
a' (@)

(22)
< k2

= )

and

z_lj(a,ﬁ)f(z)JZ_lg(u+1,[?)f(z)rZ_lj(a+2,ﬁ)f(z)v>}
{¢< 5_17(a+3,5)f(z),5_17(a+4,3)f(z) <o (23)

then
37 9 ep f(2) < q(2) (z € V).

Proof: Assume that the analytic function p(z) in U is
defined by

P(3) = 27 e p)f (2). (24)
From Egs. (2) and (24), we have:
2 (g ppf () = THEEEE @5)

a

By a similar argument, we get:



]

3.1 2.7 2
z_lj((x+2’ﬁ)f(z) _zp @)+QRa+1)z%p (z)+a“zp(z) (26)

2
2 T ar3pf ()
24908 +3(a-1)z3p" () +(2a? +5a+1)32p’ (5)+a3zp(z) (27)

]

a3

and

7 arap f(2) =
259 (@) +4az*p® () +(5a2+8a-5)z3p" (z)
ps (28)
(2a®+7a?+6a+1)z2p’ (z)+a*zp(z)
+ — .

Define the transformation from C° to C by:

s+ ar
u(r,s,t,u,b) = 1,v(x,51tuw,b) = o

t+2a+1)s+a’r (29)
a? ’
w+3(a-Dt+(2a?+5a+1)s+a’r
)

a3

x(x,5,t,w,b) =

/y’(r; 5; t; w! b) =
and
g’(r; 5; tl w! b)

_ b+saw+(5a?+8a—5)t+(2a3+7a’+6a+1)s+atr (30)

a%

let

x5 t,w,6;,3) = p(u,v,x,4,¢;,3) =

s+ar
r' )
’ (31)
t+2a+D)s+a’t w+3(a-Dt+(2a?+5a+1)s+a’r

’

¢

a? a3 ’

b+aaw+(5a®+8a—5)t+(2a3+7a*+6a+1)s+a’r

’

a%

Lemma (1) will be used in the proof. Using the Eqgs. (24)-
(28), we have from Eq. (31), that

x(p(2), 20" (2), 50" (2), 2°p®(2), 24 (2); 7)

( 3 Y ap f(2), 27 I s f (2),

(32)
¢ Z_lg(a+2,[3)f(z)rZ_lj(a+3,[?)f(z)’Z_lg(a+4,[?)f(z)>.

Hence Eq. (23) becomes:

x(p(2), 29 (2), 2%p" (2), 2°p P (2), 2 (2); 2) € 2.

We see that
£+ 1= (x+4r)+a(34r+0m’
s a(v+au)
wo_ (y—3x+v)+aBx+5v)+a?(2uv+au
s a?(v+au) ’
and

b _ (g+v-5x)+a?(5x+7v)+2a(4x+3v)+a3 2u+au)
- a3(v+aw) !

As a result, it is evident that the admissibility requirement
for ¢ € M;1[Q,q] in Definition (7) is equal to the
admissibility condition for y € W;[Q,q] provided in

Definition (4) for n = 3. Consequently, applying Lemma (1)
and Eq. (22) yields:

p(2) = 270 pf(2) < a(2).

The proof of Theorem (4) is thus finished.

In our corollary we gain an extension of Theorem (4), to the
scenario when the behavior of g(z) on dU is not known.

Corollary (3): Let 2 c C and let the function g(z) be
univalent in U with q(o) = 1. Let ¢ € M;,[Q, q] for some
p(o,1) where q,(z) = q(pz). If f € D, and q,,, satisfies the
following conditions:

Re (CZCI'"(C)> >0 3 I gr2,)f ()

< k2

MG) 7 | (33)
(€U, (€ aU\S(qp) andk = n)
and
" <Z_1~7(a,/3)f(z)rZ_lj(a+1,ﬁ)f(z):5_17(a+2,[3)f(z):)
3 135 f (8), 37 I qrapf () (34)

<b(2),
then

3 Y apf(2) <a(z) (z€).

Proof: By using Theorem (4), yield
3 e pf () < q,(2) (z €U),
then we obtain the result from

9,(3) <q(z) (z€U).

This completes Corollary (3)'s proof.

Q = 1(U) for some conformal mapping h(z) of U on to Q
if Q= C is a simply-connected domain. The class
M, [p(U),q], is expressed as M, [h,q] in this instance.
Theorem (4) and Corollary (3) immediately lead to the next
two conclusions.

Theorem (5): Let ¢ € M;4[Q,,q] If f €D, and g € Q,,
satisfy the conditions Eq. (22) and

¢ <Z_1g(a,ﬁ)f(z):Z_lg(a+1,ﬁ)f(z):Z_lj(a+2,ﬁ)f(z).
3 I qr3p) f(2), 2 T qsap f ()
<5(2),

> (3%5)

then

37 9 p f(2) < q(2) (z € V).

Corollary (4): Given a function q(z) that is univalent in U
and q(0) =1, let Qc C. For any p € (0,1), such that

pp(z) = p(pz), let ¢ € M;1[Q,q]. In the event that f € D,,
and q,, satisfy the requirements (22):

¢ (z‘lﬂ(a.mf (2), 27 Tar1,6)f (2), 27 s pf (2),
27 3, f (2), 2 T qrap f(2)
<b(2),

> (36)

then



3 Y epf(2) <a(z) (3 €.

The best dominant of differential subordination is yielded
in the following result by Eq. (35).

Theorem (6): Assume thatin U, the function h is univalent.
Furthermore, let ¢:C>x U — C, and assume that the
differential equation.

zzq'(z)+azq(z) z q”(z)+(2a+1)z2q (z)+a*zq(z)
/ q(z), =2 \

has a solution q(z) with g(0) = 1, which satisfies the
requirement (34). Should f be outside of D,,, then

2443 (2)+3(a-1)z3q" (z)+(2a? +5a+1)zzq (@) +a3 zq(z)

¢ «

259® () +4az*¢® () +(5a%+8a— S)zsq”(z)
a4

\ (2a+7a?+6a+1)z%q
a4

b(2),

G37)

'(z)+a* zq(Z)

2 Yapf(@) <a(@), (e,
Proof: It follows that z"H,(z,9)(f*a)(z) <
q,(2). from Theorem (4). The following subordination

property, q,(z) < q(z) (z € U),
stated in Corollary (1).
Additionally, the integral transformation 7, f(z)

defined in (2) is examined in this case using the fourth-order
differential superordination thermos. For the purpose, we
considered the following acceptable functions.

leads to the conclusion

3. RESULTS OF FOURTH-ORDER DIFFERENTIAL
SUPERORDINATION WITH 7,4 f (2)

Definition (8): Given g € Q, and ¢'(z) # 0, let Q be a set
in C. Included in the class M, [, q] of admissible functions are
those functions ¢:C> x U — C, that meet the admissibility
requirement mentioned below.

ou,v,x,4,9;0) €Q,
when

! -
w = q(Z) L= k&q (f)+0(:l 1)0((‘5),

x+au+(a—1)u) <1 20" ()
( a(uta(v—u) ) = m:Re{ q'(z) + 1}
y+aBx+uw)+2a%v—(v+u) < 1 q'" ()
:Re( ) = { q'(z) }'

a?(v—u)+adu

and

Re

g +2a(2y +3x) — (g + 4x) + 5a’x + (@ — D*((2a? — 1)?v + u)
a3(v + (a— Duw)

< L {3qllll(z)

= m3 Re( q' () )

in contrast, z € U,{ € U \ £(q) and k = 3.

Theorem  (7): Let ¢eM[Q,q]. If feD,
and Jo 5 f (z) € Qo With q'(3) # 0, satisfying the following
conditions:
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Ia+2,8)f (@)
q'(z)

<1
==

qulll(z) >
Re( s )= 0,

(38)

and the function
¢(g(a,ﬁ)f(z)J7(a+1,5)f(z)'g(a+2,/3)f(z)'7(a+3,ﬁ)f(z)'g(a+4,/3)f(z); Z), is

univalent in U, and
>:z € [U}, (39)

(z € V).

T f (@) Jarrp)f () I, f (2),
e {d)( Jarap)f (), Jarap)f(2); 2

suggest that
q(z) < Japf(2)

Proof: Let the function p(z) be defined by Eq. (7) and y by
(14), since ¢ € M;[Q, q]. Thus from Egs. (15) and (39) yield

Qc
x(r(@),2v'(2),2%0"(2), 2°p®) (), 2% (2); 5): 5 € U}

We can observe from Egs. (12) and (13), that the
admissibility condition fory as statedin Definition (5), with
n = 3, is identical to the admissibility for ¢» in Definition (6)
for ¢ € M;[Q, q]. Since y € W5[Q, q], we can use Lemma (2)
and (39) to obtain

q(2) < Jap f (2).

Q =1p(U) for some conformal mapping h(z) of U on
to Qif Q # Cis a simply-connected domain. In this instance,
aM;[, q], is written for the class M;[5(U) , q].

Theorem (7) naturally leads to the next theorem.

Theorem (8): Let ¢ € M;[Q,q] and b be analytic
functioning U If f €D, J4pf(z) EQy and g€
Jo with q'(z) # 0, satisfying the following conditions (38)
and

S(Twpy f @) Iasrp f @) Tasap f (B Tarpyf (), Iarapyf(2); 2),

), (40)

is univalent in U, then

Jap)f (3), Iasr,pf (2, Ias2p)f (),

h(z) < ¢< Tarapyf (@) arap)f(2); 2

suggest that

q(2) < Japyf(2) (z € ).

Theorem (9): Let b be analytic function in U, and let
¢: €5 x U > Cand y be given by Eq. (14). Suppose that the
following differential equation:

1(»(2),29'(2), 229" (3), 230 (2), 2% (2); z) =

b(z), “h

has a solution q(z) € Q. If f € Dy, J(4,5)f (3) € Qpand q €
Jo With q'(z) # 0, satisfying the following conditions (38)
and ¢ (Tep)f (), Taripf (B Jarapyf @) Tars pyf () Tarapy f ()i 3)s
is univalent in U, then

Tapf @) Iar1,)f (@), Jara,p)f (2),

bla) < d)( Ta+3p)f (@), Ja+ap)f(2)i 2



suggests that

q(z) < Jiap)f(2) (z € L),
and q(z) is the best subordinant of (40).

Proof: We observe that q is a subordination of (40) in light
of Theorems (7) and (8). All subordinants will subordinate g
since it fulfills (41), which also makes it a solution of (40).
Thus, the best subordinant is g.

Definition (10): Given a set Q in C and g€
Q: with q'(z) # 0. Let any function ¢:C°> x U — C,that
meet the following admissibility requirement are included in
the class M, ; [, q] of admissible functions.

o(u,v,x,4,4;0) €EQ,

when
u = q(3),
v = ké’q'(é’)+aq(f)
o (20 0) 2 2 (1) 3)
e (e i) 3 3 (£410)
and

Re ((g+v Sx)+a2(5x+74r)+2a(4x+34r)+a3(Zv+au)) -
3(4r+au) =

q’(z)
When, z € U,{ € 0U \ £(q) and k = 3.
Theorem (10): Let ¢eM;[Qq]l. If fe€
D, and 3774 p) f(z) € Q; with q'(z) # 0, meeting the
prerequisites listed below:

320" @)\ > o |7 @rnf@| o 1
Re( o' (z) ) =0, e =2 (42)
and the function
p ( 5 9 f(8), 2 s f (3) )
,Z_lj(a+2,ﬁ)f(Z),Z_lg(a_,.?,lﬁ)f(z), Z_lﬂ(a+4‘ﬁ)f(z);z !

is univalent in U, and

Qc
{d’ (z_lg(a.ﬁ)f(z)rZ_lj(a+1,[i’)f(z)'Z_lj(a+2.ﬁ)f(z)’

43
3 T ar3f(2), 2 T asap) f(2); 2 )} (43)
:z€U
implies that
4(2) < 27 (o f () (z € ).

Proof: Let the function p(z) be defined by (24) and y by
(31), since ¢ € M; ;[9, q]. Thus from (32) and (43) yield

Oc
x(p(2),20'(2), 570" (2),2°p®(3), "9 (3); z): 5 € U}.

The admissibility for ¢ € M; 1[Q, q], as stated in Definition
(6), is comparable to the admissibility requirement fory as
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stated in Definition (5), with n=3, as can be seen from Egs.
(29) and (30). Since y € ¥5[€, g], we can use Lemma (2) and
(43) to obtain

4(2) < 37 (ap) f(2).

For any conformal mapping b(z) of Uon to 2, Q = h(U)
if Q# C is a simply connected domain. Here, the class
M;1[b,q].M;1[6(U), q] is expressed as a M, [h, q]. This
theorem simply follows from the previous one (10).

Theorem (11): Let ¢ € M;;[Q,q] and h be analytic
function in U. If feD, and g€ Q, with ¢'(z) #0,
satisfying the following conditions (42) and:

<Z_1g(a,ﬁ)f(z)'Z_lj(a+1,ﬁ)f(z)'Z_lj(a+2,[f)f(z)'
3 93 f(2), 5 T qrapy f(3); 3

is univalent in U, then

¢<Z

implies that

h(z) <
Vap f(2), 37 N @i1,p)f (), 27 i) f (3,

3 i3 p)f (2), 2 qrapf(3); 5

> (44)

4(2) < 37 (a5 f(2) (z € U).

4. SANDWICH EFFECTS

Combining Theorems (2) and (8), we obtain the following
sandwich-type theorem.

Theorem (12): Let h; and g, ,be univalent in U, h be
univalent function in U, g, € Q,, with q,(0) =q,(0) =1
and ¢ € M;[by, q;1NM; [, g, ].

If, f €Dy, Japf(3) €
00NJ0, and <g(a,ﬁ)f(z):j(a+1,ﬁ)f(z):j(a+2,ﬁl)f(z):>’

Jar3p)f (@), Jarap f(2); 2

is univalent in U, and the fulfillment of requirements (5) and
(38) occurs, then

91(3) < Japf(3) < 92(2).

Combining Theorems (6) and (11), we obtain the following
sandwich-type theorem.

Theorem (13): Let h; and q;, be univalent in U, h be
univalent function in U, g, € Q,, with q,(0) =¢q,(0) =1
and ¢ € M;1[b1,9:]NM; 1[5, g2]- If f €D,
%z Y p f(2) € 9:NJ;, and

fulfills the requirements of Egs. (22) and (42) and is univalent
in U, then

" <Z_17(a,ﬁ)f(z)'Z_lj(zx+1,[?)f(z)‘Z_lj(zx+2,[?)f(z)
23 a3y f (), 2 Tqrap)f(3); 2

41(2) < 27 05 f(2) < 92(2).



5. DISCUSSION AND CONCLUSION

Using an integral operator J, 5), of analytic functions in U,

we study appropriate classes of admissible functions and

establish

the properties of fourth-order differential

subordination and superordination. We have the normalized
Taylor-Maclaurin series of the following form: f(z) =z +
Y, anz™, (z € U). We establish some novel conclusions
on superordination and differential subordination with a few
corollaries. Additionally, we get multiple sandwich-style
outcomes. Our findings diverge from the other authors' earlier
findings. Using the findings in the paper, we provided several
opportunities for writers to expand our new subclasses and
produce new findings in univalent and multivalent function
theory, it can be done to study ideal classes of admissible
functions to determine the features of fourth-order differential
subordination and superordination by making apply fresh
conditions of analytic functions and got fresh sandwich results
or by with the same classes of admissible functions in this
work using a different operator.
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