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The Maximin-Directed Random Sampling (MMDRS) algorithm, a cornerstone of 

numerous visual assessment techniques and scalable single linkage clustering, is recognized 

for its unique three-part structure: (i) Maximin (MM) sampling for prototype identification; 

(ii) nearest prototype partition construction via maximin samples; and (iii) directed random

sampling from partition subsets. Despite its diverse applications, the computational

complexity of MMDRS presents significant challenges. In response to this issue, an

approximate form of the MMDRS algorithm (AMMDRS) is proposed in this study, aiming

to alleviate time complexity. Through experimental investigation, comparisons are drawn

between the directed random sampling methods, assessing whether significant differences

exist in the samples produced and evaluating the superiority of either method over simple

random sampling. The results of this empirical study demonstrate that AMMDRS

outperforms MMDRS in terms of speed across all datasets, without any compromise on

sampling accuracy. This finding underscores the critical importance of such a method in

big data applications, where the feasibility of processing the entire dataset is often limited.

The study's revelations emphasize that undirected random sampling achieves more

authentic representations of parent distributions than MM samples alone, thereby

maximizing the diversity and representativeness of selected points within the feature space.

Overall, this study introduces a promising avenue for enhancing the efficiency of MMDRS,

opening the door to its broader application in data-intensive domains.
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1. INTRODUCTION

Social networking giants like Facebook and Twitter boast 

billions of users, generating hundreds of gigabytes of content 

every minute. Retail establishments continuously amass 

extensive customer data, while platforms like YouTube, with 

over 1 billion unique users, churn out 100 hours of video 

content every hour. To illustrate the sheer magnitude, 

YouTube's content ID service scans an astounding 400 years' 

worth of video content each day [1, 2]. Notably, scientists and 

researchers refer to it as "Big Data". In the face of this deluge 

of data, the need for robust tools for knowledge discovery 

becomes imperative. Data mining techniques have firmly 

established themselves as indispensable instruments for this 

purpose. Among these techniques, clustering stands out as a 

method whereby data is partitioned into groups, ensuring that 

objects within each group share more similarity with one 

another than with objects in other groups [1].  

Suppose n objects are represented as feature vectors 
p

N 1 NX { ,..., }= x x . Classic cluster analysis for this kind of 

static data is discussed in many texts and numerous articles [3-

11]. If the number of samples precludes clustering the data 

directly, there are two popular ways to approach the problem. 

First, we may split the data into chunks, process the chunks 

independently, and aggregate the results [12, 13].  

A second popular approach is to sample the data, cluster the 

sample, and then extend the results to the rest of the data set 

non-iteratively by labeling the remaining points with the 

nearest prototype method [14]. The question addressed in this 

paper is: what method of sampling produces the “best” 

samples to use in this context? Certainly (true) Random 

Sampling (RS) is the best-known method. Progressive 

sampling using various termination criteria is advocated in 

[15-17]. The specification of the MMDRS algorithm requires 

a bit of notation.  

Assume c is an integer number such that 1<c<N. The set 

𝑀ℎ𝑐𝑁 = {𝑈 ∈ ℜ
𝑐𝑁:  0 ≤ 𝑢𝑖𝑘 ≤ 1 ∀𝑖, 𝑘;  ∑ 𝑢𝑖𝑘 =𝑖

1  ∀ 𝑘; ∑ 𝑢𝑖𝑘𝑘 > 0 ∀ 𝑖 } contains all of the crisp c-partitions

of N objects, represented as c N matrices. Equivalently, each 

U (membership) can be represented as  𝑋𝑁 = ∪ 𝑋𝑖
𝑐
𝑖=1 ;  𝑋𝑖 ∩

𝑋𝑗 = ∅ ∀ 𝑖 ≠ 𝑗, where {Xi} are the crisp subsets comprising

the c clusters. We write 𝑈 ↔ {𝑋𝑖}. The MMDRS partition of

XN is UMM ∈ Mhc′N where c' is the desired number of smaples

to be selected by maximin sampling (MM). 

A third approach for sampling is based on a three step 

process comprising: (i) determination of c' Maximin (MM) 

prototypes XMM = {𝑥𝑚1 , . . . , 𝑥𝑚𝑐′} ⊂ 𝑋𝑁 ; (ii) erection of the
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nearest prototype partition UMM of XN; and (iii) drawing a 

specified number of samples from each of the subsets in UMM. 

This third method is not true random sampling; rather, it is 

random sampling constrained by drawing samples from 

specified locations. Since this RS scheme is directed by the 

MM samples, we will call it the Maximin-Directed Random 

Sampling (MMDRS) method which was first discussed in the 

study [18]. Since then, this method or some derivative of it 

have been used frequently in the literature of cluster analysis 

for static data. One of the challenges with MMDRS is that it is 

computationally expensive. Therefore, to enhance this aspect 

of MMDRS, we introduce a new approximate MMDRS 

(AMMDRS) sampling scheme. The goal of AMMDRS is to 

be faster and more applicable for big data applications.  

So, this article has the following contributions. First, we will 

introduce the new AMMDRS scheme. Then we will conduct 

some numerical experiments to compare the quality of 

samples produced by the three sampling methods: RS, 

MMDRS, and AMMDRS. Ultimately, we will demonstrate 

that adopting our approach yields sample quality comparable 

to MMDRS, all while requiring less computational complexity. 

The remainder of the paper is organized as follows. In Section 

2, we dive into the MM and MMDRS algorithms. We then 

flesh out the new AMM scheme in Section 3, building on the 

foundations of the original MMDRS method. In Section 4, we 

tackle the nuanced idea of what "best" sample really means in 

the context of cluster analysis. Section 5 sheds light on the 

datasets used in the analysis and the metrics that gauge their 

quality. The details of our findings are in Section 6, and we 

wrap things up with our takeaways in Section 7. 

 

 

2. THE MM AND MMDRS ALGORITHMS 

 

The concept of MM sampling was initially introduced in the 

study [19], where it is characterized as a method for initializing 

a set of c prototypes, also known as cluster centers, for 

clustering purposes. Casey and Nagy [20] conducted an 

overview of the MM algorithm for setting up initial prototypes, 

which we refer to as the MM principle.  

[MM Principle]. The initial sample in the batch serves as 

our first cluster center. From there, we calculate the distances 

of the other samples from this initial center. The sample 

farthest away becomes our second center. For every other 

sample, we consider the shorter of the two distances from these 

centers. The sample with the largest of these minimum 

distances is then selected next. Subsequent centers are selected 

to ensure maximum separation from those already chosen. 

This ensures that our initial cluster centers are spread widely 

across the sample space—a property that's intuitively 

appealing. 

Hathaway et al. [18] appended two steps to this sampling 

scheme. First, the crisp nearest prototype rule (NPR) partition 

is computed using the MM samples as prototypes. Second, 

each of the subsets in this partition is subsequently sampled 

randomly a number of times proportional to the number of 

points in the subset. This produces a small subset of the larger 

parent set for approximate clustering and tendency assessment. 

The resultant sample is called a Maximin Directed Random 

Sample (MMDRS). The complete pseudo code for the 

MMDRS algorithm is depicted in Table 1 below where it is 

split into two sections, one is the MM sampling and the other 

one is the DRS sampling.  

Lines 1-9 extract the c' MM samples from XN. Ties in Line 

6 are broken arbitrarily. Lines 10-19 build the elements of the 

crisp partition 𝑈𝑀𝑀 ∈ 𝑀ℎ𝑐′𝑁 of XN. The matrix UMM appearing 

in lines 10, 12 and 20 is commented out since it is not needed 

to secure the desired MMDRS samples outputted in line 20. 

We show it to instruct readers on how the partition is used to 

direct the random sampling. Hopefully this lends some 

transparency to the DRS scheme. You may recognize UMM as 

the “k-means” or nearest prototype rule (NPR) partition of XN 

built by applying Lloyd’s algorithm [1] to the input data with 

k=c' using the c' MM samples as cluster centers. 

 

Table 1. The algorithm of MMDRS sampling 

 

1 

In: metric 𝒅:𝕽𝒑 × 𝕽𝒑 ↦ 𝕽+ :𝑿𝑵 = {𝒙𝟏, . . . , 𝒙𝑵} ⊂ 𝕽
𝒑 : c'= 

desired # of MM samples: 

ns=desired number of MMDRS samples 

M
M

 

2 Initialize: 𝑿𝑴𝑴 = ∅: 

3 𝒙𝒎𝟎
= 𝒙𝟏: 

4 𝒁 = (𝒛𝟏,...,z𝑵) = (𝒅(𝒙𝒎𝒐
, 𝟏), . . . , 𝒅(𝒙𝒎𝒐

, 𝑵)): 

5 For t1 to c' do 

6          𝒁 = (min{𝒛𝟏,d(𝐱𝒎
t-1 ,
𝒙𝟏)},...,min{𝒛𝑵,d(𝐱𝒎𝒕−𝟏 ,

𝒙𝑵)}): 

7 
     mt = argmax⏟    

1≤j≤N

{zj}: 

8       𝑿𝑴𝑴 = 𝑿𝑴𝑴 ∪ {𝒙𝒎𝒕
}: 

9 End for 

10 
% Begin DRS: Initialize: S1=S2=…Sc’ = 𝑴𝒏𝒔 =: % 

UMM=[0]:  

D
R

S
 

11 For t←1 to N do 

12       q = argmin⏟    
1≤j≤c′

{d(xmj
 , xt )}: %UMM(q, t) = 1 

13       𝑺𝒒 = 𝑺𝒒 ∪ {𝒕}:𝑼𝑴𝑴(𝒒, 𝒕) = 𝟏 

14 End for: % The sets  

15 For t1 to c’ do 

16          𝒏𝒕 = ⌈𝒏𝒔 (
|𝑺𝒕|

𝑵
)⌉ 

17          Draw nt unique indices {mt} from St 

18          𝑴𝒏𝒔 = ⋃ {𝒎𝒕}
𝒄′
𝒕=𝟏  

19 End for  

20 

Out: ns MMDRS indices 𝑴𝒏𝒔 = {𝒎𝟏, . . . ,𝒎𝒏𝒔}: ns MMDRS 

samples XMMDRS:  

% MMDRS partition 𝑼𝑴𝑴 ∈ 𝑴𝒉𝒄′𝑵 

 

The literature contains at least six ways to initialize MM 

sampling in Line 3. A recent study of this issue [21] 

determined that, on average, the original and fastest scheme 

(line 3) is as reliable as the other five methods, so that is the 

initialization we use. The primary requirement for good 

samples in the present context is that the cluster proportions in 

the c' samples from XN be representative of the corresponding 

proportions for the subsets in XN. If the data are unlabeled, 

there is no way to ascertain whether any sampling scheme 

satisfies this desire. But if the data are labeled, we can 

determine how well the samples match the distribution of the 

labeled subsets in XN. This intuitive objective informs our 

definition for what constitutes a best set of samples. Our 

expectation is that the DRS methods which begin with MM 

sampling will produce better samples of labeled data than 

simple RS in terms of matching proportions of sample and 

parent (in this article we call XN the parent of samples of it 

made by the three methods). There are three minor results 

about MMDRS sampling that provide weak guarantees that 
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fuel our expectations. To describe the results, we need Dunn’s 

index [22], discussed next. 

Consider two non-empty subsets, S and T∈ ℜ𝑝 , with an 

arbitrary metric denoted by 𝑑:ℜ𝑝 × ℜ𝑝 ↦ ℜ+. The diameter 

of S can be defined as S as Δ(S) = max⏟
𝐱,𝐲∈S

{d(𝐱, 𝐲)}. Similarly, 

we define the set distance δ between S and T as δ(S, T) =
min⏟
𝐱∈S
𝐲∈T

{d(𝐱, 𝐲)}. For any given partition U ∈ MhcN ↔ {Xi}, the 

separation index of U, widely recognized as Dunn’s index (DI, 

[22]) is: 

 

    

  

  
  

=   
  

  

i j

1 i c 1 j c k
 j i 1 k c

(X ,X )
DI(U;X) min min

max (X )
 (1) 

 

Dunn characterized set U as compact and separated (CS) in 

relation to metric d under the following conditions: For all 

subsets s, q, and r, where q≠r, any pair of points x and y from 

XS are closer to each other (based on metric d) than any other 

pair u and v, where u is from Xq and v is from Xr. Dunn 

established that a set X possesses a clear CS partition with 

respect to d if and only if max
︸

U∈Mhcn

{ DI(U; X)}  > 1,  the 

maximum of DI(U;X) over all U in MhcN is greater than 1. 

Subsequent results tie this particular characteristic of Dunn’s 

index to the MMDRS samples extracted obtained from XN by 

Algorithm 1: 

 

Proposition MM. Let c'≥c. Suppose there is a CS c-partition 

of = p

N 1 N
X { ,..., }x x . Then lines 1-9 of the MMDRS 

Algorithm will select at least one object from each of the c 

clusters. 

 

Proof. Proposition 1, Hathaway et al. [18]. 

 

The MM theorem tells us that when the input da have c CS 

clusters, lines 1-9 of Algorithm 1 will extract at least one 

sample from each cluster. Please observe that proposition MM 

applies to the seeds (the prototypes) which are used to build 

the MMDRS partition. 

 

Proposition MMDRS-1. Let = p

N 1 N
X { ,..., }x x . Let metric

+  p pd : . If XN can be partitioned into c compact and 

separated clusters CS clusters, and c'=c, then MM hcNU M  is 

the CS partition of XN. 

Proof. Theorem 1, Hathaway et al. [23]. 

 

Proposition MMDRS-1 tells that when the input data have 

c CS clusters and we choose c'=c, that lines 10-19 of 

Algorithm 1 find the CS clusters. The number of samples 

drawn from the t-th subset in Line 16 of the MMDRS 

algorithm is 𝑛𝑡 = ⌈𝑛𝑠 (
|𝑆𝑡|

𝑁
)⌉ ; 1 ≤ 𝑡 ≤ 𝑐′ . The number |St|/N 

scales the number of desired samples 𝑛𝑠 drawn from the t-th 

row of UMM by the proportion of samples in that row. Because 

of the ceiling function, the overall number of samples is 

approximate, ∑ 𝑛𝑡
𝑐′
𝑡=1 ≈ 𝑛𝑠. The number and the proportions 

drawn will be exact under the extra condition that the sampling 

proportions are all integers, so the ceiling function is not used 

and ∑ 𝑛𝑡
𝑐′
𝑡=1 = 𝑛𝑠. 

Proposition MMDRS-2. Let = p

N 1 N
X { ,..., }x x . Let metric

+  p pd : . Suppose XN can be partitioned into c CS 

clusters for c'≥c, and suppose that |St|/N is an integer for all t. 

Then the proportion of objects in the MMDRS sample from 

subset t equals the proportion of objects in the parent 

population for t=1 to c. 

 

Proof. Proposition 2, Hathaway et al. [18]. 

 

These three results have limited utility because the majority 

of input datasets lack the CS property, and even when they do 

possess it, it is usually impossible to verify that this is the case. 

On the other hand, these results do provide some reassurance 

about the MMDRS procedure, in the sense that at least in some 

cases, Algorithm 1 obtains samples that do represent all c 

clusters in the data. Consequently, we expect the MMDRS 

samples to provide fairly representative proportions of the 

distribution of the input data.  

As a final note, we remark that the actual MM samples 

drawn by MM lines 1-9 are not part of the sample output, but 

can easily be included in the output if this is desired. Our 

experience is that inclusion of the MM samples doesn’t make 

much difference to their quality in terms of representing the 

distribution of the input data. 

In summary, MMDRS demonstrates its effectiveness in 

generating representative samples from a dataset XN when the 

cluster proportions in the c' samples derived from XN align 

closely with the proportions found within the subsets of XN. 

The generated samples can be used as input to any clustering 

algorithm to find structure in the data without the need to 

iteratively accessing the whole data samples. Thus, making it 

feasible to run most clustering algorithms for very large 

datasets which is impossible without sampling. However, one 

drawback of MMDRS is that it needs to span all the data which 

makes it challenging and time consuming for large datasets. 

Therefore, reducing the time complexity for this approach will 

be essential for big data applications. 

 

3. APPROXIMATE MMDRS 

 

Table 2. Approximate MM (AMM) sampling 

 

1 

In: metric 𝒅:𝕽𝒑 ×𝕽𝒑 ↦ 𝕽+:𝑿𝑵 = {𝒙𝟏, . . . , 𝒙𝑵} ⊂ 𝕽
𝒑: 

c’=desired # of MM samples: 

ns=desired number of MMDRS samples, 

T: number of subsets in the data split 

2 Initialize: 𝑿𝑴𝑴 = ∅ 

3 𝒙𝒎𝟎
= 𝒙𝟏: 

4 𝒁 = (𝒛𝟏,...,z𝑵) = (𝒅(𝒙𝒎𝒐
, 𝟏), . . . , 𝒅(𝒙𝒎𝒐

, 𝑵)): 

5 For t←1 to c' do 

6 
      𝑋𝑁 = 𝑋𝑁(𝑟𝑎𝑛𝑑(𝑁))#Data shuffle: 

      𝑋𝑊 = 𝑋𝑁(1:
𝑁

𝑇
) Random partition of the data: 

7 
         𝒁 = (𝐦𝐢𝐧 {𝒅(𝒙𝒎𝟎 ,

𝒙𝟏), … . , 𝒅(𝒙𝒎𝒕−𝟏 ,
𝒙𝟏)}, … , 

𝒎𝒊𝒏{𝒅(𝒙𝒎𝟎 ,
𝒙𝑾), . . . , 𝒅(𝒙𝒎𝒕−𝟏 ,

𝒙𝑾)}): 

8 
         mt = argmax⏟    

1≤j≤W

: {zj}: 

9          𝑿𝑨𝑴𝑴 = 𝑿𝑨𝑴𝑴 ∪ {𝒙𝒎𝒕
}: 

10 End for 
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Next, we turn to approximate MM (AMM) sampling. 

Several approximate MM schemes which don’t use DRS have 

appeared [24, 25], but since they don’t use directed random 

sampling as a second step, these methods will not be 

considered here. Table 2 describes our approximate version of 

MM sampling: 

Lines 1-10 extract the c' AMM samples from XN. The first 

AMM sample, selected in Line 3 of Algorithm 2, is the first 

sample in the data. For each additional MM sample, the data 

is shuffled and split into T chunks. Each successive MM 

sample is chosen from the new chunk (Xw) instead of the whole 

input data set (XN). This process is repeated until c' samples 

are obtained. The DRS procedure (lines10-20 of Algorithm 1) 

is then used to find ns AMMDRS samples. To summarize, the 

AMM procedure simply replaces the input data set XN by a 

chunk Xw at each iteration in the MM part of the MMDRS 

algorithm. This reduces the computation time for the MM part 

of the sampling procedure. Now we turn to some ways to 

measure sampling quality, where the samples are explicitly 

constructed to support cluster analysis. 

It is evident that AMDRS leverages its primary advantages 

in line 6, where the data is randomly partitioned into multiple 

segments. Subsequently, AMM operates on each of these 

chunks, obviating the need to access the entire dataset for 

sampling. This efficient approach significantly lowers the time 

complexity by diminishing the volume of data that needs to be 

processed, reducing it from N (the size of the data) to N/T, 

where T represents the number of partitions employed by 

AMDRS. 

 

 

4. SAMPLE QUALITY 

 

In our experiments, the datasets are labeled, which means 

they possess ground-truth c'-partitions, denoted by 𝑈 ∈ 𝑀ℎ𝑐′𝑁 

of XN. Assume ni represents the count of points in subset-i, then 

the total number of points is given by 𝑁 = ∑ 𝑛𝑖
𝑐′

𝑖=1 . From this, 

we can define the proportion vector of XN in ℜ𝑐
′
as: 

 


= '

c
N i c

v (n / N,....,n / N)  (2) 

 

Algorithm 1 or Algorithm 2, respectively, extracts c' 

MMDRS samples XMMDRS, or AMMDR samples XAMMDRS from 

the input data. Let 𝑛𝑡
′ , 𝑛′𝑡

′
 denote the number of samples drawn 

from the t-th subset, 1≤t≤c' by these two algorithms. For these 

samples we have the corresponding sample proportion vectors 

in c : 

 

( )   = c
MMDRS 1 cn c ,...,n cV  (3a) 

 

( ) c
AMMDRS 1 cn c ,...,n c   = V  (3b) 

 

Our objective is to evaluate the degree of alignment 

between VMMDRS and VAMMDRS. Given that these samples are 

derived from labeled data, it is feasible to create histograms 

that contrast the counts of points within each labeled subset 

with those in the samples. This visual approach offers an 

assessment of how closely the proportions in the original 

dataset match those in the sample, all while being independent 

of both N and p. Especially for smaller values of c, a visual 

comparison can provide a fairly precise gauge of this 

alignment.  

There are multiple methods to analytically compare VMMDRS 

or VAMMDRS with VN. One straightforward approach involves 

calculating the distances d(VN, VMMDRS) and d(VN, VAMMDRS), 

using a suitable metric in ℜ𝑐
′
× ℜ𝑐

′
.  A distance of zero 

signifies an impeccable alignment between the proportions in 

the main dataset and the sample. Secondly, the similarity 

between the two distributions (VMMDRS or VAMMDRS to VN) can 

be calculated via different methods. The Kolmogorov-

Smirnov (KS) test is a statistical test used to compare a sample 

distribution with a reference probability distribution, or to 

compare two sample distributions [26]. It is a non-parametric 

test, which means it does not make any assumptions about the 

shape or parameters of the distributions being compared. It can 

determine whether two independent samples are drawn from 

the same population or different populations. This is useful in 

comparing the characteristics of two groups. Therefore, KS is 

used to test against the null hypothesis that (VN, VMMDRS) or (VN, 

VAMMDRS) come from the same distribution. The returned p-

value is used to interpret the results. For our experiments, we 

will choose a default significance level of α=0.05. 

Consequently, if p>α=0.05, we uphold the hypothesis that the 

sample originates from the same distribution as the parent data. 

In such cases, we will note that the sample has successfully 

passed the KS test. It is worth mentioning that in our 

experiments, the number of "samples" for the KS test equates 

to c', the total count of labeled subsets. Given that the KS test 

tends to be less precise for smaller sample sizes, it might not 

offer highly informative outcomes in our context. We will 

consider a sample to "cover" the input data if every labeled 

subset gets represented at least once. 

 

 

5. NUMERICAL EXPERIMENTS 

 

We conducted all experiments on a system equipped with 

an INTEL Core i7-8700K CPU and 64 GB of RAM, utilizing 

MATLAB for implementation. The value of T used in line 6 

of Algorithm 2 was 10. The horizontal axis on all of the 

histograms is the cluster number in the labeled data. So, for 

example, the horizontal axis for the X15 histograms has 15 

ticks at k=1 to 15 corresponding to the 15 labeled subsets in 

the data. The vertical axis on all of the histograms is the ratio 

of the number of data points (ni) in subset-i (or sample thereof) 

to the number of input points (N). 

 

Table 3. Datasets 

 
Name N p c’ 

X6 399 2 6 

X15 5000 2 15 

X31 3100 2 31 

WDBC 569 30 2 

 

Table 3 lists the four datasets utilized in our experiments. 

These include three datasets, named as follows: X15 [27], X31 

[28], and X6 [29], as well as the Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset [30]. While each of these datasets 

underwent identical analysis, due to space constraints, we 

cannot showcase all the figures in this article. However, a 

comprehensive collection of graphs can be obtained upon 

request from the second author. 

X15, as seen in Figure 1, showcases clusters visibly distinct, 

stemming from Gaussian distributions with varied means and 

covariance matrices. Each cluster has a size varying between 
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300 and 350. Figure 2 presents six histograms for the dataset 

X15 when c'=20. The input data's histogram is positioned on 

the upper left, while the random sample is on the upper right. 

Each histogram is labeled with two values: ED denotes the 

value of d(VN,VMM(*)) where d represents the Euclidean 

distance; p signifies the result of the 2-sample KS test (as 

provided by Matlab) against the significance level α=0.05. A 

p-value less than the significance level prompts us to reject the

05null hypothesis that both samples come from the same

distribution. Conversely, we accept the two samples as being

from the same distribution if p>0.05.

Figure 1. X15~N=5,000 points in p=2 dimensions, c=15 

Figure 2. RS, MMDRS and AMMDRS sampling of X15 for 

c'=20 and ns=1000 

The values of Euclidean distance in Figure 2 show that 

Random Sampling produces a much higher value of ED (and 

hence, a lower quality match to the input distribution) than all 

four of the MM based methods. Comparing MM to AMM, we 

see that MM does slightly (but only slightly) better for the c’ 

samples. After applying DRS to the two sets (MM and AMM), 

the ED values are an order of magnitude smaller, and 

AMMDR does slightly better than MMDRS. Visually, the two 

DRS sets are much closer to the input distribution than the RS, 

MM and AMM sets, confirming that the DRS portion of these 

two algorithms really improves the quality of the samples 

drawn. The KS test accepts all 5 samples, but clearly prefers 

the two DRS methods (equal p values of 0.8899) to the MM 

and AMM samples (p~0.060). The p value for RS (0.307) lies 

in-between these two pairs of values, which agrees with the 

visual assessment that RS matches the distribution of X15 

better than both MM methods, but not as well as both DRS 

methods. 

The dataset X31, illustrated in Figure 3, comprises 100 

points distributed across 31 Gaussian clusters. As a result, the 

histogram representing the input data exhibits a uniform 

profile, each bin containing 1/31~0.0322 of the points, as seen 

in the upper left view of Figure 4, which exhibits the 

histograms and statistics (ED and KS test) for the five 

sampling methods at c'=50. The two DRS methods yield 

visually superior samples, and the ED for these two samples 

favors MMDRS, albeit slightly. The RS is visually inferior to 

the other four methods. The p-values for all 5 samples are quite 

small; the statistical implication of this is to reject the null 

hypothesis that any of these samples matches the input 

distribution at significance level α=0.05. 

Figure 3. X31~N=3100 points in p=2 dimensions, c=31 

Figure 4. RS, MMDRS and AMMDRS samples of X31: 

c'=50, ns=1000 

Figure 5. X6~N=399 points in p=2 dimensions, c=6 

The dataset X6, displayed in Figure 5, consists of six labeled 

clusters. The upper left showcases two Gaussian clusters. To 
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the right, a thick cluster of magenta points nestles within a 

sparser blue subset. Notably, the lower left section of the 

scatterplot presents a unique clustering reminiscent of a "fried 

egg". This configuration consists of a vibrant yellow center 

(depicting the "yolk") encased by a cyan perimeter, 

symbolizing the "egg white". The specific sizes of these six 

clusters are as follows: 50, 92, 38, 45, 158, and 16.  

 

 
 

Figure 6. MMDRS and AMMDRS samples of X6: c'=10, 

ns=100 

 

From Figure 6, first, notice that RS produces a much better 

visual match to the input data than either MM or AMM, but 

when DRS is added to the sampling procedure, the visual 

match of both DRS schemes is slightly better than RS. The ED 

values agree: RS is better than MM or AMM, but not as good 

as MMDRS or AMMDRS. All 5 samples pass the KS test, i.e., 

they accept the match between the samples and parent 

distributions. 

 

 
 

Figure 7. RS, MMDRS and AMMDRS samples of the 

WDBC data: c'=10, ns=100 

 

In our final experiment, we utilized the Wisconsin 

Diagnostic Breast Cancer dataset. Figure 7 contains the results. 

This data set is an odd one, because it has feature vectors in 30 

dimensions (p=30), but only N=569 samples. All 5 samples 

yield the same p value for the KS test, so it is not a useful 

discriminator for sample quality. Visually, the MM, AMM, 

and RS samples are poor matches to the input data, while the 

two DRS samples all look the same and are a better match the 

actual data. The ED values for the two DRS methods are lower 

than the MM values and the RS value. From the ED values, 

we conclude that for this experiment, MMDRS was the best 

and AMMDRS was next best. 

Table 4 shows the CPU time used to compute samples for 

data set X31. The time required to compute AMM samples is 

about 1/7 of the time required for MM samples because AMM 

works on a subset of size N/T of the original dataset, which 

has N samples. The smaller the subset size (the larger the T 

value), the smaller will be the time required to compute the 

AMM samples. But the cost of large T values is the risk of 

missing samples from the partition of the datasets that does not 

exist in that subset. Since AMMDRS relies on AMM, it is 

slightly faster than MMDRS, as can be seen in Table 4. 

 

Table 4. Computational times of the proposed sampling 

methods on X31 dataset 

 

Method 
Time 

(Seconds) 
Dataset 

Number of 

Samples 

MM 3.55 X31 1000 

AMM 0.57 X31 1000 

MMDRS 0.021 X31 1000, c'=50 

AMMDRS 0.015 X31 1000, c'=50 

RS 0.00035 X31 1000 

 

 

6. CONCLUSIONS 

 

In this manuscript, we introduced an innovative 

Approximate MMDRS (AMMDRS) algorithm designed to 

facilitate the generation of faithful and representative samples 

from large datasets. This approach empowers the application 

of traditional clustering algorithms without the necessity of 

processing the entire dataset, a critical advantage in scenarios 

where accessing the complete dataset is computationally 

challenging or impossible due to resources constraint. The 

significance of this research lies in its potential to make data-

driven decision-making more accessible and practical, 

particularly in situations where working with big data sets is 

otherwise infeasible. Consequently, this manuscript 

contributes to the growing body of knowledge aimed at 

bridging the gap between data analysis and real-world 

applications, further underscoring the importance of efficient 

and accurate sampling techniques for handling big data 

challenges. 

The experiments presented here do suggest that the 

approximate MM method is faster than MM, without a 

significant loss in sampling accuracy. This is especially 

important for big data applications where processing the entire 

datasets is not feasible. Table 4 shows that simple (undirected) 

random sampling is faster than either of the MM based DRS 

methods because no time is expended in building the NPR 

partition. This will be true for any input data set. But in terms 

of sample quality for cluster analysis, both of the DRS 

methods produce samples that provide a more faithful 

representation of the distribution of the input structure than 

simple random sampling in the experiments reported here. We 

have used several with different number of cluster and samples 

for our experiments, but our experience with these methods 

suggests that as the size of the input data grows, AMDRS will 

eventually be superior to MMDRS due to computation 

complexity of MMDRS which needs to access the whole data. 

We will test this conjecture with a more extensive empirical 

study in the future. 
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