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In the field of nuclear reactor design, precise calculation of reactor dimensions is crucial 

for operational efficiency and safety. This study focuses on the critical dimension 

prediction for a spherical nuclear thermal reactor, employing a computational approach to 

address this challenge. Utilizing the two-group neutron diffusion equation, the research 

aims to establish a mathematical model for neutron distribution within the reactor's 

geometry. A key aspect of this model involves the prediction of neutrons' spatial 

distribution, essential for understanding the reactor's behavior under operational 

conditions. The methodology adopted in this investigation involves using a MATLAB-

based program specifically developed for solving the two-group diffusion equation in 

spherical reactor geometry. This approach facilitates the determination of exact dimensions 

and optimal fuel mass for the reactor. The study's findings indicate a critical core radius of 

21.7 cm, with a water mass of 40.5 kg and a U235 fuel mass of 1.12 kg. Additionally, the 

ratio of fast flux to slow flux was approximately 1.5. These results not only align closely 

with prior research in this domain but also enhance the understanding of spherical reactor 

design. Crucially, the study's outcomes demonstrate a high degree of compatibility with 

existing literature, thereby reinforcing the validity of the computational model used. This 

research contributes significantly to the nuclear engineering field by providing a robust 

method for determining the critical dimensions and mass of fuel required for the efficient 

and safe operation of spherical nuclear thermal reactors. Which still regarded nuclear 

energy as an essential partner in friendly energy production in the world to reduce CO2 

emissions. The implications of these findings are substantial, offering a pathway to 

optimized reactor design and a deeper understanding of neutron behavior in complex 

geometrical configurations. 
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1. INTRODUCTION

In the context of an increasing global demand for 

sustainable and environmentally friendly energy solutions, 

nuclear energy has garnered significant attention due to its 

potential to meet a substantial portion of the world's energy 

needs. This attribute positions nuclear power as a leading 

energy source. It has been documented that, with regular 

maintenance, nuclear plants can operate over extended periods 

with minimal fuel consumption, thereby offering a more 

efficient alternative compared to other energy sources [1]. The 

World Nuclear Association (WNA) has set a target for nuclear 

energy to provide 25% of global electricity by 2050. 

Achieving this goal necessitates the construction of new 

nuclear power plants, cumulatively contributing 

approximately 1000 GWatt in electrical capacity. This 

expansion underscores the importance of optimizing safety 

and performance, considering various factors such as reactor 

lifecycles and increasing electricity demands, and decreasing 

CO2 release [2]. 

The construction of nuclear reactors is a task of profound 

environmental and economic significance. During operation, 

the primary goal is to sustain a chain reaction, maintaining a 

balance between the neutrons produced by fission and those 

consumed or lost from the reactor. This balance is crucial for 

the reactor’s efficiency and safety. Research in nuclear energy 

has traditionally been divided between neutron transport 

theory studies and dynamic kinetic model research [3]. These 

studies encompass the dynamic behaviors of nuclear reactors, 

including the temporal variation of power release and the 

delayed release from decayed power sources. The power 

output of a reactor consists of immediate energy from fission 

reactions and the energy from the decay of fission fragments. 

Additionally, the nuclear calculation involves 

investigations into the dynamic transient performance of the 

pressurizer in nuclear pressurized water reactors (PWR) [4-6]. 

The pressurizer's behavior has been modeled using differential 

equations and genetic algorithms, and these models have been 

compared to understand their efficacy. Furthermore, 

comprehensive reviews have been conducted on the studies 

and revisions related to the pressurizer system. These 

encompass theoretical modeling, experimentation, and 

transient operation tests, which are essential for controlling the 

design parameters of nuclear reactors. 

The structure of a reactor, defined by its geometry and 

material composition, dictates the chain reaction's regulation. 
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This control is often achieved through the insertion or removal 

of control rods. The application of neutron transport theory is 

essential, as it describes the mechanism for generating heat in 

a safe, controlled manner through a stable and continuous 

fission reaction. The high cost associated with building a 

nuclear reactor is primarily due to the necessity for precise 

neutron transport modeling. Addressing these challenges is 

imperative for designing nuclear power stations that ensure the 

security and safety of the reactor. 

 

 

2. LITERATURE REVIEW 

 

The objective of this research is to derive and solve the two-

group diffusion equation for a spherical geometry reflected 

thermal reactor. The study employs MATLAB to simulate the 

mathematical equation, focusing on the arrangement 

techniques for the two-group diffusion equation. This 

approach offers a feasible approximation for estimating and 

designing nuclear reactors. Additionally, the research presents 

an analytic mathematical model for the two-group neutron 

diffusion equation, aimed at determining critical reactor 

dimensions such as nuclear radius, fuel, and moderator mass, 

as well as elucidating the neutron flux distribution in a 

spherical critical nuclear reactor. 

Historically, the discovery in 1938 that a neutron can split 

uranium, releasing substantial energy, marked a significant 

advancement in nuclear science. The identification of the 

uranium-235(U235) isotope and its ability to undergo fission 

while releasing additional neutrons, initiated the concept of a 

sustained chain reaction for energy production [7]. 

In nuclear thermal reactor descriptions, a minimum of two 

neutron groups is typically considered. The first group, 

referred to as fast neutrons, possesses energy levels exceeding 

those of thermal neutrons. Conversely, the second group, or 

the two-group neutrons, exclusively comprises thermal 

neutrons, which have transitioned from the fast energy region 

to the thermal energy region. For accurate and realistic 

criticality calculations in thermal reactors, the employment of 

two-group neutron models is essential. The two-group neutron 

diffusion equations can be resolved through either analytical 

or numerical methods. When approached analytically, the 

boundary conditions of group-diffusion theory pertain to the 

neutron flux in relation to the normal current at the core-

reflector interfaces, taking into account the reflector's specific 

constraints [8]. 

The spherical thermal core, with a radius denoted as R, 

incorporates a reflector of a specified depth [9]. This is a 

critical factor in determining the size of the reactor core. The 

core and reflector of the reactor are analyzed using a four-

group diffusion equation, integral to the criticality calculation. 

This approach involves solving core neutron fluxes through 

eight linearly independent functions. A noteworthy 

correspondence was observed between the analytical results 

derived from the diffusion code, ALBD4G, and the discretized 

solutions obtained from code citation calculations of the Keff 

value. This comparison revealed a minimal error margin, 

approximately 0.3%, underscoring the precision of the 

analytical method employed. 

Hosseini [10] developed an innovative three-dimensional 

(3D) computational code employing the Galerkin finite 

element method (GFEM). This code was specifically designed 

to solve multi-group forward/adjoint diffusion equations 

applicable to various geometrical configurations, including 

hexagonal and quadrangular shapes.  

Shqair et al. [11] presented a comprehensive study on multi-

energy groups of neutron diffusion equations, which were 

analytically solved using the power series method. This study 

encompassed an examination of three distinct geometrical 

forms: slab, cylinder, and sphere. The general solution 

addressed both the two-group diffusion and encompassed four 

energy groups of neutrons. This analytical process involved a 

series of numerical calculations, conducted within 

predetermined limit conditions, resulting in the production of 

an analytical flux. Significantly, the flux associated with these 

multi-energized groups in the theory of neutron diffusion 

exhibited a radial distribution. Consequently, the dimensions 

of the reactor core, crucial in the context of criticality, were 

specified using the variable µ.  

In terms of reflected reactors, Shqair and El-Zahar [12] 

successfully obtained an analytical solution for the neutron 

diffusion equation using the method of differential transform 

modification (MDTM). This method involved the precise 

application of MDTM to address initial value problems, both 

particular and non-particular, that are crucial for various 

reactor geometries. The application of MDTM was 

specifically focused on reactors comprising both core and 

reflected components, akin to bare reactors, which include the 

fuel core. The effectiveness and reliability of this method were 

confirmed through its ability to accurately solve such complex 

cases, thereby contributing significantly to the field of nuclear 

reactor analysis. 

In conclusion, the determination of a reactor's geometrical 

core shape, size, and materials necessitates consideration of 

the nuclear fuel to moderator mass ratio. This aspect is vital 

for ensuring the safe and reliable operation of nuclear reactors, 

particularly in cross-section calculations where precision is 

paramount, as evidenced in the nuclear industry's preference 

for single-digit separators in such measurements. 

 

 

3. METHODOLOGY 

 

The methods used for the calculation of the nuclear reactor 

design are very complex because, for any nuclear chain 

reaction system, the modeling of the growth of neutrons is 

complicated because of the continuous variation in energy and 

direction. This variation complexly affects cross-sections. 

This difficulty is increased by the emission of secondary 

neutrons. 

First, we made these assumptions: 

a. There is no interesting source of neutrons in the 

medium. 

b. Homogeneous medium, that is, independent of three-

dimensional location for neutron cross-section. 

c. Isotropic distribution of neutrons with angular pattern 

at the medium. 

d. Approximately uniform flux at the medium. 

e. Infinite consideration medium [13]. 

Neutrons produced from a fissionable material source can 

be lost by absorption in different reactions with nuclei or by 

leakage from the volume element. The net changing rate is the 

density of the neutron, n, at any time, t, and a point in V, with 

time, 
𝜕𝑛

𝜕𝑡
 will be: 
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∫
V

∂n

∂t
dV = ∫

V
 SdV − ∫

V
∑a∅ dV − ∫

V
 div J. dV  (1) 

 

where, 

∫
V

∂n

∂t
dV =Neutron density Change Rate, 

∫
V

 SdV =NeutronProduction Rate, 

∫
V

∑a∅ dV =Absorption Rate, 

∫
V

 div J. dV =Leakage Rate,  

 

The source strength of neutrons is the neutron numbers 

emitted per second/unit volume, and J is the current of the 

neutrons. 

The establishment of the equation of continuity is done by 

merging the previous equations into Eq. (1). One must 

compute all of the above integrals over the same terminated 

volume, such that the summation of integrals on the right is 

equal to the summation of integrals on the left. Therefore, 

 
∂n

∂t
= S − ∑a∅ −  div J  (2) 

 

For a steady state (that is not dependent on time   ( and from 

the current definition, the meaning of flux is connected by the 

law of Fick's scientist (J = −D ∇ ∅): 
 

D ∇2 ∅ −  ∑a ∅ +  S = (3) 

 

Dividing by D, 

 

∇2 ∅ −  
1

L2 ∅ =  −
S

D
  (3’) 

 

where, 
∑a

D
= L2 is called the diffusion area. 

This is the steady-state one-group diffusion equation, where 

∇2 is called the Laplacian, which is different according to the 

shape of the reactor, as also for spherical geometry: 

 

∇2=  
1

r2

∂

∂r
r2 ∂2∅

∂θ
. 

 

Then to solve the second-order equation, the boundary 

conditions must be determined, because the critical radius R is 

the dimension of the reactor that is determined as the flux 

vanishes. The general boundary conditions are: 

1. The flux of neutrons must be limited, and non-

negative in all regions in which the diffusion equation 

is satisfied. 

2. Boundary Conditions of Symmetry: This means the 

current at the interface = zero. 

3. d = 0.71 λtr = transport mean free path = 3D. 

4. Vacuum Boundary Condition: Such boundaries are 

approximated utilizing flux = zero. 

5. Interface Boundary Condition for different media: 

 

∅ A = J A = JB 
 

 

4. THE CASE STUDY 

 

A homogeneous mixture of an infinite spherical reactor 

consists of a fuel material and a moderator material, with low 

fuel concentration. The one-velocity reflected reactor is 

internally assumed as a homogeneous multiplying medium, 

the flux is a function of (r) only the core, see Figure 1.  

The aim is to determine the critical radius, critical mass, and 

thermal flux distributions of a one-watt power homogeneous 

spherical thermal reactor at room temperature. The reactor is 

fueled with U235 and moderated as well as reflected by ordinary 

water. One can assume the reactor to have an infinite water 

reflector. An infinite reflector is one whose thickness is much 

larger than both the slowing down and diffusion lengths in the 

reflector. Practically all reactors have reflectors of infinite type. 

The ratio of atoms of U235 to molecules of water in the core 

equaled to be [ 
N235

NW
=

1

500
] [14]. 

Neutron current density (n), neutron flux (Ø), neutron 

current (J), and coefficient of diffusion (D) variables are 

associated. For getting the relation, the derivation of diffusion 

coefficients depends on the characteristics of the nuclear 

medium [13]. 

Neutron current density (n), neutron flux (Ø), neutron 

current (J), and coefficient of diffusion (D) variables are 

associated. For getting the relation, the derivation of diffusion 

coefficients depends on the characteristics of the nuclear 

medium [13]. 

 

 
 

Figure 1. Diagram of the spherical reactor, with reflector 

 

4.1 Two group model 

 

The one-group method did not fully consider the size of 

criticality or structure of a thermal reactor. As most of the 

thermal neutrons are generated from the energy of slowing 

neutrons through diffusion to a specific distance, it should be 

considered that this fast neutron in a designed nuclear reactor. 

Any design process of a thermal nuclear reactor must 

obviously be represented by two neutron groups at least. Fast 

neutrons are the first group, with energies above the thermal 

region, and the second group is the thermal neutrons. In 

various reactor computations, particularly those including the 

criticality of thermal reactors, no less than two groups of 

neutrons must be utilized, to get sensibly precise outcomes. 

One group is important to depict the thermal neutrons. The 

second or fast group includes all the neutrons having energies 

above the thermal - that is, the neutrons that are reducing their 

energies from fissional energies to thermal energy. Figure 2 

shows, schematically, the difference between one- and two-

group models. The boundary between these two groups is set 

to 1 eV [14]. Using the two-group neutron diffusion equation. 

By definition, the multiplication constant is (k∞=η ε f p PFNL 

PTNL). The previous formula is named the six-factor formula. 

(η), and represents the number of neutrons absorbed in the fuel 

in the second generation, generated per neutron (ε). This is 

called the fast fission factor and is the amplification in the 

number of fast neutrons due to fast fissions. (P), called the 

resonance escape probability, is the fraction of fast neutrons 

that succeed in slowing down. Finally, (f) is defined as the 

thermal-utilization factor. It represents the percent of neutrons 

absorbed by the fuel. PFNL is the probability that a fast neutron 
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will not leak out of the system. (PTNL), is the probability that a 

thermal neutron will not leak out of the system. 

 

 
(a) 

 

 
(b) 

 

Figure 2. Life cycle of thermal neutrons both in (a) the one-

group model and (b) the two-group model 

 

4.2 Core 

 

The two-group model assumes that the represented equation 

in each region (core+reflector) is a single exact diffusion 

equation involving the fast-neutron cross-sections, which can 

represent the fast neutron response in a reactor with a reflector. 

The number of neutrons lost from the fast group per unit 

volume, per second, is the slowing down into the thermal 

group. Further, it is the slowing down of neutrons outside the 

fast group at any space, which is proportional to the fast-

neutron flux (∅1) at that point, thermal flux (∅t) = (∅2).  

Primarily, the equation of diffusion is considered for 

neutrons with two energy ranges (fast and thermal) in the core, 

Figure 3. The flux is dependent on one singular spatial 

inconstant, which (r) is, and a steady state. 

To begin with, the energy spectrum is divided into two 

levels (demonstrated in Figure 3), and then the average 

macroscopic cross-section has to be computed to be known.  

 

 
 

Figure 3. Neutron energy groups 

 

First, we will apply Eq. (3) for the fast neutron group, which 

is symbolized by a subscript (1). For the thermal neutron group, 

the variables are denoted by a subscript (2). Then Eq. (3) will 

be as follows, for a fast group: 

 

D1∇2∅1 − ∑1s∅1 − ∑1a∅1 + ν∑1f∅1 + ν∑2f∅2 = 0. (4) 

 

where, 

∑1s∅1 : Neutrons slowed downcast proportion inside the 

thermal -group outside the fast- group, per cm3/sec, thermal-

neutrons producer. 

∑2a∅1: slowing group-absorbing rate of the fuel-moderator 

mixture. 

∑1f: Fast and thermal fission rates respectively. 

v: The mean neutrons number generated per fission at the 

medium (2.43 for U235), & Eq. (3) will be as follows for the 

thermal group: 
 

D2∇2∅2 − ∑2a∅2 + ∑1s∅1 = 0 (5) 
 

In a thermal reactor, the neutrons appear in the fast group as 

the result of fissions induced by thermal neutrons. There are 

no fissions caused by fast neutrons, as only neutrons absorbed 

in the thermal group produce fast neutrons. Neutrons are lost 

from the fast group when slowing down. We will denote core 

reflector regions as, one (1c, 1r) for the fast group and (2c, 2r) 

for the thermal group; Eqs. (4) and (5) will be: 
 

D1C∇2∅1C − ∑1Cs∅1C +
K∞

PC
∑2Ca∅2C = 0  (6) 

 

D2C∇2∅2C − ∑2Ca∅2C + PC∑1Cs∅1C = 0 (7) 

 

where, PC: leaves the neutrons fraction in the fast group, it 

enters the thermal group in the core [15]. 

In both groups, the neutron released an average number in a 

particular process of fission considered equal to each other, 

that is, ν1 = ν2 = ν, then the two-group equations are. 

 

4.3 Reflector 

 

A reflector is a region of high-scattering, cross-section 

materials like water, graphite, beryllium, and so on. The 

reflector surrounds the core to reduce the critical mass and 

volume of the core. Hence, decreases neutron leakage from the 

reactor core and helps the specified fuel-moderator scheme 

reach criticality within a lesser core size than for a bare reactor, 

and conserves a noticeable amount of the desired fissionable 

fuel. Reflectors also raise the average output power for a 

particular weightiness of the fuel. 

For thermal reactors, the same material is used for 

moderators and reflectors. Given that it disseminates once 

more into the core, it somehow or other would have been lost 

because of spillage. 

The efficiency of a reflector is measured by the ratio of the 

number of neutrons reflected into the reactor to the number 

entering the reflector. This ratio is termed by albedo or the 

reflection coefficient. It is evident that for total reflection 

(∑a=0) the albedo needs to be equal to (1).  

For reflector assumed a non-multiplying material, because 

the fast neutron source was considered a zero source in the 

reflector. All of the fast neutrons in the reflector initiate 

leakage from the core. Many fast neutrons slowdown in the 

reflector, which gives rise to a source term in the equation for 

the slow flux; as below:  

 

D1r∇2∅1r − ∑1rs∅1r − ∑1ra∅1r = 0 (8) 

 

There is no absorption of fast neutrons in the reflector 

∑1ra∅1r = 0, and then Eq. (8) will be: 

 

D1r∇2∅1r − ∑1rs∅1r = 0 (9) 
 

For the thermal group,  
 

D2r∇2∅2r − ∑2ra∅2r + ∑1rs∅1r = 0 (10) 
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4.4 Solving the two group equation 

 

The first step to solving the two-group equation is finding 

the criticality condition: 

The circumstance of mandatory criticality means the 

connection of the geometrical sizes with reactor material 

properties, which specify the critical reactor. This means that 

the spreading of steady non-zero neutron flux can be 

continuous in the reactor without requiring somewhat 

peripheral sources of neutrons.  

The criticality circumstance is precisely expression 

subjected to the geometry (e.g., spherical, cylindrical, slab) 

with the boundary conditions. By solving, the steady critical 

neutron diffusion equation for the reactor, one can find the 

condition of criticality corresponding to a specific reactor, 

considering all the appropriate boundary conditions. 

To find the solution of fast and thermal fluxes and the 

condition for criticality of the reactor, the four equations for 

core and reflector (6, 7, 9, and 10) must be solved for each 

region. Starting from the core region, the two Eqs. (6) and (7) 

are combined second-order differential equations, where ∅2c 

appears in the equation of ∅𝟏𝐜 and conversely, ∅𝟏𝐜 appears in 

the equation of ∅2c, the first step of solving this problem is by 

solving Eq. (6) for ∅2c. 

 

4.4.1 Core region parameters   

 

∅2C =
PC

k∞∑2ca
(−D1C∇2∅1C + ∑ ∅1C1Cs )  (11) 

 

Subsequently, by substituting the above expression into Eq. 

(7), one could get a fourth-order equation for ∅1C only, to be 

exact, 

 

τC lC
2  ∇2∇2∅1C − (τC + lC

2)∇2 − (k∞ − 1)∅1C = 0 (12) 

 

where, τC =
D1C

∑1Cs
, lC

2 =  
D2C

∑2Ca
, then,  

 

∇4∅1C − b∇2 − c∅1C = 0 (13) 

 

where, a = 1, b = −
(τC+lC

2 )

τClC
2  and c = −

(k∞−1)

τClC
2 . 

Then the roots will be  μ2 =
b+ √b2+4c

2
, λ2 =

−
b− √b2+4c

2
, where the root μ2  denoted the principality 

buckling and the root λ2 defined as an alternative buckling had 

to be determined; both roots had to be positive and real 

quantities. 

Then Eq. (12) will be: 

 

(∇2 +  μ2)(∇2 − λ2)∅1C = 0 (14) 

 

By expanding the above equation and comparing the results 

with Eq. (12), it was found that μ2 and λ2 must have satisfied 

the relations: 

 

μ2λ2 =
(k∞−1)

τClC
2

  (15) 

 

μ2 − λ2 =
(τC+lC

2 )

τClC
2

  (16) 

 

Next, μ2 was estimated by solving Eq. (16), and inserting 

it into Eq. (15), which yielded a quadratic equation for, 

λ2 respectively. This pair of quadratic equations has only the 

two solutions below: 
 

μ2 =
1

2τC lC
2  [−(τC + lC

2) +

√(τC + lC
2)2 + 4(k∞ − 1)τC + lC

2]  

(17) 

 

λ2 1

2τC lC
2  {(τC +  lC

2) +

√(τC +  lC
2)2 + 4(k∞ − 1)τC + lC

2}  

(18) 

 

λ2 are positive, and µ and λ are real. Eq. (14) is equivalent 

to the two equations: 

 

(∇2 +  μ2)X = 0 (19) 

 

(∇2 −  λ2)Y = 0 (20) 

 

Then the complete solution for the flux in the core region 

will be the summation of the two solutions for X and Y. For 

all shapes of geometries, there will be symmetric conditions or 

non-individuality on ∅1C and ∅2C, by choosing the functions 

X and Y, to meet those conditions. Thus for each equation, 

there was one solution, then the simple general solution for 

∅1C is: 

 

∅1C = AX + CY (21) 

  

∅2C = ÁX + ĆY (22) 

 

After some derivation, X and Y are independent functions. 

Then: 

 
Á

A
=

Pc∑1Cs/∑2Ca

1+μ2 L2 c
, 

Ć

C
=

Pc∑1Cs/∑2Ca

1−λ2 L2 c
 (23) 

 

Now the thermal flux is expressed as: 

 

∅2C = AS1X + CS2Y (24) 

 

S1 =
Á

A
 & S2 =

Ć

C
, and called the coupling coefficients for 

the fast and slow fluxes. Then the solution to Eqs. (21) and (22) 

will be: 

 

X(r) = ∅1C(r) = A
sin(μr)

r
+ C

sinh(λr)

r
  (25) 

 

Y(r) = ∅2C(r) = AS1
sin(μr)

r
+ CS2

sinh(λr)

r
  (26) 

 

For unreflected reactors, at an extrapolated boundary, the 

flux vanished, C=zero. Whereas, there was no disappearance 

of boundary flux at the extrapolated distance and C≠0 for a 

reactor bound by a reflector. 

 

4.4.2 Reflector region parameters 

Returning to Eqs. (9) and (10) after dividing by D1r and D2r, 

which may be written as:  
 

∇2∅1r − K1r
2 ∅1r = 0 (27) 

 

∇2∅2r − K2r
2 ∅2r +

∑ ∅1r1rS

 D2r
= 0  (28) 
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where, K1r
2 =

1

τr
, K2r

2 =
1

lr
2 , k∞ =

ν∑fPC

∑2C
. 

Then in the same manner of derivation of the core flux of 

two equations, reflector fluxes of two regions can be found: 

 

∅1r = FZ1 (29) 

 

Then, the fast-flux reflector solution of the above equation 

will be:  

 

∅1r =  F 
exp(

−r

√τr
)

r
  (30) 

 

In addition, the equation of the thermal flux in the reflector 

region will be: 

 

∅2r = GZ2 + S3∅1r = GZ2 + S3FZ1 (31) 

 

where, S3 a third coupling is constant, G is a constant, and Z2 

is the solution to the below equation: 

 

∇2Z2 − K2r
2 Z2 = 0, (32) 

 

and 

 

S3 =
∑ / D2r1rS

K2r
2 −K1r

2 =
 D1r/∑2ra

τr−lr
2 , (33) 

 

then: 

 

∅2r  = G 
exp(

−r

lr
 )

r
+ FS3  

exp(
−r

√τr
 )

r
  (34) 

 

Therefore, for spherical with infinite reflector, the four 

equations for the two-group region, core, and reflector will be: 

 

∅1C(r) = A
sin(μr)

r
+ C

sinh(λr)

r
  (35) 

 

∅2C(r) = AS1
sin(μr)

r
+ CS2

sinh(λr)

r
  (36) 

 

∅1r = F 
exp(−K1rr)

r
,  (37) 

 

∅2r = G
ex p(−K2rr)

r
+  S3∅1r  (38) 

 

 

5. DERIVATIVE OF THE CRITICAL DETERMINANT 

 

As mentioned for two regions group energy there are two 

distribution neutron fluxes. The two regions of the reactor, 

core, and reflector; fast and slow, can be computed through the 

solution of Eqs. (35) and (36), together with (37) and (38) 

correspondingly, and by deterministic the constants that are 

not specialized  - A, C, F, and G - by approving a conditioned 

boundary at the interface between the core and reflector. The 

conditions at the zones’ interface were already discussed in the 

article. The obligation was for the continuity of the neutron 

(current, flux) density to be together equally at the interface 

loci. By indicating the interface between core-reflector 

surfaces as R, the following boundary conditions are stated for 

these equations: 

A. Symmetry in the core, or non-singularity of the flux 

at the core center, 

B. Continuity of the neutron flux at all points of the core-

reflector interface, ∅1C =, ∅2C = ∅2r. 

C. Continuity of the current at all points of the core-

reflector interface,  −D1C∇∅1C =
−D1r∇∅1r,  −D2C∇∅2C = −D2r∇∅2r 

D. Vanishing of the flux on all extrapolated outer 

surfaces of the assembly [16]. 

By inserting these boundary conditions in Eqs. (21), (24), 

(29), and (31), and equating them to zero, we get the following 

equations: 

 

AX + CY −  FZ1 = 0 (39) 

 

AD1cXˊ + C D1cYˊ −  FD1rZ1ˊ = 0 (40) 

 

AS1X + C S2Y −  FS3Z1 − GZ2  = 0 (41) 

 
AD2c S1Xˊ + CD2c  S2Yˊ − FD2r  S3 Z1ˊ − GD2r  Z2ˊ = 0 (42) 

 

The symbols X, Y, Z1, Z2 and Xˊ, Yˊ, Z1ˊ, Z 2ˊ denote the 

functions and the prime represents a gradient operation, which 

means their derivatives. These functions and their derivatives 

must be solved at the core–reflector interface, r=R. These 

equations are a set of four linear homogeneous algebraic 

equations, with four unknowns A, C, F, and G, which forced 

the right-hand side of each to be equal to zero. For all problems 

of the steady-state reactor, the flux will cooperate with a single 

constant, otherwise; it will be an undetermined reactor power 

capacity. Consequently, the fourth constant can determine the 

three unknown constants. Then A=C=F=G=zero, unless the 

determinant of the coefficients multiplying these unknowns is 

a zero. Thus, for the flux in the reactor to be non-zero, these 

equations must equal zero. For matrix symbolization, the 

expression of the equations will be: 

 

|

    X                    Y                    − Z1                      0 
D1CXˊ       D1CYˊ                    −  D1r Z1ˊ            0
 S1X          S2Y                    −  S3Z1               − Z2 

D2C S1Xˊ    D2C S2Yˊ  −  D2r S3 Z1ˊ  −  D2r Z2ˊ  

| |

A
C
F
G

| = 0  (43) 

 

The only obvious resolution of these linear system 

equations obliges the coefficient determinant (which is 

described by ∆) to vanish to zero: 

 
∆=

|

    X                    Y                    − Z1                       0 
D1CXˊ       D1CYˊ                    −  D1r Z1ˊ             0

 S1X        S2Y                        −  S3Z1               − Z2 
D2C S1Xˊ      D2C S2Yˊ     −  D2r S3 Z1ˊ       −  D2r Z2ˊ  

|  
(44) 

 

This form of equation (∆) might be considered as the critical 

determinant limitation of the two-group calculations of nuclear 

reactor reflectors. Meanwhile, it comprehends the coefficient 

groups and the reactor dimensions. Normally, fuel 

concentration measurement or sizing of the core helps to 

determine the additional constants, with advice from the 

previous relation [15]. 

 

5.1 Estimation of the criticality determinant 

 

Evaluation of the critical determinant is lengthy, although 

straightforward. However, by applying a group of 

simplifications in the calculation, for example, by considering 

that many elements of the determinant are unresponsive due to 

concentration variation of the fuel or the core dimension. 

Apportioning the four columns of Eq. (44) In the first 
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column, X, Y, Z1 and Z2 , respectively, did not make any 

changes in the value of the determinant. However, by 

multiplying the third and fourth columns by -1, can get the new 

matrix as: 

 

∆=
|

|

     1                    1                    1                        0 

D1C
Xˊ

X
            D1C  

Yˊ

Y
             D1r

Z1ˊ

Z1
          0

S1                      S2                       S3                  1  

D2CS1
Xˊ

X
  D2CS2   

Yˊ

Y
   D2rS3

Z1ˊ

Z1
   D2r

Z2ˊ

Z2
  

|

|
0,  (45) 

 

Now, by expanding the determinant, we can get numerous 

mathematical operation simplifications, collecting a similar 

algebraic: 

 
𝐗ˊ

𝐗
= ⟦

𝐃𝟏𝐂𝐃𝟐𝐫(𝐒𝟑 − 𝐒𝟏 )
𝐘ˊ
𝐘

 
𝐙𝟐ˊ
𝐙𝟐

+ (𝐃𝟏𝐫 𝐃𝟐𝐂 𝐒𝟐 − 𝐃𝟏𝐂𝐃𝟐𝐫𝐒𝟑)
𝐘ˊ
𝐘

 
𝐙𝟏ˊ
𝐙𝟏

+ 𝐃𝟏𝐫𝐃𝟐𝐫(𝐒𝟏 − 𝐒𝟐)
𝐙𝟏ˊ
𝐙𝟏

𝐙𝟐ˊ
𝐙𝟐

𝐃𝟏𝐂 𝐃𝟐𝐂(𝐒𝟐 − 𝐒𝟏)
𝐘ˊ
𝐘  + (𝐃𝟏𝐫𝐃𝟐𝐂𝐒𝟏 − 𝐃𝟏𝐂𝐃𝟐𝐫𝐒𝟑)

𝐙𝟏ˊ
𝐙𝟏

+  𝐃𝟏𝐂𝐃𝟐𝐫(𝐒𝟑 − 𝐒𝟐 )
𝐙𝟐ˊ
𝐙𝟐

 ⟧  (46) 

 

This is the critical two-group diffusion equation for a 

reflected thermal reactor. It is capable of being determined 

only through the criticality dimension. When using Eq. (46), 

the computational procedure to follow for a given reactor size 

is to obtain various values of fuel concentration and evaluate 

each side of the equation. RHS was then plotted against the 

LHS, as a function of fuel concentration. The intersection of 

the two curves marked the critical concentration. Our case 

requires a different kind of calculation, namely, the 

determination of the critical reactor size for a given reactor 

composition. The functions 𝑋, 𝑌, 𝑍1  and 𝑍2  and their 

gradients 𝑋ˊ, 𝑌ˊ, 𝑍1ˊ and 𝑍2ˊ in spherical geometry are given in 

Table 1. 

 

Table 1. Critical determinant functions for critical spherical 

with infinite reflector reactor 

 
Critical Determinant Functions 

𝑋(𝑟) 
𝑠𝑖𝑛(𝜇𝑟)

𝑟
 

𝑋ˊ

𝑋
= −𝜇(

1

𝜇𝑅
− 𝑐𝑜𝑡 𝜇𝑅)  

Evaluated at a core 

radius 𝑋ˊ(𝑟) 
𝑟𝜇𝑐𝑜𝑠(𝜇𝑟) −  𝑠𝑖𝑛(𝜇𝑟)

𝑟2
 

𝑌(𝑟) 
𝑠𝑖𝑛ℎ(𝜆𝑟)

𝑟
  

𝑌ˊ

𝑌
= 𝜆(𝑐𝑜𝑡ℎ 𝜆𝑅 −

1

𝜆𝑅
)  

Evaluated at a core 

radius 
𝑌ˊ(𝑟) 

𝜆𝑐𝑜𝑠ℎ(𝜆𝑟)

𝑟
−

𝑐𝑜𝑠ℎ(𝜆𝑟)

𝑟2   

𝑍1(𝑟) 𝑒𝑥𝑝( − 𝐾1𝑟𝑟 )

𝑟
=

𝑒𝑥𝑝(
−𝑟

√𝜏𝑟
)

𝑟
  

𝑍1ˊ

𝑍1
= −𝐾1𝑟 (

1

𝐾1𝑟𝑅
+ 1)  

Evaluated at a core 

radius 𝑍1ˊ(𝑟) 
−𝑟𝐾1𝑟𝑒𝑥𝑝( − 𝐾1𝑟𝑟 )−𝑒𝑥𝑝( − 𝐾1𝑟𝑟)

𝑟2   

𝑍2(𝑟) 
𝑒𝑥𝑝(−𝐾2𝑟 𝑟)

𝑟
=

𝑒𝑥𝑝(
−𝑟

𝐿𝑟
)

𝑟
  

𝑍2ˊ

𝑍2
= −𝐾2𝑟 (

1

𝐾2𝑟𝑅
+ 1)  

Evaluated at a core 

radius 𝑍2ˊ(𝑟) 
−𝑟𝐾2𝑟𝑒𝑥𝑝( − 𝐾2𝑟𝑟 )−𝑒𝑥𝑝( − 𝐾2𝑟𝑟 )

𝑟2   

 

5.2 Determination of the flux distributions 

 

For finding the fast and slow flux distributions, first, 

estimate the reactor’s critical composition or size, then the 

constants A, C, F, and G should be valued. It is credible to 

define only their constants in terms of A, but for estimating A, 

one must compute the power of the reactor.  

Dividing Eqs. (40) and (42) by 𝐷1𝐶  and 𝐷2𝐶  respectively to 

get: 

 

AXˊ + C Yˊ −  F
D1r

D1C
Z1ˊ = 0  (47) 

 

S1 AXˊ + CS2 Yˊ − S3
D2r

D2C
 FZ1ˊ − G

D2r

D2C
Z2ˊ = 0  (48) 

 

Let: α =
Xˊ

X
, β =  

Yˊ

Y
, γ =  

Z1ˊ

Z1
, σ =

Z2ˊ

Z2
 , ρ1 =

D1r

D1C
, ρ2 =

D2r

D2C
. 

By inserting the above constants in Eqs. (47) and (48), and 

rewriting Eqs. (39) and (41) to get (49) and (50) and: 

 

AXˊ + C Yˊ −  Fρ1Z1ˊ = 0 (49) 

 

S1 AXˊ + S2C Yˊ − ρ2S3 FZ1ˊ − ρ2GZ2ˊ = 0. (50) 

 

Dividing Eq. (49) by Eq. (39): 

 
AXˊ+C Yˊ−ρ1 FZ1ˊ

AX+CY−FZ1
=

AXˊ+C Yˊ

AX+CY
=

 ρ1FZ1ˊ

FZ1
= ρ1 γ.  (51) 

 

Then, from the above equation, one can estimate C: 
 

C =
ρ1 γ−αX

β−ρ1 γ Y
A  (52) 

 

Substituting Eqs. (39) and (41) into Eq. (49) gives: 
 

F =
β −αX

(β−ρ1 γ) Z1
A  (53) 

 

Substituting from Eqs. (52) and (53) into Eq. (50) gives: 

 

G =
S1(β −ρ1 γ)+S2(ρ1 γ −α)−S3(β−α)X

(β−ρ1 γ) Z2
A.  (54) 

 

Now C, F, and G are represented in terms of the constant A. 

It is possible to estimate A from the power of the reactor, as a 

function of the reactor power level. One can plot the flux 

distributions in the core and the reflector. These would be 

required for the heat transfer calculations, as the neutron flux 

distribution determines the heat generation distribution. They 

will similarly be desirable for fuel burn-up and management, 

as well as radiation damage and material considerations. 

The solution procedure states that to estimate the critical 

dimension by solving Eq. (46), it is desired to make the 

equation of two sides, the right-hand side, and the left-hand 

side. Following this, they must be equated separately, each one 

to zero, to find the two functions as functions of fuel 

concentration. Plotting the RHS and the LHS, and intersecting 

the two curves will verify the critical dimensions of the radius 

of the spherical reflected reactor. 

This reflected core is critical only with certain dimensions, 

which will be determined by satisfying Eq. (46). Before using 

the critical equation, it is convenient to multiply both sides by 

R. The left-hand side of Eq. (46) is described in Table 1. It is 

named, LHS, and after R multiplies it, it will be: 
 

LHS =
Xˊ

X
= −μ(

1

μR
− cot μR) = 0  (55) 

 

The right-hand side of Eq. (46) is named RHS, and after is 

multiplied by R, it will be: 

 

𝐑𝐇𝐒 = 𝐑 {
𝐃𝟏𝐂𝐃𝟐𝐫(𝐒𝟑 − 𝐒𝟏 )

𝐘ˊ
𝐘  

𝐙𝟐ˊ
𝐙𝟐

+ (𝐃𝟏𝐫 𝐃𝟐𝐂 𝐒𝟐 − 𝐃𝟏𝐂𝐃𝟐𝐫𝐒𝟑)
𝐘ˊ
𝐘  

𝐙𝟏ˊ
𝐙𝟏

+ 𝐃𝟏𝐫𝐃𝟐𝐫(𝐒𝟏 − 𝐒𝟐)
𝐙𝟏ˊ
𝐙𝟏

𝐙𝟐ˊ
𝐙𝟐

𝐃𝟏𝐂 𝐃𝟐𝐂(𝐒𝟐 − 𝐒𝟏)
𝐘ˊ
𝐘  + (𝐃𝟏𝐫𝐃𝟐𝐂𝐒𝟏 − 𝐃𝟏𝐂𝐃𝟐𝐫𝐒𝟑)

𝐙𝟏ˊ
𝐙𝟏

+  𝐃𝟏𝐂𝐃𝟐𝐫(𝐒𝟑 − 𝐒𝟐 )
𝐙𝟐ˊ
𝐙𝟐

} (56) 

 

To simplify Eq. (56) one will assume: 

 

a1 =  D1CD2r(S3 − S1), a2 = (D1rD2C S2 − D1CD2rS3), 

a3 =  D1rD2r(S1 − S2), b1 = D1CD2C(S2 − S1), 
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b2 = (D1rD2CS1 − D1CD2rS3), b3 =  D1CD2r(S3 − S2) 

 

Then, Eq. (56) will be as: 

 

RHS = 𝑅 {
𝑎1

𝑌ˊ

𝑌
 
𝑍2ˊ

𝑍2
+𝑎2

𝑌ˊ

𝑌
 
𝑍1ˊ

𝑍1
+𝑎3

𝑍1ˊ

𝑍1

𝑍2ˊ

𝑍2

𝑏1
𝑌ˊ

𝑌
 +𝑏2

𝑍1ˊ

𝑍1
+ 𝑏3

𝑍2ˊ

𝑍2

}  (57) 

 

The specification of our reactor problem and the 

calculations of the parameters that are needed in the above 

equations, MATLAB, and the functions used are represented 

in Table 2. 

After substituting these results of calculation for the above 

constants in Eq. (57), can get: 

 

RHS = 𝑅 {
2.37

𝑌ˊ

𝑌
 
𝑍2ˊ

𝑍2
−8.3

𝑌ˊ

𝑌
 
𝑍1ˊ

𝑍1
+5.93

𝑍1ˊ

𝑍1

𝑍2ˊ

𝑍2

5.93
𝑌ˊ

𝑌
 +2.37

𝑍1ˊ

𝑍1
−8.3 𝑏3

𝑍2ˊ

𝑍2

}  (58) 

 

A MATLAB program was established for LHS and RHS in 

Eqs. (55) and (58) to find the critical radius, distribution of the 

two fluxes, and fast and slow fluxes. Finally, to find the heat 

generated from the nuclear reactor that will generate power 

electricity. 

 

Table 2. Case study, specification, and calculation of the 

spherical reflected reactor 

 
Core 

Molecular density 𝐻2𝑂(×
10−24)  

𝑁𝑊 =
1×0.6023

18.02
  

= 0.0335 

Atom density 𝑈235(× 10−24)  
𝑁𝑈235 =

1

500
× 0.0335  

= 6.7 × 10−5 

𝜎𝑎𝑊 = 2𝜎𝑎𝐻
= 2 × 0.332 0.664 𝑏𝑎𝑟𝑛 

𝜏𝐶 = 27 𝑐𝑚2 

𝜎𝑎𝑈235 = 678 𝑏𝑎𝑟𝑛  𝐿𝐶
2 =

𝐷2𝑊

∑2𝐶
= 2.67𝑐𝑚2  

𝐷1𝐶 = 1.13 𝑐𝑚 𝐷2𝐶 = 0.16 𝑐𝑚  
∑2𝐶 = 0.886(𝑁𝑈235𝜎𝑎𝑈235 +

𝑁𝑊𝜎𝑎𝑊) = 0.06 𝑐𝑚−1  
∑1𝐶 = 0.0419 𝑐𝑚−1  

𝜂𝑇 = 2.07 𝜇 = 0.113, 𝜆 = 0.651 

𝑓 =
𝑁𝑈235𝜎𝑎𝑈235

(𝑁𝑈235𝜎𝑎𝑈235+𝑁𝑊𝜎𝑎𝑊)
  

= 0.671 

𝑆1 =
𝑃𝑐𝛴1𝑐

𝛴2𝑐

1+𝜇2 𝐿2 𝑐
  

=
1 ∗

0.0419
0.06

1 + ((0.113)2 ∗ (2.67))
 

=
0.698

1.0341
= 0.676  

𝑆2 =  
0.698

1−((0.651)2 ∗(2.67))
=

 −5.26  

𝑘∞ = 𝜂𝑇𝑓 = 1.390 

Reflector 

𝐷1𝑟 = 1.13 𝑐𝑚 𝐿𝑟
2 =

𝐷2𝑟

∑2𝑟
= 8.12 𝑐𝑚2  

𝜏𝑟 = 27 𝑐𝑚2 𝐾1𝑟 = 1
√𝜏𝑟

⁄ = 0.192 𝑐𝑚−1  

∑1𝑟 = 0.0419 𝑐𝑚−1  
𝐾2𝑟 = 1

√𝐿𝑟
⁄   

= 0.351 𝑐𝑚−1 

𝐷2𝑟 = 0.16 𝑐𝑚 
𝑆3== 

𝐷1𝑟/𝛴2𝑟

𝑇𝑟−𝐿2 𝑟
 

=
1.13/0.0197

27−8.12
=

57.36

18.88
=3.04 

∑2𝑟 = 0.886 𝑁𝑊𝜎𝑎𝑊 = 0.0197 𝑐𝑚−1 = 0.0197 𝑐𝑚−1 

 

 

6. RESULTS AND DISCUSSION  

 

After plotting the functions LHS and RHS in Figure 4, as a 

function of (𝜇𝑅), one can observe the linearity and flatness of 

the RHS rather than the LHS, as the LHS is (Cot function)*. 

Over the range values of (𝜇𝑅), as shown in the figure, this 

property of linearity is not a common specification of the RHS 

function. After limiting the intersection points of the RHS with 

LHS, one can note that the first intersected point happened at: 

 

(𝜇𝑅) = 2.45 𝑅 = 21.7 𝑐𝑚, 𝑀𝑊 =
4

3
𝜋 𝑅3 =

40.5 𝑘𝑔, 𝑀𝑈235 = 1.12 𝑘𝑔 

 

*Cotangent, or cot, is a trigonometric function that 

represents the ratio of the adjacent side to the opposite side in 

a right triangle. A cot is defined as the reciprocal of the tangent 

function 

From the figure above, one can conclude that there is little 

difference between the present results and the reference by 

Lamarsh [15]. This deviation is due to some calculation of 

cross sections and due to the reference using just one digit after 

the separator, but in the present case, having four digits after 

the separator, gives more accurate and real results, or the 

software of the previous study was different from MATLAB. 

It is recommended to recall several extra digits and round off 

the numbers only at the end of the computation. 

 
Figure 4. The left-hand side (LHS) and right-hand side 

(RHS) of the two–group critical equation 

 

R=21.7 cm, Moderator Water mass=40.5.6 kg, the fuel 

U235mass=1.12 kg. 

In the present case study, one can observe that the ratio of 

the moderator water mass to fuel U235 mass is approximately 

equal to 36.16, which is the same ratio for foreign reference 

[15], where it is equal to 36.173. 

After finding the constants of the flux distribution functions, 

for the core and reflector, as in Eqs. (35), (36), (37), and (38), 

after some simplifications, it is stated that the flux distribution 

function is: 

 

∅1C = A (
sin 0.113r

r
− 4.67 × 10−8 sinh 0.651r

r
)  

 

∅2C = 0.676 A (
sin 0.113r

r
+ 3.644.67 × 10−7 sinh 0.651r

r
)  

 

∅1r = 39.6 A 
e−0.192r

r
, ∅2r = 120 A 

e−0.192r

r
− 21.0 

e−0.351r

r
 

 

From Figure 5, it is noticed that the normalization of the 

fluxes is to ∅𝟐𝐂 = 1, also, the largeness of the fast flux in 
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comparison to the thermal flux, over the whole core, is 

gathered from the figure. The fast flux is larger than the 

thermal flux because the evidence points to the fact that the 

reactor is a thermal reactor and the core material of this reactor 

is extra active in absorbing thermal neutrons than in 

moderating neutrons out of the fast group. From the above 

equations, it is clear that the second term in the expression for 

core fluxes is small according to the first term, so the flux can 

be approximately written as  ∅1C ≈ AX and ∅2C ≈  AXS1 . 

Therefore the ratio of fast flux to slow flux will be: 

 
∅1C

∅2C
≈  

1

S1
≈

∑2C

∑1C
  

∅1C

∅2C
=

0.06

0.04
= 1.5 ≈  

1

S1
= 1.47 ≈

1

0.676
≈

∑2C

∑1C
=

0.060

.0419
= 1.43  

 

 
 

Figure 5. The flux of two groups for a water-moderated, 

water-reflected, U235 spherical reactor 

 

 

7. CONCLUSIONS 

 

1. The neutrons go into a diffusion process as soon as they 

are released. 

2. The deep thermal core flux and the peak in the thermal 

reflector flux result from the thermalization of neutrons 

in the reflector; as indicated by the slope of the curve. 

At the core-reflector interface, there is a net flow of 

thermal neutrons from the reflector into the core. 

3. The above phenomenon of the small peak in the fast 

flux within the reflector region is the most outstanding 

result of the group diffusion equation. This peak of 

thermal flux is produced by slowing down the fast 

neutrons, which had escaped from the core of the 

reflector. Some neutrons that slow down are collected 

in the reflector region until they are transported again 

to the core zone after escaping from the outer surface 

of the reflector or are captured. 

4. In the real world, the theory of the occurrence of a 

preliminary concentration of delayed neutrons can be 

adjusted to the situation in which the reactor is turned 

off and then turned on again. 

5. Furthermore, for future research, for constant sources 

of emitting neutrons with time directed to obtain a 

constant power level inside a nuclear reactor. 

6. The two-group diffusion calculation is more accurate 

and realistic than the group diffusion equation because 

one group assumes that all neutrons are thermal energy 

and this is not true. The criticality for one group is: 

 

LHS = BR cot BR = −
Dr

Dc
(

R

Lr
+ 1) = RHS, 

 

where, B2 in cm-2 the buckling depends upon the core shape, 

and Lr is the reflector thermal diffusion length in cm. 

 

7. For our case study, the fuel density of U235 in the core 

is very small compared to the water moderator density. 

For this reason, the calculation of the group diffusion 

equation is more precise and logical for estimating the 

flux distribution, critical dimensions, and critical mass 

of the fuel and water. 

8. For further application of the two-group diffusion 

equation, calculate the multiplication factor of a reactor 

configuration by adjusting the fuel concentration to 

meet the criticality condition. A hypothetical way of 

applying criticality is by reducing the concentration of 

the nuclear fuel and keeping the absorption cross-

section constant. 

9. In future research, one should try solving the two-group 

diffusion equation with different boundary conditions. 

 

 

ACKNOWLEDGMENT 

 

I would like to express my sincere appreciation to my family, 

who contributed to my life. Special thanks to my supportive 

family. Your contributions made this project possible. Forever 

grateful to my family. 

 

 

REFERENCES  

 

[1] Ajirotutu, A.D. (2020). Applications of MATLAB PDE 

toolbox for neutron diffusion simulation. Doctoral 

Dissertation, Texas A&M University-Kingsville. 

[2] https://www.ans.org/news/article-5254/wna-issues-its-

new-world-nuclear-performance-report/. 

[3] Irkimbekov, R., Vurim, A., Vityuk, G., Zhanbolatov, O., 

Kozhabayev, Z., Surayev, A. (2023). Modeling of 

dynamic operation modes of IVG. 1M reactor. Energies, 

16(2): 932. https://doi.org/10.3390/en16020932 

[4] Farman, N.F., Mahdi, S.A., Redha, Z.A.A. (2017). 

Mathematical analysis of the transient dynamic of surge-

in or/and surge-out of the pressurizer of PWR. 

International Journal of Simulation-Systems, Science & 

Technology, 18(4): 5.1-5.20. 

https://doi.org/10.5013/IJSSST.a.18.04.05 

[5] Mahdi, S.A., Farman, N.F., Redha, Z.A.A. (2018). 

Genetic algorithms to estimate the pressure deviations in 

dynamic transients of the pressurizer response in PWRs. 

International Journal of Simulation-Systems, Science & 

Technology, 19(1): 3.1-3.12. 

https://doi.org/10.5013/IJSSST.a.19.01.03 

[6] Farman, N.F., Mahdi, S.A., Redha, Z.A.A. (2018). A 

review of advances in pressurizer response research for 

pressurized water reactor systems. International Journal 

of Simulation-Systems, Science & Technology, 19(2): 

3.1-3.11. https://doi.org/10.5013/IJSSST.a.19.02.03 

[7] Knife, R.A. (2014). Nuclear Engineering: Theory and 

Technology of Commercial Nuclear Power. 2nd Ed. 

[8] Smith, K.S. (1979). An analytic nodal method for solving 

the two-group, multidimensional, static and transient 

1653



 

neutron diffusion equations. Doctoral Dissertation, 

Massachusetts Institute of Technology. 

[9] Melo, F.D.S., Cabral, R.G., Conti Filho, P. (2009). 

Analytical versus discretized solutions of four-group 

diffusion equations to thermal reactors. 2009 

International Nuclear Atlantic Conference - INAC 2009 

Rio De Janeiro, Brazil, September 27 to October 2, 2009.  

[10] Hosseini S.A. (2016). 3D neutron diffusion 

computational code based on GFEM with unstructured 

tetrahedron elements: A comparative study for linear and 

quadratic approximations. Energy, 92: 119-132. 

https://doi.org/10.1016/j.pnucene.2016.07.006 

[11] Shqair, M., El-Ajou, A., Nairat, M. (2019). Analytical 

solution for multi-energy groups of neutron diffusion 

equations by a residual power series method. 

Mathematics, 7(7): 633. 

https://doi.org/10.3390/math7070633 

[12] Shqair, M., El-Zahar, E.R. (2020). Analytical solution of 

neutron diffusion equation in reflected reactors using 

modified differential transform method. In: Zeidan, D., 

Padhi, S., Burqan, A., Ueberholz, P. (eds) Computational 

Mathematics and Applications. Forum for 

Interdisciplinary Mathematics. Springer, Singapore. 

https://doi.org/10.1007/978-981-15-8498-5_6 

[13] Jevremovic, T. (2009). Nuclear Principles in Engineering 

(Vol. 2). US: Springer. https://doi.org/10.1007/978-0-

387-85608-7 

[14] Lamarsh, J.R., Baratta, A.J. (2001). Introduction to 

Nuclear Engineering (Vol. 3, p. 783). Upper Saddle 

River, NJ: Prentice-Hall, Inc. 

[15] Lamarsh, J.R. (1972). Nuclear Reactor Theory. 2nd Ed. 

Addison-Wesley Company. 

[16] Holmes, D.K., Meghreblian, R.V. (1955). Notes on 

Reactor Analysis. Part II. Theory (No. CF-54-7-88 (Pt. 

II)). Oak Ridge National Lab., Tenn. (US). 

 

1654




