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In the realm of open-pit mining, the characterization of blast pile fragmentation poses 

significant challenges. This study pioneers a novel approach, harnessing the capabilities of 

3D laser scanning technology to acquire comprehensive spatial data of blast piles. Essential 

to this research is the deployment of sophisticated data processing techniques, including the 

Random Sample Consensus (RANSAC) for plane fitting and Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) for clustering algorithms, to meticulously 

delineate the contours of rock blocks within blast piles. The innovative methodology 

facilitates swift determination of rock block volumes and their maximum particle 

dimensions through the calculation of 3D convex hulls and Oriented Bounding Boxes 

(OBB). Additionally, the application of Delaunay triangulation to the blast pile's 3D point 

cloud data culminates in the creation of a detailed mesh model, from which the blast pile's 

volume is accurately derived using projection methods. Rigorous indoor testing has yielded 

a relative error margin of approximately 4.61% for block volumes and 4.75% for particle 

diameters under stacked conditions. In practical field applications, the method exhibits 

commendable accuracy, with an average rock block identification accuracy of 80.4%, 

increasing proportionally with the size of the rock blocks. The calculated volume of the blast 

pile closely mirrors actual excavation volumes, manifesting a relative error of 4.85%. 

Computational errors for key metrics such as the blast pile's height, forward throw distance, 

and lateral extent were found to be 2.92%, 3.91%, and 4.29%, respectively. The findings of 

this study are instrumental in assessing blasting effectiveness and in refining blasting 

parameters, marking a significant advancement in the field of open-pit mining. 

Keywords: 

3D point cloud, blast pile fragmentation, 

clustering, contour extraction, block volume 

1. INTRODUCTION

Blast fragmentation has been established as a critical metric 

for the assessment of blasting outcomes, serving as a 

foundation for the adjustment and refinement of subsequent 

blasting parameters. In situ blasting scenarios often encounter 

challenges with oversized blast fragmentation, necessitating 

mechanical crushing or secondary blasting. Such situations 

negatively impact subsequent loading and transportation 

processes, leading to reduced operational efficiency. On the 

contrary, excessively fine blast fragmentation, indicative of 

superfluous explosive usage, not only escalates production 

costs but also complicates loading and beneficiation due to the 

prevalence of fine materials. Hence, the accurate identification 

of blast fragmentation sizes is a pivotal area of investigation 

within the blasting field [1]. 

The methodologies for blast fragmentation identification 

are broadly classified into direct and indirect methods. The 

direct measurement technique, primarily grounded in field 

statistics [2], is recognized for its precision. However, it is 

often deemed labor-intensive and inefficient, especially in 

complex mining environments where it also poses significant 

safety risks. In contrast, indirect methods, which largely 

leverage photographic image processing, have evolved 

considerably. Sereshki et al. [3] introduced a Matlab-based 

algorithm designed for the automatic delineation of rock 

particle boundaries. Furthermore, Babaeian et al. [4] applied 

the Split-Desktop software for image analysis, obtaining 

metrics such as fragmentation distribution, uniformity index, 

and average size of fractured rocks. They formulated new 

criteria for identifying adhesion bodies, employing eXtreme 

Gradient Boosting (XGBoost) theory and methodologies, 

thereby effectively segregating adhesion zones within rock 

blocks. In a similar vein, Shan [5] utilized the K-means 

clustering approach for image categorization, which 

demonstrated substantial efficacy in image segmentation. 

The limitations of 2D image recognition, notably its 

inability to capture depth information, render it challenging for 

accurately calculating the particle size of rock blocks [6-9]. 

Conversely, 3D laser scanning technology, as an advanced 
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real-scene scanning method, swiftly acquires extensive, dense 

data points of the target object, thus creating a realistic 

replication. Onederra et al. [6] were pioneers in using high-

resolution 3D laser scanning technology for quantifying the 

"entire pile" fragmentation resulting from full-scale 

production blasting. Data gathered from production blasts at 

the Esperanza mine demonstrated the viability of 

comprehensive automated 3D data analysis at sufficient 

resolution. Liu et al. [7] incorporated Monte Carlo simulation 

as a statistical estimation approach for Blast Fragmentation 

Measurement and Prediction (BFMP). In controlled settings, 

the congruence of statistical estimations from combined 2D 

image processing and 3D laser scanning with physical water 

tank measurements was examined, revealing a closer 

alignment of 3D laser scanning results with actual physical 

measurements. Engin et al. [8] collected point cloud data of 

blasted rock piles through ground laser scanning and 

transitioned to a computer environment for 3D modeling and 

surface reconstruction. Their process included identifying 

fragments within the pile and determining their size 

distribution.  

In the realm of blast pile evaluation, characteristics are 

predominantly defined by spatial and morphological 

parameters. These parameters include, but are not limited to, 

the volume, as well as geometric shape attributes such as the 

forward throw distance, the lateral extent, and the elevation of 

the blast pile. Hudaverdi et al. [10] utilized hierarchical cluster 

analysis for classifying blasting data into similarity groups and 

applied discriminant analysis for group membership testing, 

further employing multiple regression analysis to devise a 

predictive model for average particle size estimation of slag 

piles. Ge et al. [11] implemented 3D laser scanning for 

scanning landslide deposits, calculating both volume and 

block distribution of the accumulations. Bamford et al. [12] 

developed a Deep Neural Network (DNN) architecture to 

predict characteristic sizes of rock fragments from 2D images 

of slag piles. Hudaverdi et al. [13] introduced a comprehensive 

multivariate analysis approach for blast fragment prediction, 

evaluating several blasts conducted across diverse mines and 

rock layers globally. Bamford et al. [14] utilized drones for 

monitoring in three phases: pre-blasting, post-blasting, and 

post-clearance, focusing on surveying pit walls, predicting in-

situ block size distribution, and assessing blast-induced 

damage through a Digital Elevation Model (DEM). 

Despite these advancements, the focus of most research, 

both domestic and international, has been predominantly on 

predicting the morphology of blast piles and their influencing 

factors, with less emphasis on the computation of 

characteristic blast information. Hence, this study leverages 

3D laser scanning technology to explore blast pile distribution 

characteristics. Initial stages involve preprocessing of point 

cloud data and identifying rock block contours using a 

combination of segmentation and clustering algorithms. This 

is followed by employing Delaunay's algorithm for 3D 

modeling of blast pile point cloud data. The blast pile's volume 

is then calculated using projection methods, and the intelligent 

extraction of key spatial parameters, height, forward throw 

distance, and lateral span, is achieved via coordinate methods. 

This approach aspires to provide methodological and technical 

support for optimizing blasting designs in open-pit mines. 

 

 

2. ACQUISITION AND PROCESSING OF 3D LASER 

SCANNING POINT CLOUD DATA 

 

2.1 Fundamental principles of 3D laser scanning 

 

The core principles of 3D laser scanning technology 

encompass four primary areas: distance measurement, angular 

displacement, scanning, and orientation [15]. Distance 

measurement techniques are categorized into triangulation, 

pulse, and phase methods. The pulse method, predominantly 

used in a majority of contemporary 3D laser scanners, is 

characterized by its ability to measure extensive distances and 

its applicability in both indoor and outdoor environments. For 

medium-range measurements, the phase method is preferred 

due to its heightened accuracy. The triangulation method, 

suitable for short-range indoor measurements, is recognized 

for its superior precision. In the pulse measurement process, a 

series of pulse signals are emitted using a pulsed fiber laser, 

and a highly sensitive Avalanche Photo Diode (APD) detector 

captures the echo reflected from the target. The distance to the 

object is determined by computing the time difference of the 

laser signal's round-trip. Illustrated in Figure 1(a), the laser 

transmitter emits a pulse signal that, after reflecting off the 

target, reaches the receiver. Given that the measured distance 

is S, the speed of light is C, and the time difference of the 

round-trip laser signal is 𝑆 =
1

2
× 𝐶 × 𝑡 , the calculation for 

distance can be established. 

In the device's internal mechanism, as depicted in Figure 

1(b), the angle a between the emitted laser beam and the 

horizontal direction, and the angle with the vertical direction, 

are recorded, along with the time f taken from emission to 

reception. Using time f and the speed of light C, the scanner's 

distance to the object is measured. The point cloud data is 

centered around the scanner's origin point, with the internal 

setup designating the X-axis, the horizontal plane as the Y-axis, 

and the vertical axis to the horizontal plane as the Z-axis. 

These configurations allow for the precise determination of 

any point's coordinates. 

 
cos cos ; cos sin ; sins s sX S Y S Z S    =   =   =   (1) 

 

 

 
 

Figure 1. The principle of data acquisition by a scanner 
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2.2 Acquisition of point cloud data 

 

The acquisition of comprehensive, low-noise, high-

precision initial point cloud data is paramount for the 

subsequent processing of data obtained through 3D laser 

scanning technology. 

 

2.2.1 Workflow for acquiring 3D point cloud data 

The fundamental process for onsite scanning to acquire 3D 

point cloud data is depicted in Figure 2. 

An initial step in collecting 3D point cloud data involves 

conducting an onsite survey. This phase encompasses 

understanding the scope of scanning, the environmental 

conditions, and identifying any obstacles like trees around the 

object. This information forms the basis for the overall 

scanning strategy. 

Post consideration of scanning range and obstructions such 

as trees, the placement of scanner sites is critical. The primary 

objective is to comprehensively capture the object's surface 

point cloud. Subsequent to site selection, the positioning of 

survey targets relative to the site is established. Following 

these steps, several crucial scanning parameters are set: 

scanning angle, interval between sampling points, camera 

settings, and target recognition. If a transformation to geodetic 

coordinates is necessary, employing a total station or GPS for 

3D measurement of target coordinates is required. This series 

of tasks constitutes a complete scan at a single site. When 

multiple sites are established, the same process is replicated 

for each. Advancements in scanning technology now often 

necessitate augmenting point cloud data with actual color 

information, thus necessitating the use of internal or external 

digital cameras for object photography. The entire procedure 

is encapsulated in the workflow diagram presented in Figure 

3. 

 

 
 

Figure 2. Point cloud data acquisition process 

 

 
 

Figure 3. Integration of 3D point cloud data from each sensor 

 

 
 

Figure 4. Scanner bitmap 
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2.2.2 Workflow for acquiring 3D point cloud data 

The selection of sites for scanning equipment and the 

resultant quality of point cloud data are interdependent, 

influencing not only the completeness of the point cloud but 

also the efficiency of scanning and subsequent tasks like point 

cloud stitching. The site selection process for scanning 

equipment typically adheres to the following steps, contingent 

upon the object's geometry and the surrounding environment: 

Step 1: On-site exploration 

On-site exploration is a crucial preliminary step in the site 

selection process, yielding an in-depth understanding of 

scanning site conditions. This stage primarily involves 

determining the scanning range, angles, and pre-setting of 

equipment sites. It facilitates a reduction in scanning workload 

and aids in acquiring clearer point cloud data. In the context of 

post-processing, it also diminishes the point cloud stitching 

workload. 

Step 2: Geometry of the object being scanned 

Objects being scanned are generally categorized into three 

types based on their geometry. The isolated type, illustrated in 

Figure 4(a), usually necessitates a minimum of four scanning 

sites encircling the object to garner comprehensive point cloud 

data. Notably, point cloud data from these sites may present 

substantial stitching errors, potentially leading to non-closure 

issues, thereby necessitating meticulous identification and 

minimization of error sources. The convex type, depicted in 

Figure 4(b), often exhibits significant angular turns in the 

middle section. For such scanning scenarios, a minimum of 

three sites is required to ensure the acquisition of quality point 

cloud data. It is crucial to maximize the overlap between two 

sites since areas with large angular deviations tend to have 

lower point cloud quality, and greater overlap leads to 

enhanced stitching accuracy. The third category, a 

combination of convex and concave forms, as shown in Figure 

4(c), typically demands a greater number of sites due to 

multiple angles, thereby avoiding scanning blind spots. In 

these cases, maintaining a consistent scanning distance across 

all sites is recommended to ensure uniformity in data 

collection. 
 

2.2.3 Color information and grayscale values in 3D point cloud 

data 

In the process of acquiring point cloud coordinates, 3D laser 

scanning technology concurrently captures the point cloud's 

grayscale values, reflecting the varying intensities of the 

laser's reflection. However, the integration of color 

information into the point cloud is dependent on images from 

external digital cameras. This process involves aligning pixel 

points from digital images with the point cloud, thereby 

enriching the point cloud data with color. 

The extraction of color information from point clouds 

significantly enhances the clarity of object textures and other 

details, crucial for the accurate recognition of geometrical 

features in rock masses. The source of color information in 

point clouds is digital cameras, differentiated into built-in and 

external types. Built-in cameras, with predetermined focal 

lengths and parameters, facilitate the scanner's software in 

automatically aligning the captured digital images with the 

point cloud. In contrast, external cameras, selected based on 

specific user requirements, necessitate manual alignment of 

their output images with the point cloud. 

The grayscale values of point clouds differ based on the 

intensity of reflected laser light, bearing a direct relation to the 

material properties of the object. This variance in grayscale 

values enables the classification of the object's composition. 

For instance, within the point cloud data of a slope, there is a 

discernible difference in grayscale values between rock and 

vegetation, as exemplified in Figure 5. 

 

2.2.4 Sampling interval and scanning time of 3D point cloud 

data 

The determination of the sampling point interval, influenced 

not only by the scanning device but also by the scanning 

objective, requires careful adjustment. For terrain scanning 

aimed at generating contour lines or cross-sectional views, a 

larger sampling interval is feasible, typically in the centimeter 

range. Conversely, for slope deformation monitoring, a 

millimeter-level sampling interval is necessary to ensure high 

precision in the resultant slope point cloud data. Generally, a 

smaller sampling interval correlates with increased precision 

of the point cloud data, thus enabling a broader spectrum of 

analysis. However, an overly small interval may prolong 

fieldwork and reduce data processing efficiency. Optimal 

setting of the sampling interval should strike a balance among 

scanning duration, data processing time, and the precision of 

the data. 

 

 
 

Figure 5. Gray difference between vegetation and rock mass 

 

2.3 Processing of point cloud data 

 

2.3.1 Color information in 3D point cloud data 

 

 
 

Figure 6. Data processing flow of 3D laser point cloud 
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Subsequent to the field operations detailed previously, 3D 

point cloud data of the object is obtained. Nevertheless, this 

data typically comprises an array of noise points, including 

airborne dust, vegetation, and various obstructions. These 

elements necessitate removal in later processing stages. 

Additional procedures, such as point cloud stitching and 

coordinate transformation, are integral to the advanced stages 

of point cloud processing. Summarily, the post-processing of 

point cloud data encompasses several key steps: preprocessing 

(including noise reduction and vegetation removal), stitching 

of point cloud data, and coordinate transformation. This is 

depicted in the flowchart presented in Figure 6. Upon 

completion of these processes, the point cloud data becomes 

suitable for subsequent analytical applications. 

 

2.3.2 Coordinate transformation of 3D point cloud data 

In the operational phase of 3D laser scanners, a proprietary 

scanning system is engaged, typically positioning the origin of 

the coordinate system at the scanner's center. This positioning 

methodology yields point cloud data within a relative 

coordinate system. However, for applications where an 

understanding of the object's true geodetic coordinates is 

essential, a transformation of the point cloud data from relative 

to absolute coordinates becomes imperative. During the 

acquisition of field data, the scanner is often employed in 

conjunction with a total station or GPS. The latter is tasked 

with the measurement of the absolute coordinates of reference 

targets. The transformation of point cloud coordinates from the 

relative system of the scanner to the absolute geodetic system 

is effectuated utilizing Eq. (2): 
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where, X1, Y1, Z1 represent the coordinates within the geodetic 

coordinate system, with the X-axis corresponding to the east 

direction, and the Y-axis to the north. X0, Y0, Z0 denote the 

coordinates within the scanner's own system. δx, δy, δz are the 

distances for coordinate translation. S represents the scale 

factor, equating to 1 when both coordinate systems possess the 

same dimensions. α1, α2, α3 symbolize the angles between the 

axes of the absolute and scanner's coordinate systems. R 

denotes the coordinate transformation matrix, as derived from 

Eq. (3): 

 

)()()(),,( 112233321  RRRRR ==  

3 3

3 3

2 2

3 1 3

2 2 3 1

cos sin 0

sin cos 0

0 0 1

cos 0 sin 1 0 0

sin 1 0 0 cos sin

sin 0 cos 0 sin cos

 

 

 

  

   

 
 = −
 
  

−   
    − 
   
   − −   

 
(3) 

 

It is crucial to note that for the research focus of this study, 

specifically the structural analysis of rock masses, the absolute 

coordinate values of the point cloud data are not 

predominantly required. Only the determination of the 

direction of true north is necessary, thereby necessitating only 

the local coordinate system. Upon leveling the scanner, the 

angle α ２  between the scanner's Y-axis and true north is 

measured, subsequently simplifying Eq. (3) to Eq. (4): 
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2.4 Error analysis in 3D laser scanning technology 

 

Despite the numerous advantages of 3D laser scanning 

technology over conventional measurement methods, it is not 

devoid of errors. These errors primarily originate from 

intrinsic limitations of the instruments, external field 

conditions, and inaccuracies during data processing. 

Sometimes, such errors can lead to significant discrepancies 

between the point cloud model and the actual object. Errors in 

3D laser scanning technology are generally categorized into 

field errors and office errors. Field errors predominantly 

include errors inherent to the instrument, environmental errors, 

and reflection errors from the scanning surface. Office errors 

primarily consist of errors in point cloud stitching and in 

matching point clouds from different periods. 

 

2.4.1 Sources of field errors 

Field errors are inaccuracies encountered during the initial 

data collection phase for point cloud data. The complex nature 

of field working environments contributes to multiple factors 

influencing these errors. This section categorizes and analyzes 

them. 

Instrument error refers to the discrepancy between 

measured results and actual outcomes due to the instrument's 

inherent issues, usually involving range and angle 

measurement errors. 

a. Range measurement error 

Distance measurement in 3D laser scanners is executed by 

receiving reflected laser light. However, the emitted laser 

forms a spot on the target object, enlarging with increasing 

distance. Theoretically, the laser measures the distance from 

the spot's center to the scanner's center. Distance measurement 

in scanners, though, is typically based on the first reflected 

point, which introduces increased uncertainty with larger spots. 

This error, escalating with distance, is termed proportional 

error. Furthermore, the fixed distance between the laser 

emitter and reflector in the device also induces error, known 

as fixed error. This instrument error can be formulated by Eq. 

(5): 
 

2

s fixed proportionalS  = + （ ） (5) 

 

where, σs is the distance-related error, σfixed signifies the fixed 

error of the instrument, σproportional represents the proportional 

error associated with range measurement, and S is the distance. 

b. Angle measurement error 

Angle measurement errors in 3D laser scanning chiefly 

encompass horizontal and vertical angle errors. Contributing 

factors include vibrations of the reflective mirror, unevenness 

of the mirror surface, and control errors in the scanning motor's 

uneven rotation. Additionally, the size of the laser spot also 

impacts the angle measurement error. This error is calculated 

as per Eq. (6), with Figure 7 demonstrating the principle: 

 

𝑡𝑎𝑛𝜎𝜃 =
𝑑

2𝑆
 (6) 
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Figure 7. Principle of angle measurement error of 3D laser 

scanning equipment 

 

c. Multipath error 

Under typical conditions, the device receives laser light 

reflected only from a single object. However, in the presence 

of obstructions, if the laser strikes the junction between the 

obstruction and the object (as depicted in Figure 8), two beams 

of reflected laser light may be received. This interference leads 

to inaccuracies in distance measurement, known as multipath 

error. 

 

 
 

Figure 8. Multipath effect 

 

2.4.2 Sources of office errors 

Subsequent to the acquisition of point cloud data, 

processing tasks encompass the stitching of point cloud data, 

filtering, and the alignment of point clouds from different 

periods. The primary sources of error in this phase are 

identified in the stitching of point clouds and their registration 

from diverse periods. 

a. Point cloud stitching error 

The process of gathering point cloud data for an object 

frequently necessitates the use of multiple scanning stations, 

each providing a scan from a unique angle. Given that each 

scanning station's data is centered around its respective 

scanner, the resulting point clouds do not share a unified 

coordinate system. This necessitates the alignment of point 

cloud data from each station into a singular coordinate system, 

a process known as point cloud stitching. There are generally 

three approaches to stitching: aligning based on feature points 

between point clouds, utilizing targets established during 

scanning, or employing transformations and stitching based on 

rear sight point coordinates established at each scanning 

station. Irrespective of the chosen method, stitching errors are 

unavoidable, though the use of targets typically results in 

minimal errors. Contemporary scanning equipment often 

achieves stitching inaccuracies within a 2mm threshold. 

b. Registration error of point clouds from different periods 

For applications such as deformation analysis using point 

cloud data, a prevalent method involves comparing two 

distinct sets of point clouds, either via point-to-model or 

model-to-model comparisons. In either scenario, aligning the 

two point clouds is imperative. Standard practice involves 

matching based on distinctive points or surfaces. However, for 

deformation monitoring where precision is paramount, this 

approach often incurs substantial error. Utilizing targets 

provided by the scanning equipment for alignment is 

recommended to enhance accuracy. 

3. METHODOLOGY FOR EXTRACTING BLAST PILE 

CHARACTERISTICS FROM POINT CLOUD DATA 

 

3.1 Preprocessing of point cloud data 

 

3.1.1 Filtering techniques 

In the acquisition of point cloud data from blast piles, the 

presence of noise is an inevitable consequence influenced by 

factors such as scanning equipment, environmental conditions, 

and the inherent characteristics of the blast pile itself. 

Consequently, the initial phase in point cloud data processing 

is dedicated to noise reduction. This study integrates radius 

filtering and statistical filtering to optimize denoising for 

specific field data environments. Radius filtering, noted for its 

simplicity [16], entails the construction of a k-d tree structure 

within the point cloud data to establish topological 

relationships between disordered points. Here, a threshold D 

is defined for the quantity of neighboring points within a 

predetermined range R, and the count of neighboring points 

for each individual point is calculated. Points meeting this 

threshold are retained, effectively addressing isolated, drifting, 

and redundant points in the point cloud data. 
 

 

(a) Before filtering 

 

(b) After filtering 

 

Figure 9. Noise reduction of point cloud data 

 

The elimination of mixed points, characterized by their 

sparse spatial distribution and varying distances from the 

target point cloud, poses a significant challenge in the 

denoising process. Sole reliance on radius filtering is 

insufficient for their removal, as each noise point, though 

minimal, contributes certain informational content. The 

application of statistical filtering [17] targets the sparsity 

characteristic of these mixed points. It involves calculating the 

average distance of each point to its nearest k points. Given 

that points within a blast pile are closely packed, their inter-

point average distances are relatively small. Consequently, 

points surrounded by larger inter-point distances are identified 

as sparsely distributed, characterizing them as mixed points. 

This process entails statistical analysis on the neighborhoods 

of each point, presupposing that the point distances in the blast 

pile point cloud conform to a Gaussian distribution, shaped by 

mean μ and standard deviation σ. The n-th point in the point 

cloud, denoted as Pn (Xn, Yn, Zn), and its distance to any other 

point Pm (Xm, Ym, Zm) is calculated as per Eq. (7): 
 

𝑆𝑖 = √(𝑋𝑛 − 𝑋𝑚)
2 + (𝑌𝑛 − 𝑌𝑚)

2 + (𝑍𝑛 − 𝑍𝑚)
2 (7) 
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Eq. (8) is utilized to compute the average distance between 

each point and all other points, with the standard deviation 

determined by Eq. (9): 
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In the implementation of the algorithm, only the values for 

k and m, the standard deviation multiplier m, are input. A point 

is preserved if its average distance to the nearest k points falls 

within the standard range (μ-mσ, μ+mσ). Figure 9 displays the 

results both before and after the noise reduction process. 

 

3.1.2 Stitching 

Post-noise reduction, the ensuing step involves the stitching 

of point cloud data. The inherent limitations in scanning angle 

and area during the 3D laser scanning of blast piles necessitate 

multiple scans from various angles and stations, as capturing 

the entire point cloud in a single scan is often unfeasible. Each 

scanning operation, centered around the scanner, establishes a 

unique coordinate system for a comprehensive 360-degree 

horizontal scan. To amalgamate multi-station point cloud data 

effectively, the scanned data is unified within the same 

coordinate system. This stitching process is facilitated by 

utilizing the GPS positioning system to assign absolute 

coordinates to each scanning station, thereby integrating point 

cloud data from diverse angles and stations into a cohesive 

whole. In complex mining environments, field scanning can 

be prone to errors due to signal issues or incorrect station setup. 

To mitigate such errors and enhance stitching precision, the 

Generalized Iterative Closest Point (GICP) algorithm is 

employed for refined stitching post-GPS coordinate alignment. 

 

3.1.3 Downsampling 

 

 

(a) Original point cloud data 

 

(b) Downsampling results 

 

Figure 10. Downsampling results 

 

The substantial data volume generated from each scan of the 

on-site blast pile point cloud poses challenges for 

computational efficiency in subsequent stages. Given the 

intrinsic properties of 3D point clouds, feature vectors within 

the same scan exhibit resistance to density variations. 

Consequently, variations in the local surface sampling density 

of the scan data do not influence the feature vector values. This 

implies that a reduction in point cloud density does not 

detrimentally affect research outcomes. The employed 

downsampling method is voxel-based, aiming to uniformly 

diminish the number of sampling points. It involves the 

construction of a voxel grid [18] encompassing the entire point 

cloud data set. This extensive voxel grid is then divided into 

smaller, equally-sized cubic sections based on pre-set 

parameters. The centroid of the point cloud in each cube is 

computed, allowing for the elimination of extraneous points 

and substitution of the cube's point cloud data with its centroid. 

This process ensures the preservation of the blast pile point 

cloud's geometric characteristics even while reducing point 

cloud density, thereby achieving a filtering effect. The 

substantial reduction in data volume ensuing from this 

approach markedly enhances program execution speed. Figure 

10 illustrates the impact of voxel downsampling on the blast 

pile point cloud data. 
 

3.2 Feature extraction of rock blocks 

 

3.2.1 Application of RANSAC plane fitting 

The preprocessing of point cloud data still leaves numerous 

ground points, not pertinent to the study, within the field data. 

These extraneous points can hinder the speed and precision of 

feature computation, blending seamlessly with the blast pile 

point cloud. To address this issue, the RANSAC algorithm is 

employed for preliminary segmentation of the blast pile point 

cloud data, effectively removing ground points to augment 

computational efficiency and accuracy. The essence of the 

RANSAC algorithm is a two-step iterative process: first, a 

random subset of points from the blast pile point cloud is 

selected to estimate model parameters [19], followed by the 

computation of corresponding model parameters; second, the 

remainder of the data is evaluated against the model derived in 

the first step, classifying points that fit the model as inliers and 

the rest as outliers. 

The optimal model for plane fitting of the point cloud data 

is attained after K iterations. To optimize the exclusion of 

ground points from the blast pile point cloud, a detailed 

analysis of RANSAC's parameters is imperative, ensuring 

more accurate fitting results. The iterative process can be 

predetermined based on the volume of point cloud data. In 

point cloud space, any three non-collinear points can form a 

plane, usually expressed by the general equation: 

 

Ax+By+Cz+𝐷 = 0 (10) 

 

Assuming P1(x1, y1, z1), P2(x2, y2, z2), and P3(x3, y3, z3) as 

any three points from the point cloud dataset, a plane equation 

of the form Ax+By+Cz+D=0 is constructed based on these 

data points, where A, B, and C denote the plane's normal vector. 

The plane equation is derived using the coordinates of these 

points: 

 

𝑃1𝑃2 = (𝑥1 − 𝑥2, 𝑦1 − 𝑦2, 𝑧1 − 𝑧2) 
𝑃1𝑃3 = (𝑥1 − 𝑥3, 𝑦1 − 𝑦3, 𝑧1 − 𝑧3) 

(11) 

 

(𝐴, 𝐵, 𝐶) = 𝑃1𝑃2 × 𝑃1𝑃3

= |
𝑖 𝑗 𝑘

𝑥1 − 𝑥2 𝑦1 − 𝑦2 𝑧1 − 𝑧2
𝑥1 − 𝑥3 𝑦1 − 𝑦3 𝑧1 − 𝑧3

| 
(12) 

 

The iterative process halts after K iterations when there are 

no remaining unmarked points. The algebraic distance of other 

points to the plane, as determined by these three points, is 
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computed (as per Eq. (7)). Points are deemed on the same 

plane if their distance is below a threshold value; otherwise, 

they are marked as outliers. Once the count of points on the 

same plane surpasses a certain quantity, the plane is preserved.  

 

i i i id Ax By Cz D= + + +  (13) 

 

Figure 11 illustrates a laboratory flat laying state rock block, 

with its outline preliminarily identified through RANSAC 

plane fitting. To enhance process efficiency, the number of 

iterations can be preset, contingent upon the point cloud data 

volume. 

 

 

(a) Original rock image 

 

(b) Preprocessing results   (c) RANSAC plane fitting 

 

Figure 11. Fitting results of rock blocks in the laboratory 

 

3.2.2 DBSCAN clustering 

In the point cloud data of blast piles, rock blocks are densely 

arranged, with some overlapping, posing a challenge for 

segmentation. Nevertheless, it is observed that the point cloud 

density in areas of depressions and gaps between rock blocks 

is significantly lower compared to regions with rock blocks. 

This observation leads to the application of the DBSCAN 

algorithm for the clustering analysis of the blast pile point 

cloud, facilitating the delineation of rock block contours. 

DBSCAN effectively clusters spatial data points based on 

density [20], employing the concept of neighborhood to 

represent the spatial data point set's density. This algorithm 

does not require preset cluster numbers, can detect clusters of 

arbitrary shapes, and inherently possesses a noise-filtering 

capability, clarifying the spatial distribution of rock blocks 

within the blast pile. The parameters Eps and MinPts in 

DBSCAN, defining the compactness of point cloud 

distribution, are crucial: Eps sets the radius for clustering point 

clouds, while MinPts determines the threshold for the number 

of point cloud samples in the neighborhood with radius Eps. 

Laboratory-laid rock block point cloud analysis, as depicted in 

Figure 12, demonstrates recognition results with varying Eps 

and MinPts values, illustrated in Figure 13. 

Iterative testing established the parameter variation patterns 

of the DBSCAN clustering algorithm. A higher Eps value with 

fixed MinPts leads to under-segmentation in rock block point 

clouds, while a lower Eps value results in over-segmentation. 

Conversely, with a fixed Eps value, a larger MinPts value 

causes over-segmentation, and a smaller MinPts value leads to 

under-segmentation. Identifying the appropriate Eps and 

MinPts values is essential for optimal clustering outcomes and 

requires multiple trials in varying blast pile point cloud 

scenarios. 

 

 
 

Figure 12. Cloud images of test points 

 

 

(a) Eps=0.012, MinPts=55 

  

(b) Eps=0.015, MinPts=35 

 

(c) Eps=0.010, MinPts=35 

 

(d) Eps=0.012, MinPts=35 

 

Figure 13. Comparison of recognition results 

 

3.2.3 Particle size extraction from rock blocks 

Following clustering, the 3D point cloud model of the rock 

block is reconstructed using the 3D convex hull method. The 

rock block's point cloud model encompasses a collection of 

surface scan points. Combining RANSAC plane fitting and 

DBSCAN clustering with 3D convex hull calculations 

facilitates the volume computation of the rock block. The 

principle involves selecting any four non-coplanar points [21, 

22] within the rock block point cloud, forming an initial 

tetrahedron as the base of the convex hull. After establishing 

the initial convex hull, other points' spatial relation to this hull 

is assessed. Points within the initial hull are bypassed, while 

exterior points are utilized to form new convex hulls, 

continuing until all points in the blast pile point cloud data are 

evaluated. The 3D reconstruction resulting in the convex hull 

(Figure 14a) allows for the direct calculation of the rock 

block's longest particle diameter using the bounding box 

method. The bounding box (Figure 14b), a simplistic 

geometric space, encapsulates any shape or complexity of the 

point cloud data. The OBB method [23] is used to compute the 

rock block particle size, particularly focusing on the main axis 

of the OBB. 
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(a) 3D convex hull  (b) Schematic of the OBB algorithm 

 

Figure 14. Block particle size calculation diagram 

 

3.3 Deriving 3D characteristics of blast piles  

 

The morphology of blast piles, characterized as standard 

irregular objects, poses significant challenges for manual 

measurement. Utilizing 3D laser scanning technology, 

comprehensive spatial data of field blast piles is captured, 

revealing the surface's spatial characteristics. The process 

involves generating dense triangular meshes from 

preprocessed directed point cloud data, employing 

triangulation methods [24], and subsequently accomplishing 

3D reconstruction to form the blast pile's 3D model. The 

Delaunay algorithm, prevalently used for mesh triangulation 

[25], is applied to the blast pile's point cloud data. The volume 

of the resulting blast pile model is calculated using projection 

methods. 

The underlying principle of the projection method for 

volume calculation is the projection of each triangular element 

onto a plane. These projected triangular bases are connected to 

form a polyhedron, and the summation of these polyhedrons' 

volumes yields the model's total volume. Despite the 

irregularity of the blast pile surface, the model precisely 

determines the projection plane. The contour line of the blast 

pile typically exhibits a downward curvature with minimal 

intersections and overlaps. An orthographic projection method 

is employed to project the blast pile surface onto the XOY 

plane, and through 3D rotation, a spatial prism is formed 

between the irregular triangular mesh surface, the projection 

plane, and the intermediate elevation (Figure 15). The 

cumulative volume of each triangular prism ascertains the 

blast pile's total volume. 

 

 
 

Figure 15. Illustration of projection plane 

 

The extraction of 3D parameters is critical for analyzing the 

blast pile's spatial morphology [26]. Key 3D characteristics 

include the forward throw distance, lateral extent, and height, 

with the lateral extent being predominantly influenced by the 

lateral extent of the blasting area. Upon obtaining the blast 

pile's 3D model, with the blasting design's free face as the 

XOZ plane and the forward throw distance along the Y-axis, 

the Cartesian coordinate system is used to compute the model's 

length, width, and height. Eq. (14) is employed to determine 

the maximum and minimum values of X, Y, Z in the model, 

thereby extracting the 3D characteristics of the blast pile: 

 

max min

max min

max min

X x x

Y y y

Z z z

= −

= −

= −
 

(14) 

 

The same method is utilized to calculate the bench height 

pre-blasting and, in conjunction with post-blasting blast pile 

height, to ascertain the blast pile's rise height: 

 

ℎ𝑟𝑖𝑠𝑒=Z𝑝𝑜𝑠𝑡−𝑏𝑙𝑎𝑠𝑡𝑖𝑛𝑔-Z𝑏𝑒𝑛𝑐ℎ (15) 

 

Short forward throw distances and high rise heights post-

blasting often suggest low looseness and suboptimal blasting 

results. Moreover, excessive rise height poses a safety hazard 

during loading operations and impedes ore transport efficiency. 

In contrast, extensive forward throw distances coupled with 

low rise heights indicate excessive explosive usage [27], 

leading to inefficiencies in cost. The deduced 3D 

characteristics of the blast pile provide a benchmark for 

evaluating blasting effects and serve as feedback for 

optimizing blasting parameters. 

 

 

4. RESULT ANALYSIS 

 

4.1 Analysis of laboratory test results 

 

The effectiveness of blasting is influenced by both the 

properties of the rock and the parameters of the blast, resulting 

in variability in blasting outcomes. To ascertain the 

generalizability of the blast fragmentation recognition 

algorithm to diverse blast pile distributions, rock blocks of 

different sizes were mixed and arrayed into various forms in a 

laboratory setting, maintaining a consistent stacking height of 

approximately 15cm. Representative morphologies of blast 

piles were then chosen from these configurations for analysis. 

Figure 16 presents intermediate process images derived from 

the point cloud data processing methodology delineated in 

Section 2. 

In the examination of Figure 16, it is evident that the 

majority of rock blocks are accurately identified, particularly 

larger rocks which exhibit a higher rate of recognition. 

Nonetheless, instances of over-segmentation and under-

segmentation are noted in regions where rocks adhere to each 

other. Optimization of these results is achievable through the 

adjustment of the Eps and MinPts parameters. Table 1 collates 

the measurement parameters of rock block identification 

against actual particle size values. A series of repetitive 

identifications on 25 distinct stacked blast piles within the 

laboratory setting revealed a tendency of the OBB algorithm 

to overestimate rock block particle sizes, with an average 

relative error approximating 7.62% in comparison to actual 

measurements. 

Subsequent to these laboratory tests, the applicability and 

precision of the method described in this paper were verified. 

The volume of blast piles calculated via this method was 

contrasted with both actual measurements and computational 

outcomes from Python's VTK library. The method exhibited 

an average volumetric error of about 4.67%, while direct 

computation through the VTK library indicated an average 
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error margin of approximately 8.03%. Consequently, the 

volume measurements conducted in this study demonstrate 

greater accuracy and applicability. Figure 17 compares the 

calculated forward throw distance and height of the blast pile 

using the coordinate method against actual values. To bolster 

credibility, Principal Component Analysis (PCA) was also 

employed to calculate corresponding parameters for 

comparative analysis. The findings indicate that the average 

error in parameter measurements using this method stands at 

3.12%, as opposed to a 5.02% error rate when using the PCA 

algorithm directly. Hence, the 3D characteristic values of the 

blast pile computed through the proposed method exhibit 

heightened precision. 

 

 
 

Figure 16. Point cloud identification results of indoor stacked rock blocks 

 

Table 1. Comparison of particle size calculation results 

 
Rock 

Block No. 

Direct 

Measurement (m) 

Algorithm 

Calculation (m) 

Relative 

Error (%) 

Rock 

Block No. 

Direct 

Measurement (m) 

Algorithm 

Calculation (m) 

Relative 

Error (%) 

1 0.159 0.166 4.40 16 0.080 0.083 3.75 

2 0.152 0.155 1.97 17 0.076 0.080 5.26 

3 0.137 0.141 2.91 18 0.110 0.113 2.73 

4 0.145 0.152 4.83 19 0.118 0.120 1.69 

5 0.136 0.140 2.94 20 0.147 0.142 3.40 

6 0.123 0.126 2.43 21 0.123 0.127 3.25 

7 0.110 0.112 1.82 22 0.092 0.099 7.61 

8 0.115 0.120 4.35 23 0.095 0.098 3.16 

9 0.120 0.116 3.33 24 0.132 0.135 2.27 

10 0.121 0.124 2.48 25 0.115 0.122 6.08 

11 0.098 0.094 4.08 26 0.124 0.128 3.225 

12 0.099 0.101 2.02 27 0.122 0.126 3.28 

13 0.143 0.146 2.10 28 0.126 0.131 3.97 

14 0.133 0.135 1.50 29 0.128 0.135 5.47 

15 0.140 0.143 2.14 30 0.133 0.138 3.76 

 

 
 

(a) Forward throw distance (b) Height of the blast pile 

  

Figure 17. Comparison of 3D feature parameters of indoor stacked rock blocks 
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4.2 Field test results 

 

The field test was carried out at the Anqian Phase II Open-

pit Mine Rock Stripping Project. Prior to and subsequent to the 

blasting process, the blasting area underwent 3D laser 

scanning. The primary ore types in the mine comprised 

hematite and magnetite, supplemented by minor quantities of 

limonite and siderite. Characterized by high rock hardness and 

complex joint and fracture structures, the blasting operation 

encompassed 87 blast holes within a rocky terrain. The 

parameters included hole spacing of 6.6m, row spacing of 

4.2m, inter-hole delay of 42ms, inter-row delay of 17ms, hole 

depth ranging from 12.3m to 13.9m, a maximum charge per 

hole of 168kg, and a total charge weight of 13,272kg. A plum 

blossom pattern and sequential detonation were employed for 

hole placement. To comprehensively analyze the distribution 

characteristics of the blast pile, 3D laser scanning was 

conducted on the blasting area both prior to and subsequent to 

the blasting operation. This process facilitated the creation of 

a 3D model of the blasting area. Figure 18a illustrates the 3D 

model established through this technique. Following the 

established processing procedure, the data for the 

reconstructed convex hull were obtained, as depicted in Figure 

18b. Subsequently, the parameters pertinent to the blast pile 

were calculated. 

 

 
(a) Point cloud data acquisition 

 
(b) Point cloud data processing 

 

Figure 18. Point cloud data analysis test at open-pit mine 

bench blasting site 

 

Post-blasting operations involved the direct measurement of 

the blast pile's height, forward throw distance, and span of the 

blast area, with the actual volume of the blast pile recorded via 

shovel transport data. These measurements were juxtaposed 

with the results computed through the method delineated in 

this paper (Table 2). The blast pile volume deduced via the 

projection method exhibited a close alignment with the actual 

shovel transport data, manifesting a relative error of 4.85%. 

The calculated parameters of the blast pile's height, forward 

throw distance, and span, using the coordinate method, 

showed relative errors of 2.92%, 3.91%, and 4.29%, 

respectively. These findings affirm the method's accuracy and 

its enhanced speed and safety over conventional field 

measurement techniques. 

Table 2. Calculation results of 3D parameters of the site blast 

pile 

 
Blast Pile 

Parameter 

Volume 

(m3) 

Blast Pile 

Height (dm) 

Forward Throw 

Distance (dm) 

Blast Area 

Span (dm) 

Field measurement 
Results 

30810.69 14.35 36.63 55.5 

Scanning 

calculation results 
32305.20 14.62 37.41 56.8 

Relative error (%) 4.85 2.92 3.91 4.29 

 

Table 3. Identification accuracy of rock blocks in five blast 

piles 

 
Blast Pile Area P0-0.5 P0.5-1.0 P1.0-1.5 P1.5-2 

1 76.9% 78.3% 80.2% 91.8% 

2 77.3% 79.6% 76.6% 89.6% 

3 71.2% 74.7% 81.9% 87.8% 

4 74.1% 78.3% 80.6% 88.5% 

5 72.9% 76.5% 79.6% 91.2% 

6 75.5% 80.9% 78.3% 88.3% 

 

Owing to the expansive surface area of the blast pile, direct 

calculation of rock block characteristics entails substantial 

computational demands and presents challenges in verification. 

Post-acquisition of the 3D point cloud of the surface rocks of 

the blast pile, five segments of rock block point clouds were 

selected for analysis and validation. Parameter trials 

ascertained that optimal recognition effects were achieved 

with Eps values of 0.04-0.045 and MinPts ranging between 35-

40. Given the field challenges in directly measuring the 

volume of rock blocks, particle size was adopted as the 

representative characteristic for blast fragmentation. 

Reflecting field conditions, rock block particle sizes were 

segmented into four length intervals: 0-0.5m, 0.5-1m, 1-1.5m, 

and 1.5-2m. Table 3 outlines the accuracy statistics of rock 

block particle size identification within various size ranges 

from the point cloud data of blast piles from six typical on-site 

areas. P0-0.5 is designated to represent the accuracy rate in 

identifying the particle sizes of rock blocks that fall within the 

0-0.5m range. The table reveals that larger rock blocks 

demonstrate higher identification accuracy, with an average 

site identification accuracy of 80.4%. 

In accordance with the operational context of Anqian Mine, 

the calculated rock block particle sizes were classified as 

follows: 0-0.5m as small blocks, 0.5-1m as medium blocks, 

above 1-1.2m as large blocks, and beyond 1.2m as blocks 

necessitating secondary crushing. The large block rate for this 

blasting was noted at 4.9%, indicative of effective blasting. 

For transportation efficiency, rock blocks exceeding 1.2m 

necessitated mechanical crushing. 

 

 

5. CONCLUSIONS 

 

Employing 3D laser scanning technology, this study 

rigorously examines the distribution characteristics of blast 

piles, formulates a methodology for their characterization, and 

substantiates the efficacy of this approach through both 

laboratory and field testing. The salient conclusions are as 

follows: 

A pioneering approach for computing blast fragmentation 

characteristics, rooted in point cloud data, has been developed. 

This method extensively utilizes the RANSAC plane fitting 

and DBSCAN clustering algorithms, facilitating the 

delineation of blast fragmentation contours through the 
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strategic adjustment of Eps and MinPts parameters. Rock 

block volumes are computed employing the convex hull 

algorithm, while the bounding box length serves as an 

indicator of block particle size. 

A technique for extracting 3D features of blast piles has 

been established. This involves applying the Delaunay 

algorithm to triangulate the 3D point cloud data of blast piles, 

thereby generating a mesh model of the pile. The projection 

method is utilized to calculate the model's volume, and the 

coordinate method is employed to determine key 3D 

parameters, including the height, forward throw distance, and 

lateral extent of the blast pile. 

The utility of the proposed methodology is affirmed through 

the analysis of point cloud data from laboratory-arranged blast 

piles and field blast piles at an open-pit mine bench blasting 

site. Laboratory tests reveal a relative error in rock block 

volume under stacked conditions of approximately 4.61%, and 

a 4.75% relative error in particle size. In field applications, the 

method demonstrates an average rock block identification 

accuracy of about 80.4%, which increases with the size of the 

rock blocks. The calculated volume of the blast pile shows a 

relative error of 4.85%, and the errors in computing the 3D 

characteristics are 2.92%, 3.91%, and 4.29%, respectively. 

These findings on blast pile distribution characteristics 

provide insightful benchmarks for the assessment of blasting 

outcomes and the refinement of blasting parameters. 
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