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With the continuous progress of information technology, Virtual Reality (VR) technology 

has been more and more widely used in the field of education, and the VR classroom has 

revolutionized the traditional education model due to its unique interactivity and immersion. 

However, the complex and changing VR classroom scenes bring challenges to effective 

scene analysis and optimization. Although existing deep learning methods have made 

significant progress in image processing, they still face the problems of capturing 

insufficient detail information and under-utilizing global information when accurately 

segmenting and classifying VR classroom scenes. To address these problems, this study 

proposes a series of innovative approaches. The first part investigates VR classroom scene 

segmentation based on feature enhancement and feature distillation. By designing an 

attention mechanism with multi-pooling compression incentives and a feature dehazing 

branch structure with "enhance-refine-subtract" strategies, the network's ability to extract 

valid information is significantly improved and the interference of invalid information is 

effectively reduced, which greatly enhances the accuracy of semantic segmentation. The 

second chapter talks about the optimization of VR classroom scene classification based on 

multi-scale global information enhancement. By incorporating the Transformer structure, 

multi-scale information is extracted effectively, global associated information is utilized 

comprehensively, information processing mechanism in the classification process is 

optimized, and classification performance is enhanced. Results attained in this study not 

only improves our understanding of VR classroom scenes, but also provides new insights 

and technical approaches for the application of deep learning models in processing 

complicated scenes. Moreover, findings of this paper could portend far-reaching 

implications in the fields of educational technology and computer vision, and broaden the 

application range of VR classroom. 
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1. INTRODUCTION

Today, as the deep learning technology in the field of 

computer vision is developing at a fast speed, the new idea of 

VR classroom has attracted widespread attention, and now it 

has been adopted as an emerging education method [1-3]. In 

this context, some researchers have included the analysis of 

VR classroom scenes as a research topic of theirs [4, 5], and 

they have realized that by accurately analyzing and 

understanding the visual content in a VR classroom, the 

quality of teaching and the immersion of learners can be 

greatly enhanced [6-8]. However, the complexity and 

variability of VR classroom scenes, as well as the noise, and 

the interference factors in the environment, can all bring 

challenges to scene analysis and optimization. 

The importance of VR classroom scene analysis lies in not 

only the construction quality of the virtual teaching 

environment, but also the effective use of educational 

resources, and the innovation of teaching methods [9]. If we 

can accurately segment and classify these scenes through deep 

learning models, then more intuitive teaching assistance can 

be provided to teachers, and more personalized learning 

experiences could be provided to students [10-14]. Besides, 

optimized scene analysis techniques can be extended to other 

VR applications, such as games and simulation training, and 

these can largely broaden the application range of VR. 

Although scholars in the field have proposed many scene 

analysis methods so far, yet these methods still have certain 

defects and shortcomings when dealing with VR classroom 

scenes [15, 16]. For example, during scene segmentation, 

common deep learning methods tend to ignore the minute 

details and boundary information in the environment, and 

these can result in inaccurate segmentation results [17, 18]. 

Meanwhile, the extraction and utilization of global 

information in scene classification is insufficient, making the 

classification results unable to fully reflect the details and 

deep-level features of the scene, and these problems limit the 

accuracy and reliability of VR classroom scene analysis [19-

22]. 

The main content of this paper focuses on two core research 

parts: the first one is VR classroom scene segmentation based 

on feature enhancement and feature distillation. This study 
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proposes a new attention mechanism with multi-pooling 

compression incentives, and a feature dehazing branching 

structure with "enhance-refine-subtract" modules. These 

innovative approaches significantly enhance the network's 

ability to capture valid information and reduce the interference 

of invalid information, thus achieving significant 

improvements in the performance of semantic segmentation of 

scene images. Second, this paper investigates the optimization 

of VR classroom scene classification based on multi-scale 

global information enhancement. The introduction of 

Transformer architecture allows for effective extraction of 

multi-scale spatial information and deep integration of global 

data. These findings not only significantly optimize the 

understanding and representation of VR classroom scenes but 

also provide new perspectives and methodologies for the 

application of deep learning in complex scene analysis, 

holding significant theoretical and practical value. 

2. SCENE SEGMENTATION IN VR CLASSROOMS

BASED ON FEATURE ENHANCEMENT AND

DISTILLATION

In VR classroom environments, scenes often contain a 

variety of complex visual elements, such as diverse teaching 

materials, simulated objects, and learner interactions. These 

elements can easily lead to information confusion and loss of 

details in traditional segmentation methods. Particularly under 

conditions of changing lighting, perspective shifts, and 

instances of blurring or occlusion in the scene, effective 

information extraction becomes notably challenging. In 

response to these practical issues in the analysis and 

optimization of VR classroom scenes, this paper introduces an 

attention method based on multi-pooling compression 

excitation. The multi-pooling structure enhances the network's 

ability to capture features of varying scales. The compression 

excitation mechanism, through weighted allocation, 

intensifies focus on pertinent features while suppressing 

irrelevant information, thus improving the precision in 

recognizing educational content and learner interactions 

during the segmentation task. Moreover, this method 

demonstrates superiority in removing or reducing visual noise 

that may stem from VR technology itself, ensuring that the 

model maintains high segmentation performance under less 

than ideal visual conditions. This implies that the method 

proposed in this paper maintains stable segmentation effects, 

whether in dimly lit scenes or against complex backgrounds, 

providing more accurate and robust scene analysis capabilities 

for VR classrooms. 

Figure 1 illustrates the structure of the multi-pooling 

compression excitation module. The core design of the 

proposed module lies in the parallel use of global max pooling 

and global average pooling layers, which capture different 

types of global information. The global max pooling layer 

highlights the most significant features, namely the salient 

signals in the scene, while the global average pooling layer 

provides statistical information of the feature mappings, 

reflecting the overall distribution. These two types of 

information are then dimensionally reduced through their 

respective fully connected layers, compressing the features 

and reducing the number of parameters, thereby also 

enhancing the model's generalization ability. Subsequently, 

the ReLU activation layer is employed to introduce non-

linearity, enhancing the network's capability to express and 

learn more complex non-linear relationships between features. 

Following this, the features output from the aforementioned 

two paths are further encoded through individual FC layers, 

making the features more compact while retaining necessary 

information. Then, these two features are fused through an 

addition operation, effectively combining the global 

information extracted by the max and average values, offering 

a more comprehensive perspective of the features. Finally, the 

fused features are activated through a Sigmoid activation 

function, yielding weights between 0 and 1, which represent 

the importance of each channel. These weights, when 

multiplied channel-wise with the input features, enable 

recalibration of the original features, thereby emphasizing 

beneficial information and suppressing insignificant signals. 

Figure 1. Structure of the multi-pooling compression 

excitation module 

Initially, the input feature map is processed through the 

global max pooling and global average pooling layers, 

capturing the salient and overall statistical information of the 

scene's features, respectively. Subsequently, these global 

pieces of information are compressed through their respective 

fully connected layers, aiming to reduce dimensions, thereby 

decreasing the model's parameters and computational load, 

and preparing compact feature representations for the 

subsequent excitation step. Assuming the compressed features 

are represented by DMS and DAS, the number of channels in 

feature D is denoted by Z, and the height and width of the 

features are represented by G and Q, the two-dimensional 

input feature in the z-th channel, and the compressed features 

post-global max pooling and global average pooling are 

denoted by Dz, Dz
MS, and Dz

AS, respectively. The computational 

formulas are as follows: 

( )( )
,

,z z

MS
u G k Q

D MAX D u k
 

= (1) 

( )
0 0

1
,

G Qz z

AS u k
D D u k

G Q = =
=


  (2) 

The compressed features Dz
MS and Dz

AS are passed through 

a ReLU activation layer to introduce non-linearity, enabling 

the model to capture more complex feature relationships. 
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Subsequently, these features are further encoded through a 

fully connected layer, generating an independent weight value 

for each feature channel. Suppose the weight matrices for DZ1 

and DZ2 are represented by Q1 ∈ RZ*Z/e and Q2 ∈ RZ*Z/e, 

respectively. The ReLU activation function is denoted by σ, 

and the process is expressed as follows: 

 

( )'

2 1MEX MSD Q Q D=  (3) 

 

( )'

2 1AEX ASD Q Q LD=  (4) 

 

The two sets of channel weights obtained in the previous 

step, D'MEX and D'AEX, are added together to yield the 

aggregated feature D'EX, integrating the global information 

captured by both maximization and average pooling strategies. 

The aggregated feature is then processed through a Sigmoid 

activation function, outputting the final weights for each 

channel. These weights, ranging between 0 and 1, represent 

the relative importance of each channel to the task. Assuming 

the Sigmoid activation function is denoted by σ, the final 

expression for the excited feature D'EX is as follows: 

 

( ) ( )' ' 'EX EX MEX AEXD D D D = = +  (5) 

 

Suppose the input variable value is represented by c, and the 

final function output value is denoted by δ(c). The specific 

formula for the Sigmoid activation function is: 

 

( )
1

1 c
c

e


−
=

−
 (6) 

 

Finally, the weights output by the Sigmoid function are 

multiplied channel-wise with the original input feature map, 

achieving feature recalibration. This step enhances focus on 

useful features while suppressing unimportant or interfering 

information, thereby maintaining the original feature structure 

while highlighting the expression of key information in the 

analysis of VR classroom scenes. Assuming the excited one-

dimensional feature is represented by DEX, and the recalibrated 

feature is denoted by D~, which is the product of DEX and the 

original feature D in the corresponding channels, the 

expression is as follows: 

 

EXD D D=   (7) 

 

Figure 2 displays the overall network structure that 

incorporates the multi-pooling compression excitation module. 

This paper provides solutions to a series of practical problems 

encountered in the analysis and optimization of VR classroom 

scenes by introducing a feature dehazing branch structure with 

an "enhance-refine-subtract" enhancement module, along with 

a feature distillation module incorporating an attention 

mechanism. Initially, the dehazing branch structure effectively 

addresses the issue of visual information loss in VR 

environments caused by simulated fog effects. The "enhance" 

step improves the contrast and clarity of features, thereby 

enhancing their recognizability; the "refine" step further 

precisely adjusts these features, ensuring the preservation of 

details; the "subtract" step effectively removes the scattering 

and color degradation effects caused by the fog, restoring the 

essential characteristics of the scene. Subsequently, the 

integrated feature distillation module, through its attention 

mechanism, further focuses and optimizes key features, 

ensuring effective integration of features in multi-task learning 

and enhancing the model's ability to parse complex scenes in 

semantic segmentation tasks. Figure 3 demonstrates the 

backbone network structure incorporating the feature dehazing 

branch and the feature distillation module. 

 

 
 

Figure 2. Network structure incorporating multi-pooling 

compression excitation module 

 

 
 

Figure 3. Backbone network incorporating feature dehazing 

branch and feature distillation module 

 

The feature dehazing branch structure first upsamples deep 

features through two stride-2 transposed convolution modules. 

This process not only increases the spatial resolution of the 

feature map but also aligns the number of feature channels 

with corresponding stages in the decoder, laying the 

foundation for feature fusion. Subsequently, these upsampled 

features are fused with the jump connection features from the 

encoder. This step utilizes the rich edge and texture 

information contained in shallow features to complement deep 

features, thereby obtaining a more comprehensive feature 

representation. Further, the fused features are input into the 

"Enhance-Refine-Subtract" enhancement module, the core 
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function of which is to improve the quality and distinction of 

features. The output fog-free features are significantly 

enhanced in quality through structured processing in the 

"enhance," "refine," and "subtract" components. Assuming the 

enhanced image after v iterations is represented by K^
v, the 

image deblurring method by h(.), and the input blurred image 

by U, the following formula represents the expression of the 

enhancement module: 

 

( )1
ˆ ˆ ˆ

v v vK h U K K+ = + −  (8) 

 

Assuming the enhanced feature at stage v is represented by 

kv, the shallow feature obtained from the encoder at stage v by 

uv, the 2x upsampling operation by ↑2, and the feature 

refinement operation unit by H(.), the module can also be 

represented as: 

 

( )( ) ( )1 2 1 2v v v vk H u k k+ += +  −   (9) 

 

The feature distillation module with an attention mechanism 

introduced in this paper is an efficient multi-task learning 

strategy. It enhances the performance of the final task by 

synthesizing feature information generated from different 

tasks. This module's structural feature lies in its ability to 

operate within a multi-dimensional feature space, 

concatenating the fog-free features from the feature dehazing 

branch with the refined segmentation features from the 

decoder. In this process, the attention mechanism plays a key 

role by learning the importance distribution of these features, 

selectively strengthening information beneficial to the final 

task while suppressing irrelevant or interfering information. In 

the feature distillation module, the specific role of the attention 

mechanism is reflected in its weight distribution among 

different features. These weights are not randomly assigned 

but learned through the network, reflecting the contribution of 

each feature to the final task. The attention mechanism 

dynamically adjusts the information flow between features, 

enabling the network to focus more on information useful for 

tasks like analyzing VR classroom scenes. 

Suppose the intermediate feature of the target task is 

represented by Du
1, the attention feature map by Tu, the 

intermediate feature of the auxiliary task by Du
2, and the 

distilled feature by Dp. Multiplying Du
2 with Tu at the element 

level to obtain the weighted feature and adding it to Du
1 yields 

Dp. The following formula represents the feature distillation 

module process expression: 

 

( )1 2 1 1 2

p u u u u u uD D T D D QD D= +  = +   (10) 

 

 

3. OPTIMIZATION OF VR CLASSROOM SCENE 

CLASSIFICATION BASED ON MULTI-SCALE 

GLOBAL INFORMATION ENHANCEMENT 

 

In a complex and variable virtual environment, accurately 

recognizing and classifying different teaching elements and 

interactive behaviors presents a challenge for researchers in 

related fields. Conventional classification methods generally 

can not fully take into account the global information of 

different scales, so their classification performance is often 

limited when dealing with large structures and detailed 

features. For this reason, this paper proposes an optimization 

method for VR classroom scene classification based on multi-

scale global information enhancement. The method optimizes 

the capture of global information and the integration of 

features by introducing a multi-scale global information 

enhancement module, which ensures that the model is able to 

capture the global characteristics of the large-scale scene 

layout and teaching interactions, and also focuses on the local 

detailed features, such as specific teaching objects or students' 

and teachers' facial expressions and actions. This effective 

combination of global and local information can greatly 

strengthen the model's ability to recognize and classify key 

teaching elements in a scene of a VR classroom, thereby 

ensuring high-quality analysis even if the scene is complicated, 

or the visual signal is unstable. 

Figure 4 shows a schematic diagram of the network 

structure for optimizing VR classroom scene classification. 

Specifically in the classification optimization model 

proposed in this paper, the complex VR classroom scene 

image is first divided into a series of small blocks and encoded 

using Vision Transformer's image block embedding idea, a 

step that provides a basis for understanding the local 

instructional elements and interaction details by capturing the 

local features within each block. Next, the Transformer 

encoder receives these encoded image blocks and extracts 

global features of the entire scene through a self-attention 

mechanism, which helps the model to capture contextual 

information about the scene layout and global interactions. At 

the same time, a branch of image blocks for small-scale 

features is introduced with the aim of paying special attention 

to fine-grained elements that may be missed in the global view, 

such as distant objects or subtle changes in the scene. The 

recovery of these small-scale features is crucial for 

understanding and classifying subtle but important interactive 

behaviors in the teaching environment. To further integrate 

and enhance the multi-scale information contained in the VR 

classroom scenes, the model introduces a Transformer 

decoder module. This module enhances the expression 

strength of multi-scale information in feature encoding 

through a cross-scale feature fusion strategy. This enables the 

model not just to accumulate information from different scales 

but to merge global and local features in a more coordinated 

and complementary manner, enhancing the overall 

understanding of VR classroom scenes. 

Assuming the image block size of the large-scale branch is 

represented by oLA, and the small-scale branch by oSM, with the 

side length of both image blocks denoted by O, and the input 

image represented by A∈ Rg*q*3. The model initially processes 

the input VR classroom scene image using convolutional 

layers of a Convolutional Neural Network (CNN). The 

convolution operation helps extract primary features from the 

image and divides the image into multiple small blocks 

through a sliding window approach. This division method 

preserves local information, laying the foundation for 

subsequent image block mapping and feature extraction. 

Further assuming the convolution layer is represented by 

J∈Rf*O*O*3 with f convolution kernels of size O*O. The task 

vector is represented by aTA ∈ R(V+1)*f, and the positional 

embedding vector by RPO∈R(V+1)*f. The mapping vectors for 

the image blocks and aTA are concatenated and added element-

wise with RPO, with the following formula representing the 

calculation of the resultant vector c0: 
 

 0 ;TA POc a Q A R=  +  (11) 
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Figure 4. Schematic diagram of network structure for optimization of VR classroom scene classification 

 

Next, each image block obtained through the convolution 

layer is flattened into a one-dimensional vector. The flattening 

operation converts the two-dimensional image data into a one-

dimensional sequence input for processing by the Transformer 

model. The one-dimensional vectors are then linearly mapped, 

using a fully connected layer to increase the feature 

dimensions, better adapting to the self-attention mechanism of 

the subsequent Transformer encoder. The linearly mapped 

vector sequences are fed into the encoder of the Transformer 

network. Inside the encoder, the features first pass through a 

multi-head self-attention mechanism module, which allows 

the model to consider the features of all other image blocks 

while processing each image block's features, thereby 

capturing global dependencies. The self-attention mechanism, 

by computing the relationships among keys, queries, and 

values, enables the model to dynamically focus on the most 

relevant parts of the image. The features are then sent to a 

multilayer perceptron, a fully connected network structure, to 

further enhance the model's non-linear expression ability and 

refine and abstract the feature representation. Assuming the 

output of the encoder on each branch is represented by CF, and 

the order of the encoder in the encoder sequence by F, the 

process expressions are as follows: 

 

( )( ) ( )' 1 1 1, ,u u uc MSA LN c c u F− −= + =  (12) 

 

( )( ) ( )' ' 1, ,u u uc MLP LN c c u F= + =  (13) 

If the input sequence is represented by U∈RV*F, and the 

learnable matrix by IWJN, the result after the self-attention 

module is given by: 

 

  3
, , gF F

WJN WJNW J N UI I E


=   (14) 

 

( ) ( )S

gTX U SOFTMAX WJ F N=  (15) 

 

Assuming the number of "heads" in the multi-head self-

attention mechanism is denoted by g, and the learnable matrix 

by IMSA∈Eg*Fg*F, the result after the multi-head self-attention 

mechanism is given by: 

 

( ) ( ) ( ) ( )1 2; ; ; g MSAMSA U TX U TX U TX U I =    (16) 

 

The Transformer multi-scale global information 

enhancement module introduced in this paper comprises three 

parts: an encoding network, a decoding network, and a 

classifier, as seen in Figure 5. The encoding network, being 

the core of the Transformer structure, is responsible for 

extracting and encoding the features of input data. Assume the 

semantic tags for two differently scaled modelings are 

represented by cLA
F and cSM

F, and the output encoded semantic 

tags by TOg. Layer normalization, usually performed before 

each sublayer of every Transformer encoder in the module, 

aids in stabilizing the training process and accelerating model 
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convergence. The normalized results are then fed into the 

multi-head self-attention mechanism module, which processes 

data in parallel through multiple heads, each learning different 

representations of the data, thus capturing information from 

various subspaces. Each sublayer employs residual 

connections, understood as a form of shortcut operation, 

allowing the deep network's information to be directly 

transmitted to subsequent layers, helping to prevent gradient 

vanishing issues. The output g after the residual connection 

can be obtained through the following formulas: 

 

( )( )' ; ;LA SM LA SM

F F F Fg MSA LN c c c c = +    (17) 

 

( )( )' 'g MLP LN g g= +  (18) 

 

After the multi-head self-attention module, the multilayer 

perceptron performs further nonlinear transformations of the 

features, refining their representation. The final output 

calculation formula for the encoding network is given by: 

 

;m t

F Fb g c AR c MA = +    (19) 

 

The decoding network is similar to the encoder, but the 

module in this paper includes an additional self-attention layer 

to combine the outputs of the encoder. In the context of this 

paper, the decoding network's role is to integrate feature 

representations of different scales. It enhances the model's 

ability to express global information by processing features 

output from the encoding network and combining feature 

information from different scales. 

Finally, after the features are encoded and enhanced through 

the decoding network, they are passed to the classifier. The 

classifier, comprising one or more fully connected layers 

topped with a Softmax activation function, maps the features 

to a probability distribution over predicted categories. In the 

multi-scale Transformer model, the classifier is tasked with 

synthesizing the enhanced multi-scale global information to 

achieve precise classification of VR classroom scenes. The 

final predictions for VR classroom scene categories can be 

obtained through the following formulas: 

 
argmax( ( ( ; )))l e small

task taskp soft FC LN token token=  (20) 

 

( )( )( );LA SM

TA TAo SOFTMAX FC LN TO TA=  (21) 

 

Optimizing the VR classroom scenes based on the category 

prediction results involves a multi-step, iterative process. 

Initially, by analyzing the classification predictions and 

collecting user feedback, areas for improvement are identified. 

Subsequently, data augmentation and model adjustment 

strategies are implemented to enhance classification accuracy 

and model generalization. Following this, the virtual scene's 

element layout and interaction design are optimized based on 

the analysis results, enhancing user experience and teaching 

interaction effectiveness. The new model is then retrained and 

validated to ensure the effectiveness of the improvements. 

Lastly, the optimized model is deployed and a continuous 

monitoring and feedback loop established to ensure ongoing 

optimization of the VR classroom scenes, better serving 

teaching and learning activities. This systematic optimization 

approach ensures continuous improvement of the VR 

classroom environment, fostering more efficient and engaging 

teaching experiences. 

 

 
 

Figure 5. Transformer multi-scale global information enhancement module 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From Table 1, it is evident that the ablation study results of 

the VR classroom scene segmentation model demonstrate the 

performance comparison under different model configurations. 

MIoU, an important metric, is used to measure the accuracy of 

model segmentation; a higher value indicates better 

segmentation. GFLOPs and Parameters represent the 

computational complexity and size of the model, respectively. 

As shown, the baseline model serves as the control group, with 

an MIoU of 71.2%, a parameter size of 31.254MB, and 

computational complexity of 95.26GFLOPs. This was the 

starting point for subsequent improvement. The addition of 

Multi-Pooling Compression Module 1 to the baseline model 

resulted in a slight increase in MIoU to 71.5% and a slight 

increase in parameter number and computation complexity, 

and this indicates that this module has some positive impact 

on model performance, but the improvement is limited. After 

adding the multi-pooling compression excitation module 2, the 

MIoU instead decreases to 70.5%, and the amount of 

computation decreases slightly, this means that module 2 is not 

as good as module 1 in terms of performance improvement, 

and even introduces additional disturbances. Later, continuing 

to add the multi-pooling compression excitation module 3, the 

MIoU improves to 71.7%, which exceeds the performance of 

the baseline model and the first two modules, while the 

increase in the number of parameters and the amount of 

computation is very small, and this indicates that module 3 can 

enhance model performance while keeping a low 

computational cost. The introduction of the feature de-hazing 

branching structure further improves the MIoU to 71.6% with 

a slight increase in the number of parameters but a decrease in 

the computational effort, and this indicates that the de-hazing 

branching structure can enhance the model's ability to handle 

scene details while having little impact on computational 

efficiency. Finally, incorporating the Feature Distillation 

Module significantly raised the MIoU to 73.1%, the highest 

among all configurations. Although there was an increase in 

parameters and computational complexity, the magnitude of 

performance improvement justifies this increase. In summary, 

the model proposed in this paper effectively improved the 

accuracy of VR classroom scene segmentation by introducing 

multi-pooling compression modules and feature dehazing 

branch structures, and further significantly enhanced 

segmentation performance through the feature distillation 

module. These results validate the effectiveness of the 

methods presented in this paper, particularly the key role of 

the feature distillation module in enhancing performance. 

Even with a slight increase in parameters and computational 

costs, more accurate segmentation results were achieved. 

Table 2 shows the segmentation performance comparison 

of different models in two different VR classroom scenes. 

These data are represented in the form of MIoU percentage, a 

commonly used metric for evaluating image segmentation 

quality. Higher MIoU values typically indicate more precise 

segmentation results. In Scene 1, HR-Net's MIoU is 28.9%, 

suggesting poor performance or lack of assessment in Scene 2. 

FDA performs at 22.4% in Scene 1 and improves in Scene 2, 

reaching 38.9%, indicating better suitability or effectiveness 

of the FDA model in Scene 2. For DANN, the MIoU values are 

45.3% and 61.2% in the two scenes, respectively, performing 

better in Scene 2 but not as well as MF-Net and RTF-Net in 

Scene 1. MF-Net shows good performance in both scenes with 

MIoU values of 48.7% and 64.5%, being the first model to 

perform well in both scenes. RTF-Net's MIoU in Scene 1 is 

48.9%, slightly higher than MF-Net, but it drops to 58.6% in 

Scene 2, lower than both DANN and MF-Net. BMFF-Net has 

a slightly lower performance in Scene 1 at 44.6%, but 

significantly improves in Scene 2 to 71.2%, surpassing all 

other models. In Scene 1, this paper's model has an MIoU of 

48.7%, the same as MF-Net, while in Scene 2, it leads all other 

models with an MIoU of 72.1%. It can be concluded that this 

paper's model has the highest segmentation accuracy in Scene 

2 (72.1% MIoU), highlighting its robustness and efficiency in 

complex scenarios. Although not the absolute leader in Scene 

1 (matching MF-Net), considering the significant performance 

improvement in Scene 2, it can be inferred that this paper's 

model has good versatility and adaptability. 

 

 
 

Figure 6. PSNR convergence of the baseline model and the 

proposed model during training 

 

Figure 6 depicts the Peak Signal-to-Noise Ratio (PSNR) 

values of the baseline model and the proposed model at every 

25 epochs during the training process. PSNR is a commonly 

used quality evaluation metric in image processing, often 

employed to assess the quality of image restoration or image 

compression. A higher PSNR value indicates less distortion 

and better image quality. From the figure, it is evident that at 

the initial stage, this paper's model starts with a PSNR of 13, 

while the baseline model is at 11, demonstrating superior 

performance of the proposed model from the outset. During 

the mid-phase of training, both the proposed model and the 

baseline model exhibit a steady increase in PSNR, but the 

proposed model consistently maintains a lead over the baseline 

model. For example, at epoch 100, the proposed model reaches 

32.2, while the baseline model is at 31.1. In the later stages of 

training, the PSNR values of both models tend to stabilize. The 

proposed model reaches 34.2 at epoch 200, compared to 33 for 

the baseline model. Not only does the proposed model 

maintain its leading position, but the margin of lead also 

increases in the later stages of training. Observing the overall 

trend, the proposed model shows a more stable and continuous 

upward trend in PSNR growth, while the baseline model 

experiences slight fluctuations at certain periods, such as a 

decrease followed by an increase in PSNR between epochs 150 

to 175. The following conclusions can be drawn: throughout 

the training process, the proposed model demonstrates 

superior performance, with not only a higher starting point for 

PSNR but also a more stable growth trend and faster 

convergence rate. In the later stages of training, the proposed 
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model achieves higher PSNR values than the baseline model, 

indicating significant improvements in image quality, 

especially in the later phases of training. Therefore, it can be 

emphasized that the proposed model is effective and superior 

in image processing tasks, particularly suitable for 

applications requiring high PSNR. 

Table 3 shows the ablation study results of the VR 

classroom scene classification optimization model, 

considering the impact of spatial scale information extraction 

and multi-scale global information enhancement techniques. 

Accuracy (Acc) is a standard metric for evaluating the 

performance of classification models, and the table presents 

the accuracies for two different training ratios (20% and 50%). 

As can be known from the data given in the table, without 

spatial scale information extraction and multi-scale global 

information enhancement, the model achieved an accuracy of 

94.12% at 20% training ratio, and 95.68% accuracy at 50% 

training ratio, acting as a baseline of performance comparison. 

In case that spatial scale information extraction is adopted, 

there is an improvement in accuracy for both training ratios 

(reaching 95.63% and 96.12% respectively), and this indicates 

that even by solely extracting spatial scale information, the 

model's classification performance has been improved indeed. 

With the simultaneous application of both spatial scale 

information extraction and multi-scale global information 

enhancement, the model's performance further increases, 

reaching accuracy of 96.35% and 96.98%. This demonstrates 

the effectiveness of combining these two techniques in 

enhancing the model's classification capability. The 

conclusion is that by integrating the Transformer architecture, 

the model effectively extracts multi-scale spatial information 

and deeply integrates this information through global 

information enhancement techniques, thereby significantly 

improving the classification accuracy of VR classroom scenes. 

The ablation study results indicate that the introduction of each 

technology positively contributes to model performance, and 

the combination of both technologies yields the best 

performance. 

Table 4 provides the classification results of different VR 

classroom scene classification optimization models in various 

scenes and training ratios, represented by accuracy (%). Each 

column corresponds to a different scene and training set ratio, 

and each row represents a specific classification model. From 

the table, it is clear that the SSGA-E model performs best in 

Scene 2 with an 80% training ratio, achieving an accuracy of 

97.87%. VGG11 offers data across all scenes and training 

ratios, showing relatively stable performance, but it's not the 

highest in most cases. ViT reaches an accuracy of 97.25% in 

Scene 2 with an 80% training ratio, also a strong contender. 

SA-Gate provides data in all scenes but generally falls short of 

the proposed model in accuracy. D-CNNs reach 96.32% 

accuracy in Scene 2 with an 80% training ratio but 

underperform compared to the proposed model in other scenes 

and ratios. SF-CNN excels in Scene 2 with an 80% training 

ratio, matching SSGA-E at 97.87% accuracy, but still falls 

behind this paper's model in other scenarios and ratios. ViT-

21k shows impressive performance in Scene 1 with a 50% 

training ratio at 96.24% accuracy but lacks data for Scene 2 

and Scene 3 at a 50% training ratio. The proposed model 

provides data across all scenes and training ratios and achieves 

the highest accuracy in most cases. Particularly in Scene 2 with 

an 80% training ratio, it reaches an accuracy of 98.88%, the 

highest among all models. It can be concluded that the 

proposed model demonstrates competitive or optimal 

performance in all scenes and training ratios. Especially in 

Scene 2 with an 80% training ratio, achieving an accuracy of 

98.88% is the highest among all models. Additionally, its 

performance is consistently stable in other scenes and ratios, 

almost always maintaining top-level performance. This 

indicates that the proposed model has strong generalization 

capabilities and efficient classification performance. 

Table 5 provides performance data of different VR 

classroom scene classification optimization models in various 

scenes, assessed through Accuracy (Acc) and Intersection over 

Union (IoU) metrics. The table reveals that in the "Historical 

Recreation" scene, the VGG11 model showed the highest 

accuracy (99.5%) and IoU (97%). The proposed model also 

had high accuracy (98.7%) and IoU (96.8%) in this scene, 

nearly matching the best performance. In the "Geographical 

Exploration" scene, VGG11 again exhibited high accuracy and 

IoU, but proposed model model slightly underperformed with 

an accuracy of 89.3% and IoU of 83.6%. In the "Space 

Simulation" scene, the ViT model stood out with 85.6% 

accuracy and 65.6% IoU. 

 

Table 1. Ablation study results of the VR classroom scene segmentation model 

 
Serial Number Model MIoU/% Parameters(MB) GFLOPs 

1 Baseline Model 71.2 31.254 95.26 

2 + Multi-Pooling Compression Module 1 71.5 31.268 95.78 

3 + Multi-Pooling Compression Module 2 70.5 31.257 95.13 

4 + Multi-Pooling Compression Module 3 71.7 31.258 95.47 

5 + Feature Dehazing Branch Structure 71.6 31.698 95.33 

6 + Feature Distillation Module 73.1 31.478 96.86 

 

Table 2. Performance data comparison of different VR classroom scene segmentation models 

 

Serial Number Model Scene 1(MIoU/%) Scene 2(MIoU/%) 

1 HR-Net 28.9 - 

2 FDA 22.4 38.9 

3 DANN 45.3 61.2 

4 MF-Net 48.7 64.5 

5 RTF-Net 48.9 58.6 

6 BMFF-Net 44.6 71.2 

7 The proposed model 48.7 72.1 
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Table 3. Ablation study results of the VR classroom scene classification optimization model 

 

Spatial Scale Information 

Extraction 

Multi-Scale Global 

Information Enhancement 

Acc(%) 

20% 50% 

  94.12 95.68 

✓  95.63 96.12 

✓ ✓ 96.35 96.98 

 

Table 4. Comparative results of different VR classroom scene classification optimization models 

 
Method Scene 1 Scene 2 Scene 3 

Training Ratio 50% 80% 20% 50% 10% 20% 

SSGA-E - 97.87 92.45 95.68 88.95 91.56 

VGG11 94.25 96.25 87.89 91.78 87.85 87.47 

ViT - 97.25 91.24 93.65 87.26 91.36 

SA-Gate - 95.21 89.64 89.21 89.64 90.14 

D-CNNs - 96.32 91.25 95.87 88.95 91.23 

SF-CNN - 97.87 92.36 95.13 91.23 92.33 

ViT-21k 96.24 - 94.25 - 91.47 - 

The Proposed model 96.87 98.88 95.87 96.89 92.56 92.58 

 

Table 5. Scene comparison experiment of different VR classroom scene classification optimization models 

 

Model Name 
Historical Recreation Geographical Exploration Space Simulation Underwater World Art Gallery 

Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU 

SSGA-E 98.5 96.3 92.1 83.2 83.2 68.6 70.9 59.4 57.9 40.5 

VGG11 99.5 97 91.4 85.7 74.5 67.9 71.4 58.8 39.5 16.4 

ViT 97.1 95.4 92.6 78.9 85.6 65.6 78.4 51.6 57.9 33.8 

SA-Gate 97.5 95.6 85 72.3 81.3 58.6 68.7 52.5 57.8 33.5 

D-CNNs 98.2 96.8 78.4 64.5 67 59.3 54.3 43.5 37.2 28.8 

SF-CNN 99.2 96.3 91.3 85.6 77.8 66.9 72.4 58.2 58.9 42.5 

ViT-21k - 98 - 77.8 - 51.4 - 54.5 - 28.9 

The Proposed Model 98.7 96.8 89.3 83.6 71.3 64.5 72.3 58.9 52.3 41.2 

Model Name 
Science Laboratory Natural Disaster Simulation Digital Visualization Language Immersion 

Acc    IoU 
Acc IoU Acc IoU Acc IoU Acc IoU 

SSGA-E 24.5 21.5 17.2 3.3 61 41.2 51.4 41.2 61.2 51.2 

VGG11 27 23.4 12.3 1.8 51.2 45.6 54.7 48.5 56.7 50.2 

ViT 51.2 27.8 7 0.8 56.8 15.6 48.9 43.2 63.2 45.6 

SA-Gate 23.6 18.9 0 0 56.3 23.8 51.2 47.8 57.4 44.1 

D-CNNs 13.2 9.8 0.1 0 31.2 24.7 31 26.9 45.2 38.9 

SF-CNN 31.4 23.5 12.3 3.5 41.7 25 72.3 58.6 62.3 51.2 

ViT-21k - 24.5 - 14.5 - 38.9 - 44 - 47.5 

The Proposed Model 38.5 28.8 55.8 11.2 54.6 45.8 63.8 53.2 65.8 53.2 

 

The proposed model model had lower performance in this 

scene, with an accuracy of 71.3% and IoU of 64.5%. In the 

"Underwater World" scene, the proposed model performed 

similarly to ViT, with 72.3% accuracy and 58.9% IoU. In the 

"Art Gallery" scene, all models generally showed decreased 

performance, with SF-CNN performing best and the proposed 

model at a moderate level. For other scenes such as "Science 

Laboratory," "Natural Disaster Simulation," "Digital 

Visualization," and "Language Immersion," the proposed 

model consistently showed relatively high accuracy and IoU 

across all scenes, notably in the "Natural Disaster Simulation" 

scene, with an accuracy of 55.8% and IoU of 11.2%, 

significantly higher than other models. Overall, while this 

paper's model was not always the best in individual scenes, it 

demonstrated robustness and consistency across multiple 

different scenes, particularly in more challenging scene 

classification tasks. 

 

 

5. CONCLUSION 

 

This paper's research primarily focuses on image 

segmentation and classification issues in VR classroom scenes. 

By proposing and experimenting with various model 

optimization methods, the aim is to improve the accuracy and 

efficiency of scene understanding. The paper first focuses on 

the segmentation of VR classroom scenes, proposing a method 

based on feature enhancement and feature distillation, notably 

introducing multi-pooling compression excitation modules 

and feature dehazing branch structures to enhance the 

network's ability to capture effective information and reduce 

interference from irrelevant information. Secondly, the paper 

explores classification optimization for VR classroom scenes 

based on multi-scale global information enhancement, 

effectively extracting multi-scale spatial information in the 

scenes and deeply integrating this information through the 

introduction of the Transformer architecture. 

Ablation experiments on various components of the model 

demonstrate the positive impact of introduced multi-pooling 

compression excitation modules and feature dehazing branch 

structures on improving segmentation performance. 

Particularly, the feature distillation module significantly 

enhances the model's performance at various training stages. 

Compared with existing models, the proposed model not only 

performs well in individual scenes but also shows good 

robustness and generalization across multiple scenes. The 
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proposed model has been demonstrated to have high accuracy 

and IoU in various VR classroom scenes, especially in more 

challenging scenes. 

The proposed optimization model has been verified to have 

significant effectiveness in image segmentation and 

classification tasks. By combining innovative applications of 

deep learning architectures (such as Transformer) and feature 

enhancement methods, the proposed model can give high 

accuracy and high IoU performance in multiple complex 

scenarios. Ablation experiment and performance comparison 

experiment of multiple scenarios can further confirm the 

robustness and generalization ability of the proposed method. 

These research attained in this paper results not only provide 

an effective solution for image processing of VR classroom 

scenes, but also give a valuable reference for similar research 

in the field. 
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