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Collaborative filtering, while a powerful tool in movie recommendation systems, encounters 

substantial challenges such as sparsity, scalability, diversity, and interpretability, which 

influence recommendation fidelity. Although the sparsity issue can be tackled through 

traditional model-based collaborative filtering algorithms like matrix factorization, these 

models often fail to capture the full depth of user-movie interactions due to their reliance on 

a simple dot product for rating prediction. Recently, research has leaned towards the 

application of deep learning to harness the complex and non-linear relationships between 

users and movies. However, these deep learning methods, despite their non-linear attributes, 

are susceptible to high variance and overfitting, potentially compromising their capacity for 

generalization. In the present study, an ensemble of neural networks has been implemented 

to diminish variance and generalization error by amalgamating the predictions from multiple 

models. This approach enhances overall performance and tackles the inherent limitations of 

deep learning approaches. A novel ensemble-based deep collaborative filtering model (Deep 

CF), in concert with a unique optimizer (AdaMVRGO), has been introduced to address 

sparsity and to exploit the non-linear, complex relationships between users and movies. It 

also aims to minimize the variance and generalization error of the neural network. The 

proposed architecture, termed Deep CF-AdaMVRGO, employs an ensemble of multi-layer 

perceptrons (MLP) to augment prediction accuracy. A pioneering optimizer, the adaptive 

moment variance reduced gradient optimization (AdaMVRGO), has been developed, 

drawing upon the ADAM and SVRG optimizers. This optimizer eliminates noise by 

calculating the first and second moments of predicted ratings using a variance-reduced 

gradient, similar to the SVRG algorithm, thereby expediting algorithm convergence. It is 

employed to fine-tune the parameters of the MLP and decrease the reconstruction error. 

Deep CF-AdaMVRGO has been evaluated against six existing models using the RMSE 

metric on the M-1M and M-10M datasets. The simulation results demonstrated that the 

proposed framework outperformed state-of-the-art deep learning-based collaborative 

filtering approaches on both datasets in terms of lower RMSE values. Further, the 

performance of the proposed AdaMVRGO optimizer within the ensemble framework was 

compared to existing optimizers such as Adagrad, RMSProp, ADAM, and SVRG on M-

100K, M-1M, and M-10M datasets using RMSE, MAE, and MSE metrics. Experimental 

results affirmed that AdaMVRGO converged more rapidly to the optimum compared to 

other optimizers. 
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1. INTRODUCTION

Over several decades, recommendation systems have 

emerged as a promising research field, harnessing user 

preferences to curate effective recommendations [1-3]. The 

algorithms underpinning these systems are widely employed 

across diverse domains ranging from movie and music 

recommendations to product suggestions, crop selection, and 

e-book recommendations [4]. The primary objective of a

recommendation system is to predict users' preferences for

movies, music, products, crops, books, and news based on

their historical preferences [5-8].

Broadly, recommendation systems can be categorised into 

three primary types: collaborative filtering, content-based 

filtering, and hybrid filtering. Among these, collaborative 

filtering has been acknowledged as the most effective and 

widely utilised method for generating recommendations [9]. 

This technique predicts user ratings by leveraging historical 

ratings and ratings from similar users [10-12]. Collaborative 

filtering can be further divided into two subcategories: 

memory-based and model-based methods [13-15]. The former, 

also termed a "neighbourhood-based approach," employs 

statistical techniques to identify similar users and items, with 

unknown ratings predicted based on these similarities. The 

latter, on the other hand, uses machine learning techniques to 

learn the rating matrix and predict unknown ratings. However, 
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collaborative filtering techniques face significant challenges, 

including data sparsity, scalability, cold start, and shilling 

attacks [16], all of which can negatively impact the accuracy 

and performance of recommendations. 

Data sparsity, referring to the paucity of data in the rating 

matrix due to unknown ratings, is a particular challenge. 

Matrix factorization, an efficient model-based collaborative 

filtering strategy, has been used to tackle this problem [17]. It 

decomposes the rating matrix into a pair of low-dimensional 

rectangular matrices and predicts unknown ratings using a 

simple dot product [11, 15, 18]. However, this linear dot 

product may not fully encapsulate the complex interactions 

between users and movies. Hence, current research efforts are 

directed towards the application of deep learning algorithms to 

address the limitations of traditional recommendation systems 

[19]. Deep learning-based latent factor models are adept at 

capturing the hidden, non-linear, and crucial interactions 

between users and movies, thereby enhancing prediction 

accuracy [17]. 

Ensemble learning is a powerful strategy renowned for 

enhancing the accuracy, resilience, and diversity of learning 

algorithms. Recently, recommendation systems that leverage 

ensemble learning have gained considerable attention [20]. 

Deep ensemble models amalgamate the benefits of both deep 

and ensemble learning, thereby improving the overall 

performance of recommendation systems [20, 21]. Ensemble-

based deep collaborative filtering holds several advantages 

over deep collaborative filtering, such as: 1) superior 

performance over individual models, particularly in the 

presence of noisy data; 2) the ability to generate more diverse 

recommendations compared to individual models; and 3) 

robustness against overfitting by virtue of reduced model 

variance. 

In this paper, we propose a deep collaborative filtering 

framework, termed Deep CF-AdaMVRGO, for movie 

recommendation systems to effectively handle sparsity issues 

[22]. This framework is underpinned by an optimizer known 

as the Adaptive Moment Variance Reduced Gradient 

Optimizer, as proposed in the study [11]. The deep 

collaborative filtering framework employs an ensemble of 

multilayer perceptrons to augment prediction performance. 

Each sub-model is fine-tuned using the proposed 

AdaMVRGO optimizer to minimize the reconstruction error. 

The final predicted rating is obtained by averaging the 

predicted values derived from the sub-models within the 

ensemble [11]. 

Typically, optimization algorithms like SGD, Adagrad, 

RMSPROP, ADAM, and SVRG are harnessed for parameter 

tuning. While ADAM is often considered the preferred 

optimization algorithm in deep learning applications, it is 

known to suffer from slow convergence and generalization 

issues [23]. Convergence problems persist with ADAM due to 

high variance. The proposed AdaMVRGO algorithm is 

conceived by combining the strengths of the ADAM and 

SVRG optimizers [11]. One key advantage of the proposed 

algorithm is that it manages to reduce variance during the 

gradient calculation itself. The first and second moments are 

computed based on these variance-reduced gradients. The 

proposed framework, when trained with AdaMVRGO, 

demonstrated superior performance compared to Adagrad, 

RMSPROP, ADAM, and SVRG. 

In the experimental section, the proposed model was 

appraised using metrics such as mean square error (MSE), 

mean absolute error (MAE), and root mean square error 

(RMSE) on the M-100K, M-1M, and M-10M datasets [11]. 

Additionally, the proposed model was benchmarked against 

state-of-the-art deep learning-based collaborative filtering 

techniques [24-29] using the M-1M and M-10M datasets [30]. 

The remainder of this paper is organized as follows: Section 

2 presents a literature review on "movie recommendation 

systems". Section 3 discusses the prerequisite groundwork for 

the proposed framework. The proposed framework and its 

pseudocode are presented in Section 4. Section 5 provides a 

comprehensive discussion of the findings and interpretation of 

the results. Finally, Section 6 concludes the paper and outlines 

potential future enhancements. 

 

 

2. LITERATURE STUDY 

 

Huang et al. [31] introduced a technique known as Neural 

Embedding Collaborative Filtering (NECF) matrix 

factorization. This method utilizes a probabilistic autoencoder 

to generate neural embedding vectors from user-item input. 

These vectors are subsequently used to represent the user's 

hidden features via a regression equation employing single-

point negative sampling [24, 31]. The method was tested on 

the M-1M and Pinterest datasets, and the results revealed that 

this strategy outperformed its baseline counterparts. However, 

it still grapples with the issue of data sparsity. 

Sun et al. [24] developed an innovative framework that 

amalgamates plot texts and movie ratings to enhance 

prediction accuracy. They designed and tested a deep plot-

aware generalized matrix factorization on the Movielens 

datasets [24, 31]. Even though the integration of additional 

knowledge improved the model, it led to increased 

computational complexity. 

Feng et al. [32] proposed a unique similarity approach that 

considers both linear and non-linear correlations. To bolster 

prediction accuracy and resilience, this method combined 

multifactor similarity with global rating information. However, 

the approach was found lacking in terms of scalability. 

Taking into account the historical data of users and items, 

Fu et al. [25] devised a novel deep learning technique for 

movie recommendations. Initially, user and item vectors were 

trained to incorporate semantic information, reflecting the 

relationships between items and users [11]. A multi-view feed-

forward neural network was then employed to predict ratings 

from these embedded vectors. The proposed model was 

evaluated on the MovieLens 1M and MovieLens 10M datasets 

[25]. Despite its promising performance, the model was 

computationally intensive and encountered issues with 

generalization. 

Xue et al. [33] proposed an item-based collaborative 

filtering model using deep learning, dubbed Deep-ICF, to 

decipher the nonlinear and intricate relationships between 

items. Deep-ICF employs a simple average to calculate the 

predicted rating. An extension to this model, termed Deep-

ICF+a, employs adaptive pooling with attention to discern 

higher-order interactions between items. While promising, 

these models are computationally demanding and are more 

susceptible to overfitting. 

It is noteworthy that previous works often necessitate 

extended computational time to converge and frequently 

encounter generalization issues. More recent research has 

concentrated on developing sophisticated models that 

incorporate deep learning techniques. These models utilize 

neural networks to capture complex user-item relationships 
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and accommodate a better representation of intricate 

interactions. Moreover, optimization algorithms such as 

stochastic gradient descent have been deployed to diminish 

computational time and promote convergence. These 

advancements have significantly ameliorated the accuracy and 

scalability of recommendation systems, thereby addressing the 

limitations of prior works. 

The key contributions of this paper are as follows: 

 

1. We have established a deep collaborative filtering 

framework to capture the hidden, nonlinear, and 

pivotal relationships between users and movies. 

2. The framework employs an ensemble of multilayer 

perceptrons to train the rating matrix and predict 

unknown ratings. This ensemble improves 

generalization by training each MLP within the 

ensemble with a unique set of latent factors. 

3. Each sub-model within the ensemble is trained using 

a novel optimizer known as AdaMVRGO, with the 

aim to reduce the reconstruction error. 

4. Experiments were conducted on the M-100K, M-1M, 

and M-10M datasets. The results demonstrate that the 

proposed framework outshines existing methods. 

 

 

3. PRELIMINARIES 

 

3.1 Data representation 

 

Let ′𝑚′, ′𝑛′ represent the number of users and movies in a 

movie recommendation system, respectively [34, 35], so 𝑚x𝑛 

represents the rating matrix's size, which is defined as R = 

{
𝑟𝑖𝑗

𝑖𝜖𝑚,𝑗𝜖𝑛𝑎𝑛𝑑 1≤𝑖≤𝑚,1≤𝑗≤𝑛
 }, ratings given by the user for a movie 

[6]. For our work, we used explicit ratings, i.e., ratings given 

explicitly by the user. An explicit rating is quantifiable 

feedback given by the user for a specific movie. It determines 

the extent to which a user prefers the movie. Most of the time, 

users may not be interested in giving their feedback explicitly, 

resulting in a sparse rating matrix. This data sparsity hinders 

the recommendation system's precision and performance [35]. 

 

3.2 Matrix factorization 

 

It is a latent factor model to address sparsity issue [36, 37]. 

It predicts the unknown ratings by splitting the rating matrix 

'R' into two latent matrices called user matrix 'P' and movie 

matrix 'Q' of order ‘𝑚 x 𝑘’ and ‘𝑛 x 𝑘’, respectively [38]. The 

user matrix ‘P’ depicts the associations across the users and ′𝑘′ 
latent features. Similarly, the movie matrix ‘Q’ depicts the 

associations between the movies and the ′𝑘′ latent features. 

Eqs. (1) and (2) indicate the rating matrix 'R' as well as the 

latent matrices 'P' and 'Q' [39]. The predicted rating matrix is 

generated using Eq. (3). 

 

𝑅: 𝑈𝑚 → 𝑀𝑛 (1) 

 

𝑃: 𝑈𝑚 → 𝐿𝑘 and Q: 𝑀𝑛 → 𝐿𝑘 (2) 

 

�̂� = 𝑃 𝑋 𝑄𝑇  ≅ 𝑅 (3) 

 

The dot product of user and movie vectors, as shown in Eq. 

(4) predicts the unknown rating. 

 

�̂�𝑖𝑗 = 𝑝𝑖 ∗ 𝑞𝑗
𝑇 (4) 

 

where, �̂�𝑖𝑗is the predicted rating of user 'i' in the user vector 𝑝𝑖  

and movie 'j' in the movie vector 𝑞𝑗 [24]. Eq. (5) shows the 

deviation between the actual and expected ratings [40]. 

 

min
𝑝𝑖,𝑞𝑗

∑ (𝑟𝑖𝑗 − �̂�𝑖𝑗)𝑖,𝑗𝜖𝑈,𝑉   (5) 

 

To avoid overfitting, the model is redefined in Eq. (6). 

 

𝑚𝑖𝑛
𝑝𝑖,𝑞𝑗

∑ (𝑟𝑖𝑗 − �̂�𝑖𝑗)𝑖,𝑗𝜖𝑈,𝑉 + 𝛾 (‖𝑝𝑖‖
2 + ‖𝑞𝑗‖

2
)  (6) 

 

where, 𝛾  is a regularisation parameter, ‖𝑝𝑖‖2  and ‖𝑞𝑗‖2  are 

the l2-norms of the user vector 𝑝𝑖  and the movie vector 𝑞𝑗 , 

respectively [41]. However, the problem with traditional 

matrix factorization is that the dot product is linear, and it 

cannot capture user-movie interactions completely. Many 

studies have shown that deep neural networks, rather than a 

simple dot product, can capture user-item interactions 

nonlinearly well. 
 

3.3 Neural network ensemble 
 

Ensemble learning is the process of combining the different 

models’ predictions to enhance their accuracy [42, 43]. Neural 

networks are non-linear, can learn complex patterns in the data, 

but suffer from high variance. Ensemble modelling of neural 

networks helps to reduce the variance by building different 

models as opposed to just one and combining their predictions 

to enhance the overall performance. The benefits of this 

ensemble are: First, it can help reduce the variance of the 

predictions, thereby improving the model's generalisation 

performance [44]. Second, it helps to increase the precision of 

the predictions by combining the strengths of multiple neural 

networks [45]. Third, it can help the model handle noise and 

errors in the data better. The various ways to combine the 

predictions in ensemble learning in movie recommendations 

include: 

• Voting: This is the simplest method, and it simply 

takes the most common prediction among the individual 

models. For example, if three models predict that a user will 

like a movie and two models predict that the user will not, then 

the ensemble model will predict that the user will like the 

movie. 

• Averaging: This method takes the average of the 

individual predictions. This helps to reduce the variance in 

predictions, thereby improving the model's generalisation 

performance [44]. 

• Weighted averaging: This method weights the 

individual predictions according to their accuracy. It helps 

enhance prediction accuracy by assigning more weight to the 

more accurate models. 

• Stacking: This method uses a meta-model approach 

to make the final predictions. The meta-model uses the 

predictions of each model to make final predictions. This helps 

improve prediction accuracy by combining the strengths of 

each model [46]. 

The selection of ensemble methods is application-

dependent. If the objective is to improve prediction accuracy, 

for instance, then a voting or weighted averaging scheme may 

be a better choice. However, if the objective is to develop a 

model more robust to noise, then an averaging scheme may be 
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a better choice [6]. 

 

3.4 Optimization 

 

The optimization algorithm has become essential for 

training a deep learning architecture. It starts with defining the 

loss function and ends with minimizing it using any gradient 

optimizer. Gradient-based optimization algorithms are 

extensively employed in latent factor-based collaborative 

filtering algorithms to learn explicit rating-based 

recommendation models [18, 47]. There are various 

optimizers to serve this purpose. The major problem with 

gradient-based optimisation algorithms is determining the 

learning rate, as model convergence depends on the learning 

rate. Lower learning rates need more time for convergence, 

while higher learning rates may skip the optimal solution. 

The ADAM optimizer is a widely used stochastic 

optimization algorithm for deep learning models [23]. Even 

though it is considered the best adaptive learning optimization 

algorithm, it still suffers from convergence problems due to its 

inherent variance. Variance makes convergence harder, 

especially when parameters are close to their optimal values. 

According to conventional research, a declining learning rate 

can help reduce variance [48, 49]. When the learning rate is 

low, however, the training loss converges slowly [50]. We use 

a stochastic variance-reduced gradient in this paper to reduce 

variance during the ADAM process. This paper involves 

generating AdaMVRGO by reducing the variance of ADAM 

using SVRG optimizers to learn the recommendation model. 

ADAM [51], a variant of the stochastic gradient algorithm 

[52]. ADAM combines the benefits of the AdaGrad [53] and 

RMSProp [54] algorithms. ADAM works well with both 

sparse and noisy data. The first moment uses an exponential 

weighted average of past gradients to converge to the minima 

faster, which is given in Eq. (7). 

 

𝑢𝑡 = 𝛽1𝑢𝑡−1 + (1 − 𝛽1)𝑔𝑡 (7) 

 

The second moment, which is given in Eq. (8), employs 

exponential moving averages (i.e., the cumulative sum of the 

gradients, uncentered variance). 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 (8) 

 

where, 𝑢𝑡: sum of the gradients at time ‘t’, 𝑢𝑡−1: sum of the 

gradients at time t-1, 𝑔𝑡
2: sum of squares of gradients at time t, 

𝑣𝑡−1: sum of squares of gradients at time t-1,𝑔𝑡: gradient of the 

loss function L w.r.t, 𝜔, 𝛿𝑡: learning rate at time t, 𝛽1 and 𝛽2 

are the moving average parameters (0.9), 𝜔𝑡+1  represents 

weights at time t+1 and 𝜔𝑡 represents weights at time t [55]. 

As the first and second moment vectors are initialized to 

zero in the algorithm [56], it is observed that the algorithm is 

biased towards zero. Hence, these vectors are corrected, as 

shown in Eqs. (9) and (10). 

 

𝑢�̂� =
𝑢𝑡

1−𝛽1
𝑡  (9) 

 

𝑣�̂� =
𝑣𝑡

1−𝛽2
𝑡  (10) 

 

Finally, the ADAM update rule is given as shown in Eq. 

(11). 

 

𝜔𝑡+1 = 𝜔𝑡 −
𝛿

√𝑣�̂�+
𝑢�̂�  (11) 

 

Although ADAM is considered the best optimization 

algorithm for deep learning applications, it still suffers from 

slow convergence and generalization issues. Wilson et al. [57] 

proved that adaptive algorithms are less generalizable than 

SGD [58]. Liu et al. [23] used adaptive gradient methods as 

opposed to nonadaptive gradient methods to address the issues 

of poor convergence for specific objective functions, no 

advantage from utilising moving averages, and the lowest 

generalisation performance. This may be due to the presence 

of large variance in the early epochs of training a model. 

Lower variance improves the convergence rate without any 

change to the learning rate [59]. Variance reduction methods 

are used to reduce the variance and achieve better 

generalization and a fast convergence rate. 

 

 

4. METHODOLOGY 

 

4.1 Proposed framework 

 

As matrix factorization cannot completely capture the latent 

features, we employed neural networks to predict the sparse 

ratings [60]. Neural networks are usually non-linear and can 

capture trivial or complex relationships between the user and 

movies. But neural networks suffer from high variance. So, in 

this paper, an ensemble of multilayer perceptrons is used for a 

movie recommendation system. An ensemble of neural 

networks is considered to reduce variance and generalization 

error. The proposed Deep-CF framework is presented in 

Figure 1.  

Deep collaborative filtering (Deep CF) uses an ensemble of 

multilayer perceptrons to train the model by capturing the 

nonlinear interactions between the user and movies. The 

proposed framework uses three multi-layer perceptrons (MLP): 

- M1, M2 and M3. M1 uses one hidden layer, M2 uses two 

hidden layers, and M3 uses three hidden layers with dropout. 

The predicted rating from each MLP is optimized using a 

novel optimizer called AdaMVRGO to reduce the 

reconstruction error. The novel optimizer cuts down on noise 

by figuring out the first and second moments using the SVRG 

algorithm's variance-reduced gradient. This leads to fast 

convergence. The final rating is obtained from averaging the 

predicted ratings of the three models (M1, M2, and M3). The 

structure of an MLP used in the ensemble framework is 

presented in Figure 2. 

In this layer, the rating matrix is split into user and movie 

embeddings, which are considered latent features embeddings 

[11]. In the merge/concatenation layer, the latent features are 

given to a simple dot product [11]. This result is sent to an 

ensemble of MLPs to anticipate the sparse rating. The formula 

for predicting the rating [7] of each MLP is shown in Eq. (12). 

 

�̂�𝑖𝑗 = 𝑓(𝑃, 𝑄𝑇 , 𝜔𝑓)  (12) 

 

where, 𝑃 ∈ 𝑅𝑚×𝑘 and 𝑄 ∈ 𝑅𝑛×𝑘 represent the latent matrices 

of users and movies, respectively [61]. �̂�𝑖𝑗  represent the 

predicted score given by the user 𝑝𝑖  and the movie 𝑞𝑗 . 𝜔𝑓 

indicate the parameters of the function f. The objective 

functions for M1, M2, and M3 are given in Eqs. (13), (14), and 

(15). 
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𝑓𝑀1
(𝑃, 𝑄𝑇) =

∅𝑜𝑢𝑡(∅ℎ1
(∅𝑖𝑛(𝑃, 𝑄𝑇 , 𝜔𝑖𝑛), 𝜔ℎ1

), 𝜔𝑜𝑢𝑡)  
(13) 

 

𝑓𝑀2
(𝑃, 𝑄𝑇) =

∅𝑜𝑢𝑡(∅ℎ2
(∅ℎ1

(∅𝑖𝑛(𝑃, 𝑄𝑇 , 𝜔𝑖𝑛), 𝜔ℎ1
), 𝜔ℎ2

), 𝜔𝑜𝑢𝑡)  
(14) 

 
𝑓𝑀3

(𝑃, 𝑄𝑇) =

∅𝑜𝑢𝑡(∅ℎ3
(∅ℎ2

(∅ℎ1
(∅𝑖𝑛(𝑃, 𝑄𝑇 , 𝜔𝑖𝑛), δ, 𝜔ℎ1

), δ, 𝜔ℎ2
), δ, 𝜔ℎ3

), 𝜔𝑜𝑢𝑡)  (15) 

 

where, 𝜔𝑥  represents the model parameters of layer x of a 

multilayer perceptron. We used the MSE and the ReLU in our 

model [62]. The MSE determines the average squared 

difference between the target and predicted ratings, allowing 

us to optimize our model's performance. On the other hand, 

the ReLU introduces non-linearity to our model. The first two 

models (M1 and M2) of the ensemble use one hidden layer and 

two hidden layers without dropout, and the third model, M3, 

uses three hidden layers and a dropout rate (δ=0.5) to avoid 

overfitting [63]. In sub-model M3, certain nodes of the hidden 

layers are deactivated with the probability ‘p’ from the 

Bernoulli distribution. The output of each MLP is trained 

using a novel optimization technique called AdaMVRGO. The 

final predicted rating is the mean of the individual predictions 

of the models M1, M2, and M3. The objective function of each 

sub-model in the ensembled architecture is given in Eqs. (16), 

(17), and (18), respectively. 

 

 
 

Figure 1. Deep CF framework 

 

 
 

Figure 2. The basic structure of an MLP used in the ensemble 
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𝐿𝑀1
= min

𝜔𝑓

∑ 𝑙((𝑝𝑖,𝑞𝑗)𝜖𝑅 𝑟𝑖𝑗 , �̂�𝑖𝑗) + 𝛾∁(𝜔𝑓)  (16) 

 

𝐿𝑀2
= min

𝜔𝑓

∑ 𝑙((𝑝𝑖,𝑞𝑗)𝜖𝑅 𝑟𝑖𝑗 , �̂�𝑖𝑗) + 𝛾∁(𝜔𝑓)  (17) 

 

𝐿𝑀3
= min

𝜔𝑓

∑ 𝑙((𝑝𝑖,𝑞𝑗)𝜖𝑅 𝑟𝑖𝑗 , �̂�𝑖𝑗) + 𝛾∁𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝜔𝑓)  (18) 

 

where, l(.) represents the loss function, 𝛾 > 0 represents the 

step size, and ∁(𝜔𝑓)  is the regularizer. The dropout is 

determined by using the Bernoulli distribution. The final rating 

is computed using Eq. (19). 

 

�̂�𝑖𝑗 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝑀1
+ 𝐿𝑀2

 +𝐿𝑀3
) (19) 

 

4.2 Learning using AdaMVRGO 

 

Although ADAM is considered the best optimization 

algorithm for deep learning applications, it still suffers from 

slow convergence and generalization issues. Variance 

reduction methods are used to reduce the variance and achieve 

better generalization and a fast convergence rate. Variance 

reduction methods have recently become popular and are the 

best alternative to nonadaptive gradient methods such as SGD. 

These methods typically reduce the variance of stochastic 

gradients by taking a snapshot of the gradients for each 'm' 

optimization step. This snapshot’s gradient information can be 

used to reduce the variance of subsequent smaller batch 

gradients [59]. SAG [64], SAGA [65], and SVRG [66] are the 

most standard variance reduction methods. The stochastic 

gradient variance is cancelled by SVRG with the control 

variate (the average of gradients computed at different 

snapshots), which has a zero exception. The proposed 

algorithm, AdaMVRGO, is developed using the ADAM and 

SVRG optimizers [11]. Algorithm 1 depicts the pseudocode 

for AdaMVRGO. Similar to SVRG, AdaMVRGO uses a 

nested looping construct. The outer loop consists of 'K' 

iterations, and the inner loop consists of 'm' iterations. The 

outermost loop determines the complete gradient at a random 

snapshot. This snapshot is updated after every 'm' step of 

parameter updating. In the inner loop, uniformly select a 

random data point and find the gradient gt using the SVRG 

principle. This gradient is the variance-reduced gradient as 

shown in Eq. (20), which assists in approaching the optimal 

value with a constant step size δ [67]. The weight update rule 

is shown in Eq. (21). 

 

𝑔𝑡 = 𝛻𝐿𝑖𝑡
(𝑥𝑡) −  𝛻𝐿𝑖𝑡

(𝜔𝑘) +  𝛻𝐿(𝜔𝑘) (20) 

 

𝜔𝑡+1 = 𝜔𝑡 −  𝛿𝑔𝑡 (21) 

 

Typically, the next snapshot point is set to the inner loop's 

final iteration value at the end of the inner loop [67], 𝜔𝑘+1= 
1

𝑚
∑ 𝑥𝑡

𝑚
𝑡=1 . Adaptive optimization algorithms such as ADAM 

still suffer from convergence issues due to the presence of high 

variance. The proposed algorithm's change is that it reduces 

variance while calculating the gradient itself. The first and 

second moments are computed on these variance-reduced 

gradients. 

The advantages of the AdaMVRGO algorithm compared to 

others are listed as follows: 

• Experimentally, our proposed optimizer is robust 

compared to previous optimization approaches. 

• Variance-reduced gradients are computed initially before 

smoothing them. 

• The first and second moments are computed based on the 

variance-reduced gradients. 

• The overall variance is reduced after some epochs, which 

results in fast convergence. 

 

Algorithm 1: Pseudocode of AdaMVRGO algorithm 

Initialize  

ω0(starting point), K (outer loop), m(inner loop) 

for s = 0 to K-1, do 

Determine the total gradient of the objective function, 

∇L(ωs) 

Initialization: Initialize the first and second moment vectors 

u0 = 0 and v0 = 0, respectively, and the exponential decay 

rates for the first and second moments are β1 =
0.9 and β2 = 0.999, respectively, decay = 0, learning rate 

δ = 0.001 and x0 = ωs 

      for t = 1 to m do 

                 Randomly select a pointit 

gt = ∇Lit
(xt) − ∇Lit

(ωs) + ∇L(ωs) 

ut = β1ut−1 + (1 − β1)gt 

vt = β2vt−1 + (1 − β2)gt
2 

xt+1 = xt − δgt 

       end 

 ωs+1 =
1

m
∑ xt

m
t=1  

end 

return  𝜔�̃� =
1

𝐾
∑ 𝜔𝑠

𝐾−1
𝑠=0  

 

The significance of the proposed framework over existing 

ones is given as follows: 

1) In the proposed method, the ensemble of MLPs reduces 

the variance by taking the average of the prediction 

results of each MLP. This makes the model more 

generalized. It helps generate diversified 

recommendations. 

2) In the novel optimizer, AdaMVRGO, variance-reduced 

gradients are used to compute the first and second 

moments. This helps in reducing the variance, which 

helps in fast convergence. 

 

 

5. RESULTS AND DISCUSSION 

 

The research concerns addressed in this section are [68]: 

• RQ1: Does the proposed framework perform better than 

the baseline algorithms? 

• RQ2: Does the proposed optimizer perform well 

compared to the other existing optimizers? 

 

5.1 Data description 

 

This paper evaluated the proposed framework using three 

standard datasets: M-100K, M-1M, and M-10M, taken from 

Movielen’s website [11]. The M-100K dataset has 100,000 

ratings from 943 users and 1682 movies [69, 70]. The rating 

values range from 1 to 5. The information was gathered from 

19th September 1997 to 22nd April 1998. This dataset 

contains basic demographic information about the user, like 

age, gender, occupation, etc. Every user in this collection has 

reviewed a minimum of 20 movies, and the users who had 

fewer than 20 ratings are not considered in the dataset. Also, 

users whose demographic information is not present are 
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excluded from this collection. The movies present in the 

dataset belong to any of the 19 genres: unknown, action, 

adventure, animation, children's, comedy, crime, documentary, 

drama, fantasy, film noir, horror, musical, mystery, romance, 

sci-fi, thriller, war, and western.  

The M-1M dataset has 1,000,209 ratings for 3900 movies 

submitted by 6040 users collected during the year 2000 [11, 

71]. Every user has reviewed at least 20 movies. The dataset 

consists of demographic information about the user, like 

gender, age, and occupation. The movies in the dataset fall 

under different genres like action, adventure, animation, 

children's, comedy, etc. [72].  

The M-10M dataset has 1,00,00,054 ratings for 10,681 

movies submitted by 71,567 users [11]. This dataset uses a 5-

star scale with an increment of half a star. Unlike the previous 

datasets, no demographic information about the user is 

provided. The movies in the dataset fall under different genres 

like action, adventure, animation, children's, comedy, etc. [72]. 

Each user rates at least 20 movies [56]. Table 1 shows the 

statistical analysis of all three datasets. 

 

Table 1. MovieLens dataset statistics [73] 

 
 ML - 100K 

[73] 

ML - 1M 

[73] 

ML - 10M 

[73] 

# Users 943 6040 71,567 

#Movies 1682 3900 10,681 

Total # 

Ratings 

1,00,000 10,00,209 1,00,00,054 

Sparsity 93.70% 93.53% 98.66% 

Mean 3.54 3.58 3.52 

Standard 

Deviation 

1.06 1.11 1.05 

Minimum 

Rating 

0.5 1 0.5 

Maximum 

Rating  

5 5 5 

25% of 

Ratings 

3 3 3 

50% of 

Ratings 

4 4 4 

75% of 

Ratings 

4 4 4 

 

5.2 Experimental setup 

 

The following system requirements are used to implement 

the proposed framework: Language: Python 3.7, OS: 

Windows 11 (64-bit), RAM: 16 GB, graphics card: NVIDIA 

GeForce GTX 1650, and processor: AMD Ryzen 5 4600H 

with Radeon Graphics [72, 74]. The proposed framework is 

implemented based on TensorFlow 1.14 and the Keras 2.3.1 

framework. Experiments were carried out with 10-fold cross-

validation [75]. The following hyperparameters are used 

during experimentation: number of latent factors: [8, 16, 32, 

64], batch size: [64, 128, 256], number of epochs: [50, 100], 

learning rate: 0.001, decay rate: 0.01, dropout: 0.5. 

 

5.3 Evaluation metrics 

 

The metrics used to evaluate the proposed model are MSE, 

RMSE, and MAE. MSE is the mean squared error obtained 

from the difference between the predicted and actual ratings, 

and RMSE is the square root of MSE [11]. The formulae for 

MSE and RMSE are given in Eqs. (22) and (23). 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1   (22) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1   (23) 

 

MAE is the mean absolute difference between the predicted 

and actual ratings. The formula for MAE is shown in Eq. (24). 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − �̂�𝑖|𝑛

𝑖=1   (24) 

 

where, �̂�𝑖 is the predicted rating and 𝑌𝑖 is the actual rating, 𝑛 

represent some observations. Smaller values of Eqs. (22), (23), 

and (24) mean higher accuracy. 

 

5.4 Experiments and discussion 

 

5.4.1 Comparative analysis with the existing techniques (RQ1) 

Using the M-1M and M-10M datasets, this section 

compares the proposed framework Deep CF-AdaMVRGO to 

six existing models [24-29] in terms of RMSE. The research 

findings proved that the proposed model performed better than 

the existing models with different hyperparameters [76], like 

epochs and batch size. To prove the proposed model is 

statistically significant, a paired t-test with a 0.05 level of 

significance is used, as shown in Section 5.4.3. The 

quantitative comparison results are depicted in Tables 2 and 3. 

The existing models for comparison are: 

• Multiviews NN [25] initially learned the low-dimensional 

user and item vectors separately. A feed-forward neural 

network (FFNN) is used to learn the nonlinear interactions 

between users and items for rating prediction [77]. 

• NCF [26] implemented a neural network-based matrix 

factorization model [78], and the loss was adjusted to a 

squared loss for rating prediction. 

• SemRe-DCF [27] combines a rating matrix with movie 

plot text, and a denoising autoencoder is used for predicting 

the ratings. 

• DPGMF [24] fused plot texts into ratings and proposed a 

deep-plot-aware generalised matrix factorization to predict 

missing ratings. 

• DELCR [28] uses a DNN to train the user and item 

embeddings separately to make a latent factor model for 

collaborative filtering that is based on deep learning. 

• DLFCF [29] uses a two-level deep learning model to learn 

about the rating matrix's hidden features. 

From Tables 2 and 3, it is evident that the proposed model 

has given a considerably reduced RMSE when compared with 

the existing methods using M-1M and M-10M datasets. While 

experimenting, it was also noted that the proposed algorithm 

showed better results on the M-1M dataset with 100 epochs 

and 128 batch size. Similarly, it showed better results on the 

M-10M dataset with 50 epochs and 256 batch size.  

The significant benefit of the proposed model over the 

existing models [24-29] is that it allows the model to make 

accurate predictions even for new movies that have limited or 

no information available. Additionally, the proposed 

framework outperforms the existing models in terms of 

reducing biases and variances in the ensemble, which results 

in more reliable and accurate predictions. 

 

5.4.2 Comparative analysis with the existing optimizers (RQ2) 

This section evaluates the performance of the proposed 
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optimizer AdaMVRGO on the ensemble framework with 

current optimizers such as Adagrad, RMSProp, ADAM, and 

SVRG on M-100K, M-1M, and M-10M datasets in terms of 

RMSE, MAE, and MSE metrics [11].  

 

Table 2. Quantitative comparison results in terms of RMSE using the M-1M dataset  

(A lower RMSE value is better.) 

 

Parameters 
Multiviews NN 

[25] 

NCF 

[26] 

SemRe-DCF 

[27] 

DPGMF 

[24] 

DELCR 

[28] 

DLFCF  

[29] 

Proposed 

Model 

#Epochs 50 
0.857 0.971 0.867 0.861 0.884 0.877 0.852 

Batch Size 64 

% decrease in RMSE when compared 

with the proposed model 
0.583 12.255 1.730 1.045 3.619 2.850  

#Epochs 50 
0.841 0.967 0.858 0.849 0.879 0.876 0.837 

Batch Size 128 

% decrease in RMSE when compared 

with the proposed model 
0.475 13.444 2.447 1.413 4.778 4.452 

 

#Epochs 50 
0.849 0.946 0.853 0.857 0.854 0.871 0.833 

Batch Size 256 

% decrease in RMSE when compared 

with the proposed model 
1.884 11.945 2.344 2.8 2.459 4.362 

 

#Epochs 100 
0.834 0.942 0.851 0.849 0.842 0.868 0.829 

Batch Size 64 

% decrease in RMSE when compared 

with the proposed model 
0.599 11.996 2.585 2.355 1.543 4.493 

 

#Epochs 100 
0.833 0.938 0.845 0.821 0.818 0.866 0.816 

Batch Size 128 

% decrease in RMSE when compared 

with the proposed model 
2.040 13.006 3.432 0.609 0.244 5.773 

 

#Epochs 100 
0.831 0.941 0.844 0.834 0.837 0.875 0.824 

Batch Size 256 

% decrease in RMSE when compared 

with the proposed model 
1.787 12.434 2.369 1.199 1.553 5.828  

 

Table 3. Quantitative comparison results in terms of RMSE using the M-10M dataset 

(A lower RMSE value is better.) 

 

Parameters 
Multiviews NN 

[25] 

NCF  

[26] 

SemRe-DCF 

[27] 

DPGMF 

[24] 

DELCR 

[28] 

DLFCF 

[29] 

Proposed 

Model 

#Epochs 50 
0.819 0.912 0.832 0.783 0.787 0.799 0.781 

Batch Size 64 

% decrease in RMSE when compared 

with the proposed model 
4.639 14.364 6.129 0.255 0.762 2.252  

#Epochs 50 
0.779 0.903 0.812 0.798 0.779 0.804 0.777 

Batch Size 128 

% decrease in RMSE when compared 

with the proposed model 
0.256 13.953 4.310 2.631 0.256 3.358  

#Epochs 50 
0.776 0.899 0.773 0.765 0.774 0.798 0.761 

Batch Size 256 

% decrease in RMSE when compared 

with the proposed model 
1.933 15.35 1.552 0.522 1.679 4.636  

#Epochs 100 
0.777 0.910 0.798 0.768 0.777 0.819 0.765 

Batch Size 64 

% decrease in RMSE when compared 

with the proposed model 
1.544 15.934 4.135 0.390 1.544 6.593  

#Epochs 100 
0.778 0.921 0.829 0.769 0.821 0.818 0.768 

Batch Size 128 

% decrease in RMSE when compared 

with the proposed model 
1.285 16.612 7.358 0.130 6.455 6.112  

#Epochs 100 
0.779 0.928 0.867 0.771 0.837 0.820 0.770 

Batch Size 256 

% decrease in RMSE when compared 

with the proposed model 
1.155 17.026 11.188 0.129 8.004 6.097  
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(D) 

 

Figure 3. Performance of the Deep CF-AdaMVRGO 

algorithm using M-100K (A to D from top to bottom) 

 

Analysis of the M-100K dataset: Using 10-fold cross-

validation on the M-100K dataset, the proposed Deep CF-

AdaMVRGO method is compared with other methods like 

Deep CF-Adagrad, Deep CF-RMSProp, Deep CF-Adam, and 

Deep CF-SVRG in terms of RMSE, MSE, and MAE metrics 

[78, 79]. Experiments were carried out with various settings 

[78, 79]. Experiments were carried out with various settings, 

such as a learning rate of 0.001, a batch size of 256, 100 epochs, 

and latent factors [8, 16, 32, 64]. Figure 3 depicts the 

performance of the Deep CF-AdaMVRGO method over the 

other methods on the M-100K dataset with MAE, MSE, and 

RMSE for different latent factors. [3(A) compares the 

evaluation metric values of different optimizers when the 

latent factors are 8; 3(B) compares the evaluation metric 

values of different optimizers when the latent factors are 16; 

3(C) compares the evaluation metric values of different 

optimizers when the latent factors are 32; 3(D) compares the 

evaluation metric values of different optimizers when the 

latent factors are 64]. 

The total number of computations is represented in floating 

point operations (FLOPs), and it is observed that the proposed 

algorithm took fewer FLOPs to reach the optimum when 

compared with other algorithms, as shown graphically in 

Figure 4. 

 

 
 

Figure 4. Comparison of MFLOPs using the M-100K dataset 

 

Analysis of the M-1M dataset: Using 10-fold cross-

validation on the M-1M dataset, the proposed Deep CF-

AdaMVRGO method is compared with other methods like 

Deep CF-Adagrad, Deep CF-RMSProp, Deep CF-Adam, and 

Deep CF-SVRG in terms of RMSE, MSE, and MAE metrics 

[78, 79]. Experiments were carried out with various settings, 

such as a learning rate of 0.001, a batch size of 256, 100 epochs, 

and latent factors [8, 16, 32, 64]. Figure 5 depicts the 

performance of the Deep CF-AdaMVRGO method over the 

other methods on the M-1M dataset with MAE, MSE, and 

RMSE for different latent factors. [5(A) compares the 

evaluation metric values of different optimizers when the 

latent factors are 8, 5(B) compares the evaluation metric 

values of different optimizers when the latent factors are 16, 

5(C) compares the evaluation metric values of different 

optimizers when the latent factors are 32, 5(D) compares the 

evaluation metric values of different optimizers when the 

latent factors are 64]. The total number of computations is 

represented in FLOPs, and it is observed that the proposed 

algorithm took fewer FLOPs to reach the optimum when 

compared with other algorithms, as shown graphically in 

Figure 6. 
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Figure 5. Performance of the Deep CF-AdaMVRGO 

algorithm using M-1M dataset (A to D from top to bottom) 

 

 
 

Figure 6. Comparison of MFLOPs using the M-1M dataset 

 

Analysis of the M-10M dataset: Using 10-fold cross-

validation on the M-10M dataset, the proposed Deep CF-

AdaMVRGO method is compared with other methods like 

Deep CF-Adagrad, Deep CF-RMSProp, Deep CF-Adam, and 

Deep CF-SVRG in terms of RMSE, MSE, and MAE metrics 

[78, 79]. Experiments were carried out with various settings, 

such as a learning rate of 0.001, a batch size of 256, 100 epochs, 

and latent factors [8, 16, 32, 64]. Figure 7 depicts the 

performance of the Deep CF-AdaMVRGO method over the 

other methods on the ML 10M dataset with MAE, MSE, and 

RMSE for different latent factors. [7(A) compares the 

evaluation metric values of different optimizers when the 

latent factors are 8, 7(B) compares the evaluation metric 

values of different optimizers when the latent factors are 16, 

7(C) compares the evaluation metric values of different 

optimizers when the latent factors are 32, and 7(D) compares 

the evaluation metric values of different optimizers when the 

latent factors are 64]. 
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Figure 7. Performance of the deep CF-AdaMVRGO 

algorithm using M-10M dataset (A to D from top to bottom) 

 

The total number of computations is represented in FLOPs, 

and it is observed that the proposed algorithm took fewer 

FLOPs to reach the optimum when compared with other 

algorithms, as shown graphically in Figure 8. 

 

 
 

Figure 8. Comparison of MFLOPs using the M-10M dataset 

 

From Figures 3, 5, and 7, it is proven that the proposed novel 

optimizer, AdaMVRGO, outperformed the existing 

optimisation techniques on the ensemble framework in terms 

of all evaluation metrics [80]. From Figures 4, 6, and 8, it can 

be observed that AdaMVRGO converged significantly faster 

than the existing optimization techniques. This suggests that 

AdaMVRGO not only produces superior results in terms of 

accuracy metrics but also does so in a more efficient manner. 

These findings highlight the effectiveness of AdaMVRGO in 

improving the performance of the ensemble framework and 

make it a promising choice for future applications. 

5.4.3 Statistical significance and discussions 

To verify the results of the proposed model over the existing 

models, statistical analysis was performed on the experimental 

results using a paired t-test for the M-1M and M-10M datasets. 

The statistical analysis is performed at a 0.05 (95%) level of 

significance, and the results are analysed in terms of a t-value. 

The proposed model is considered robust when the p-value is 

less than the significance level [81]. From Table 4, we can 

conclude that the proposed model is significantly stronger with 

a low p-value compared to the existing models at 9 degrees of 

freedom. These findings suggest that the proposed model is 

highly reliable and provides a significant improvement over 

the existing models in predicting the observed data. Moreover, 

the low p-value indicates that the results are unlikely to occur 

by chance alone, further validating the proposed models’ 

robustness [75]. Overall, these findings offer compelling proof 

of the proposed model's efficacy and demonstrate that it 

outperforms existing models in terms of statistical strength and 

accuracy [82]. 

 

Table 4. Statistical significance on M-1M &M-10M datasets 

[83] 

 
 M-1M M-10M 

MultiviewsNN [25] 0.015924019 0.011271812 

NCF [26] 0.000003159 0.000014055 

SemRe-DCF [27] 0.000187744 0.031027946 

DPGMF [24] 0.014531813 0.189003658 

DELCR [28] 0.052601661 0.083751047 

DLFCF [29] 0.00001175 0.000986522 

Proposed Model 0.000001579 0.000007028 

 

 

6. CONCLUSION 

 

Deep collaborative filtering has proven to be one of the best 

recommendation techniques over the other latent factor 

models to capture hidden, nonlinear, and complex 

relationships between users and movies. To handle the sparsity 

issue and enhance movie recommendation accuracy, we 

developed an ensemble framework called Deep CF-

AdaMVRGO, which uses three sub-models: M1, M2, and M3. 

The first two models (M1 and M2) of the ensemble use one 

hidden layer and two hidden layers without dropout, and the 

third model, M3, uses three hidden layers and a dropout rate 

taken from the Bernoulli distribution to avoid overfitting. The 

output of each MLP is trained using a novel optimization 

technique called AdaMVRGO. Taking the average of the 

individual predictions made by the models M1, M2, and M3 

yields the final rating. 

Experiments were conducted using the M-100K, M-1M, 

and M-10M datasets in terms of evaluation metrics like MSE, 

RMSE, and MAE. Simulation results showed that the new 

optimizer AdaMVRGO had a low error value in 

recommending movies, compared to optimizers like Adagrad, 

RMSProp, ADAM, and SVRG on the proposed ensemble 

architecture. Also, the proposed optimizer achieved the 

optimum with fewer FLOPs. The experimental results showed 

that the Deep CF-AdaMVRGO performed well over the 

benchmark algorithms on both the M-1M and M-10M datasets 

in terms of the RMSE value. Experiments were done with 

different parameters, and the results showed that the proposed 

model is better than the existing models on the M-1M dataset 

when the number of epochs was 100 and the batch size was 

128. Also, the proposed model showed a 2.040%, 13.006%, 
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3.432%, 0.609%, 0.244%, and 5.773% decrease in terms of 

RMSE value over the baseline models. In the same way, it did 

better on the M-10M dataset when the number of epochs was 

50 and the batch size was 256. The proposed algorithm did 

better than the baseline models in terms of RMSE value by 

1.933%, 15.35%, 1.552%, 0.522%, 1.679%, and 4.636%. 

From the simulations, we infer that the ensemble-based model 

can generate more accurate recommendations than the 

individual methods. 

In this paper, the final prediction is the mean of the 

predictions obtained from the three MLPs, which may not be 

the best all the time. Future enhancements may include the use 

of stacking ensembles to construct models with low bias and 

variance; the addition of side information to the movies like 

their genres, user reviews, implicit feedback, etc. to enhance 

the recommendation accuracy; and the use of an attribute 

selection algorithm to improve movie recommendation 

performance even further. 
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