
A Lightweight, Depth-Wise Separable Convolution-Based CapsNet for Efficient Grape Leaf

Disease Detection

Vasudevan Narasimman* , Karthick Thiyagarajan

Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology,

Kattankulathur, Tamilnadu 603203, India

Corresponding Author Email: vn8049@srmist.edu.in

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.400648 ABSTRACT

Received: 23 May 2023

Revised: 30 August 2023

Accepted: 8 September 2023

Available online: 30 December 2023

The ability to accurately and swiftly detect grape leaf diseases is paramount in preventing

and managing grapevine afflictions. A delay in the identification and treatment of these

infections can lead to substantial economic losses owing to reduced grape yields and

compromised quality. Conventional deep learning models, such as ResNeXt and Capsule

Networks, though effective, are resource-intensive and require extensive training time. Their

application on resource-constrained devices or in remote vineyards can, therefore, be

challenging. Capsule Networks hold significant promise in grape leaf disease identification

due to their ability to preserve hierarchical relationships and spatial hierarchies of grape

leaves. This study presents an innovative approach to grape leaf disease detection by

constructing a lightweight Capsule Network that utilizes depth-wise separable convolutions.

This modification from traditional convolutions, used in ResNeXt and conventional Capsule

Networks, enhances the reception of the convolution field and facilitates the extraction of

deep-level features from infected leaf images, while minimizing computational cost and

improving training results. A comprehensive disease severity index, calculated from the

entirety of the leaf images, is incorporated to assess the stages of plant disease by considering

all leaf infections. Experimental results obtained from the Plant Village public dataset

demonstrate the efficacy of the proposed method in diagnosing grape leaf diseases. The

method exhibits a marked reduction in computational complexity compared to the existing

deep learning model, ResNeXt, and traditional Capsule Neural Networks. In addition to

disease detection, the severity index also allows for quantifying the stage of the disease. The

findings of this study underscore the potential of the proposed depth-wise separable

convolution-based lightweight Capsule Network in facilitating efficient and comprehensive

grape leaf disease detection and assessment.

Keywords:

imaging, separable convolution, disease

recognition, neural network, and

classification

1. INTRODUCTION

Convolutional Neural Networks (CNNs) possess the ability

to recognize features irrespective of their position in an image

due to their property of translation invariance. However, they

can grapple with complex transformations that extend beyond

fundamental translations. Capsule Neural Networks

(CapsNets), with their ability to capture hierarchical spatial

relationships, could potentially address more intricate changes

associated with grape leaf diseases. While pooling layers in

CNNs extract hierarchical features, they may inadvertently

lose information. In contrast, CapsNets inherently manage

hierarchical characteristics by design, which could be

beneficial for diseases with complex structures in grape leaves.

Capsule Neural Networks, a distinct form of neural network

architecture, are designed to better manage the spatial and

hierarchical relations among features in images or other types

of data [1, 2]. Each layer in a CapsNet contains multiple

"capsules" or groups of neurons that represent varied visual

aspects or attributes of the input data. The interaction between

these capsules forms a hierarchical representation of the data.

The primary innovation in CapsNet is the implementation of

"dynamic routing," which allows capsules in one layer to

interact preferentially with capsules in the following layer,

based on their prediction consensus [3]. This direct

representation of feature relationships by CapsNets helps

overcome some limitations of traditional CNNs. CapsNet

shows promise in enhancing the robustness and

interpretability of deep learning networks, particularly for

image and video data. Despite being a relatively new field of

study, it is anticipated that more advancements and

modifications are on the horizon.

A capsule network is primarily composed of two essential

components: encoders and decoders [4, 5]. With a total of six

layers, the first three layers constitute the encoder, responsible

for transforming the input image into a vector. The initial layer

of the encoder, a convolutional neural network, extracts the

fundamental features of the image. The second layer, the

PrimaryCaps Network, uses these basic elements to discern

more complex patterns. The third layer, the DigitCaps

Network, comprises a variable number of capsules. After these

stages, the encoder produces a vector that proceeds to the

Traitement du Signal
Vol. 40, No. 6, December, 2023, pp. 2869-2877

Journal homepage: http://iieta.org/journals/ts

2869

https://orcid.org/0000-0002-4362-8063
https://orcid.org/0000-0003-2387-7086
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400648&domain=pdf

decoder. The decoder, consisting of three interconnected

layers, uses this vector as a starting point to attempt to

reconstruct the original image. This ability to predict events

based on its experience strengthens the network.

The matrix between the first layer and the second layer is

multiplied to encode spatial relationship information, and the

encoded information represents the probability of label

classifications. During the computation step, the lower-level

capsules adjust their weights in accordance with the weights

of the higher-level capsules. They do this to align with the

weights of the superior capsules. The higher-level capsules

map the weight distribution and permit the majority to pass.

Through dynamic routing, they can all communicate with each

other. During dynamic routing, the lower capsules transmit

their data to the parent capsule. The capsule that receives the

majority of data is designated as the parent capsule. All

capsules send their data to the capsule they deem most

appropriate. The parent capsules distribute the weights

according to the agreement.

Dynamic routing can encounter difficulties when

identifying disease spots on grape leaves when these images

are presented as input. The capsules focus their attention on

the image, particularly its invariant aspects, aligning the frame

of the leaf with respect to its borders. After determining

whether the object is a leaf, they relay their predictions to the

higher-level capsules. If the projections of the leaf's edges

correspond with the predictions of other lower-level capsules,

the object is classified as a leaf. This process exemplifies

routing by agreement.

Dynamic routing plays a crucial role in Capsule Neural

Networks by orchestrating how lower-level information is

amalgamated to form higher-level features. Initially, the input

image of the grape leaf is processed through convolutional

layers to identify basic attributes, such as edges and corners.

Each discerned feature prompts the activation of a primary

capsule. The activation vector linked to a primary capsule

denotes the properties of the specified feature, including

aspects like orientation, location, and various visual qualities.

For each primary capsule, a transformation matrix is obtained.

This matrix embodies a means of encoding how lower-level

features transform to contribute to the formation of higher-

level features. The transformation matrix symbolizes the

relationships between the activations of primary capsules and

their collective representation of more complex patterns.

Prediction vectors in higher-level capsules are formulated by

calculating the weighted sum of primary capsule activations,

which are then transformed using their respective

transformation matrices. These prediction vectors denote the

existence and attributes of features on a higher level. Within

the scope of grape leaf disease identification, these

characteristics could correspond to different disease symptoms

or patterns.

Following the generation of transformation matrices and

prediction vectors, the initialization of routing weights is

performed. This involves assigning initial values to the routing

weights that connect primary and higher-level capsules, a

process known as weight initialization. The routing weights

dictate the degree to which primary capsules contribute to the

prediction vectors of higher-level capsules.

During each iteration of dynamic routing, the following

steps occur:

Prediction Aggregation: The transformation matrices of

primary capsules are multiplied by activations to generate

"transformed prediction vectors". These transformed vectors

from all primary capsules are then summed to feed into higher-

level capsules.

Routing Update: A softmax operation is applied to the input

to yield routing weights that represent the agreement between

primary and higher-level capsules. These routing weights

determine the extent to which each primary capsule's

information impacts the prediction vectors of higher-level

capsules.

Weighted Sum: The weighted contributions of primary

capsules are combined to form the output prediction vectors of

higher-level capsules.

The final layer of the CapsNet comprises output capsules,

each representing a distinct illness category or pattern. The

prediction vectors produced by these output capsules are based

on the inputs from higher-level capsules, with each prediction

vector being unique to a specific class.

Capsule neural networks address the limitations associated

with spatial and hierarchical relationships between features in

traditional convolutional neural networks [6, 7]. However,

CapsNets also present challenges and constraints, including

high computational cost and the need for more scalability [8].

Due to their increased processing demands, training and

predicting with CapsNets may be challenging for devices with

limited resources [9, 10]. Additionally, the cost and

complexity of computation can escalate significantly when

more layers and capsules are added, making CapsNets difficult

to scale.

To address these drawbacks, a new advancement called

lightweight capsule neural networks (LWCNs) has been

introduced [11]. LWCNs aim to reduce the computational cost

and training time associated with CapsNets. Compared to

CapsNets, LWCNs offer several benefits:

Reduced Computational Cost: LWCNs are designed to be

compact and efficient, making them suitable for deployment

on resource-constrained devices, including smartphones and

embedded systems.

Improved Scalability: Depending on the complexity of the

task and the available resources, LWCNs can be scaled up or

down.

Enhanced Performance: LWCNs have shown promising

results in various computer vision applications, such as object

recognition and image classification, sometimes

outperforming traditional CNNs and CapsNets.

A variant of CapsNet, known as a lightweight capsule

neural network (LWCN), has been developed to be

computationally efficient and suitable for deployment on

systems with limited computing resources, such as mobile

devices, IoT devices, and embedded devices [12]. The primary

goal of a lightweight CapsNet is to reduce the number of input

parameters and computations while maintaining high accuracy.

Several strategies are employed to achieve this, including

compression, pruning, quantization, factorization, and

knowledge distillation. Compression involves reducing the

number of capsules, neurons, and convolutional filters in each

layer to minimize the number of parameters [13]. Pruning

involves removing redundant connections or neurons that do

not significantly contribute to the output. Quantization

involves representing weights and activations with lower

precision to conserve memory and accelerate inference.

Factorization techniques like low-rank approximation are used

to minimize the number of parameters in convolutional layers

[14]. Knowledge distillation involves training the smaller

network to mimic the larger one, thereby transferring

knowledge from a larger CapsNet to a smaller one.

2870

The task of identifying grape leaf diseases using deep

learning models, including capsule neural networks, presents

several challenges, such as imbalanced datasets, fine-grained

discrimination, complexity, and CPU resources. For effective

learning, deep learning models require a large and well-

balanced dataset. If the dataset is limited in size or exhibits

uneven distribution across various disease classifications, the

model might struggle to effectively adapt to new, unseen data.

Grape diseases often cause subtle changes in the texture,

color, and structure of leaves. To distinguish between different

disease categories, deep learning models need to capture this

fine-grained information. Standard convolutional neural

networks might struggle with this task unless they are

sufficiently complex and deep.

Deep learning models like ResneXt [15] and Capsule

networks demand substantial computational resources for

training and inference processes. Limited access to powerful

hardware can pose a challenge for researchers. Additionally,

detecting disease on a single leaf doesn't provide a

comprehensive picture of the overall health of the grape plant.

Therefore, this study focuses on determining the disease

severity index to assess the overall disease status and to

identify whether the diseases are in their initial or advanced

stages.

The aforementioned issues with existing grape leaf disease

detection systems have led to the proposal of a new network

called lightweight capsule networks. The main contributions

of this paper are:

⚫ The development of a lightweight capsule neural

network.

⚫ A comparison of computational times, trainable

parameters, and accuracies between the proposed

model and existing models.

⚫ The calculation of the disease severity index.

2. PROPOSED METHOD

Before sending features to the capsule layers for spatial

relationship analysis, extracting features from an input picture

using depth-wise convolution as part of a capsule network

design is feasible. While it provides more effective and

lightweight computing, depth-wise convolution is generally

utilized in this context to replace classic convolutional layers.

Unlike standard convolutional layers, which apply each filter

to every input data channel simultaneously, depth-wise

convolution applies each filter to just one channel

simultaneously. This makes the model more effective by

lowering the number of parameters that must be learned.

Combining depth-wise convolution with capsule networks

may produce an efficient and effective lightweight capsule

neural network model for picture object recognition. The

following capsule layers investigate the spatial correlations

between the low-level data extracted by the depth-wise

convolutional layer to recognize objects in the picture.

The classic CapsNet ideas used to determine the illness of

grape leaves are shown in Figure 1. The input layer receives a

picture with the dimensions 128×128×3. The convolutional

layer performs a typical convolution to extract information

from the input picture. Usually, a non-linear activation

function like ReLU is present in this layer [16]. The number

of filters or the convolution stride may be changed to alter the

output size of this layer, which is typically less than the input

size. The output of the convolutional layer is transformed into

capsules by the main capsule layer. Each of these capsules,

which are 16-dimensional vectors, is placed in an 8x8 grid. A

tensor of the dimensions 8×8×256, where 256 is the number

of capsules, is the output of the principal capsule layer [17].

The output from the primary capsules layer is subjected to

dynamic routing in the digit capsules layer, enabling the

capsules to exchange information and coordinate their outputs.

The layer of digit capsules produces a tensor of size 4x16,

where 4 is the number of classes, and 16 is the dimension of

each output capsule.

The decoder network [18] recreates the input picture using

the digit capsules layer's output. To do this, the output capsules

are sent through several completely linked layers, each of

which gradually converts the output capsules into a pixel-by-

pixel image reconstruction. The decoder network produces a

tensor with the dimensions 128×128×3, representing the

reconstructed picture. To determine the class of the input

picture, the output layer employs the results from the digit

capsules layer. A softmax function is applied to the output

capsules, and the class with the highest probability is chosen

[19]. The likelihood that the input picture belongs to each of

the four categories is contained in a tensor of dimension four

produced by the output layer.

A tensor with the dimensions [batch size, height, width,

channels] is the input to a CapsNet. The first layer of the

network is commonly a convolutional layer that uses a kernel

with the shape [kernel size, kernel size, channels, filters] to

conduct conventional convolution on the input tensor. Filters

are the number of output channels in this case. The

convolutional layer is represented as:

C = conv(X, K) (1)

where, C is the output shape [batch_size, height', width',

filters], X is the input shape [batch_size, height, width,

channels], and K is the convolutional kernel of shape

[kernel_size, kernel_size, channels, filters]

Convolutional layer output is transformed into a tensor of

capsules by passing it via a non-linear activation function like

ReLU. Assume that the convolutional layer's output is a tensor

C with the following dimensions: batch size, height', width',

and filters. It may be reshaped into a tensor P with the

following dimensions: batch size, height * width * filters /

caps_dim, caps _dim, where caps dim is the dimensionality of

each capsule. The primary capsule layer is represented as:

P = reshape(activation(C)) (2)

where, P is output tensor of shape [batch_size, height' * width'

* filters / caps_dim, caps_dim], activation is an activation

function, such as ReLU, and reshape is a reshape operation

In CapsNets, the output of the primary capsule layer is

routed to the appropriate higher-level capsule based on the

agreement between the output and the capsule's prediction

vector. This is done by computing the scalar product between

the output and the weights of each capsule, squashing the

result using a non-linear activation function, and so on. The

capsule operations can be represented as:

uhat = W@P (3)

u = squas h(uhat) (4)

v = route(u, b) (5)

2871

where, uhat is predicted output shape [batch_size,

num_capsules_i, num_capsules_j, dim_j, 1], W is weight

matrix shape [num_capsules_i, num_capsules_j, dim_i,

dim_j], and P is input tensor of shape [batch_size, height' *

width' * filters / caps_dim, caps_dim].

Without depth-wise separable convolution, CapsNets

employ conventional convolutional layers that apply several

filters to the input picture to extract features before passing

those data through several fully connected layers to generate

predictions. Then, capsules indicate the existence or absence

of a specific characteristic in a picture.

Figure 1. Traditional CapsNet

Contrarily, the suggested method, LWCNs with depth-wise

separable convolution, employs a unique convolutional layer

that divides spatial filtering and channel filtering tasks [20].

This layer consists of two steps: pointwise convolution, which

combines the filtered channels, and depth-wise convolution,

which filters each channel of the input picture separately. By

using fewer parameters, this method speeds up calculation

without sacrificing precision. Figure 2 depicts the suggested

depth-wise light-weight capsule neural network.

Figure 2. Depth-wise light-weight capsule neural network

Initially, a 128×128×3-pixel picture is loaded into the input

layer (where 3 is the number of color channels - red, green,

and blue). Subsequently, a depth-wise separable convolution

layer is applied to the input data [21, 22]. Combining depth-

wise convolution, which uses a distinct filter for each input

channel, with pointwise convolution [23], this convolutional

layer is intended to be more computationally efficient than

ordinary convolution [24] (which involves a 1×1 filter to

combine the output of the depth-wise convolution across

channels).

This layer generates a 128×128×32 feature map. The feature

map is then processed through two additional depth-wise

separable convolution layers, each having twice as many

channels as the feature map's spatial dimensions. These layers

produce feature maps, the first of which is a 64x64x64 feature

map and the second a 32×32×128 feature map.

The primary capsule layer uses the output from the

preceding layer. It transforms information into capsules,

vectors representing an object's attributes in a picture,

including its scale, orientation, and location. Each of these

capsules, which are 16-dimensional vectors, is placed in an

8×8 grid. A tensor of the dimensions 8×8×256, where 256 is

the number of capsules, is the output of the principal capsule

layer. The class capsules layer uses the output from the

primary capsules layer. The mechanism it uses, known as

dynamic routing, enables the capsules to interact with one

another and coordinate their outputs. The layer of digit

capsules produces a tensor of size 4×16, where 4 is the number

of classes, and 16 is the dimension of each output capsule.

The decoder network recreates the input picture using the

class capsules layer's output. To do this, the output capsules

are sent through several completely linked layers, each of

which gradually converts the output capsules into a pixel-by-

pixel image reconstruction. The decoder network produces a

tensor with the dimensions 128×128×3, representing the

reconstructed picture. To determine the class of the input

picture, the output layer employs the results from the digit

capsules layer. A softmax function is applied to the output

capsules, and the class with the highest probability is chosen.

The probability that the input picture belongs to each of the

four categories is contained in a tensor of dimension four

produced by the output layer.

The dynamic routing mechanism of LWCNs uses depthwise

convolution and pointwise convolution to detect the features

and relationships among the features with less trainable

parameters. Those depthwise convolution and pointwise

convolution are represented in Eq. (6) and Eq. (7).

Convolution is carried out independently on each input

channel when using depth-wise convolution. Assume we have

a depth-wise K of shape [kernel size, kernel size, channels,

depth multiplier] and an input tensor X of shape [batch size,

height, width, channels]. Here, the hyperparameter depth

multiplier regulates the output tensor's depth. The depthwise

convolution operation is represented as:

Y = depthwise_conv(X, K) (6)

where, Y is the output shape [batch_size, height, width,

channels * depth_multiplier], X is the input shape [batch_size,

height, width, channels], and K is a depthwise kernel of shape

[kernel_size, kernel_size, channels, depth_multiplier]. With a

1x1 kernel, pointwise convolution entails applying

convolution to the depthwise convolution's output. Suppose

we have a pointwise kernel K with the shape [1, 1, channels *

depth multiplier, filters] and an input tensor Y with the shape

[batch size, height, width, channels * depth multiplier]. Filters

are the number of output channels in this case. The pointwise

convolution operation can be represented as:

Z = pointwise_conv(Y, K) (7)

where, Z is output shape [batch_size, height, width, filters], Y

is input [batch_size, height, width, channels *

depth_multiplier], and K is the pointwise kernel of shape [1, 1,

2872

channels * depth_multiplier, filters].

In LWCNs, the output of the pointwise convolution is

routed to the appropriate higher-level capsule based on the

agreement between the output and the capsule's prediction

vector. This is done by computing the scalar product between

each capsule's production and weights, squashing the result

using a non-linear activation function, and so on. The capsule

operations can be represented mathematically as:

uhat = W@Z (8)

u = squas h(uhat) (9)

v = route(u, b) (10)

where, uhat is predicted output of shape [batch_size,

num_capsules_i, num_capsules_j, dim_j, 1], W is weight

matrix of shape [num_capsules_i, num_capsules_j, dim_i,

dim_j], and Z is input tensor of shape [batch_size, height,

width, filters].

3.1 Depthwise light-weight capsule neural network

Algorithm

Input: Original Grape Leaf Images D

Output: DT, BS, ES, and DS

Where DT denotes Disease Type,

 DS denotes Disease Stage,

 BS denotes the Beginning Stage,

 ES denotes End Stage

Step1: Start

Step2: Apply depthwise convolution layers over the Images

Step3: Extract the Basic Features from images and form them

 as primary capsules SC, LC, and YP

 Where SC denotes a Small circle

 LC denotes a Large circle

 YP denotes Yellow Patches

Step4: Process the spatial information of basic features

Step5: Based on the frequency and spatial information of

 capsules, find the overall features of DT

Step6: Repeat step2 to step5 for all grape leaf images

Step7: Calculate the disease severity index (DSI) by the

 Following the formula to find the DS

 DSI = Number of diseased leaves / Total number of

 leaves * 100

Step8: If DSI < 30 then

 return BS

 else

 return ES

Step9: End

The grape plant leaf disease detection algorithm using a

depth-wise lightweight capsule neural network is given above.

It shows how the disease types and stages are identified.

Neuronal clusters called capsules hold information about the

location, frequency, and possibility of an object being there.

Each entity in an image has a capsule in a network of capsules

that offers the probability that the entity exists as well as the

spatial characteristics of that entity. Local entity features, such

as tiny circles, large circles, and yellow patches, are

discovered using the depth-wise convolution layers. The

capsule layer gathers the overall feature illness kind using low-

level feature frequency and spatial data. Eq. (11) calculates the

Disease Severity Index [25, 26], which gives the idea about the

infection stage [27] of the overall grape plant.

DSI =
Numberofdiseasedleaves

Totalnumberofleaves
∗ 100 (11)

The experimental setup and results of the traditional capsule

neural network, deep learning model, and depth-wise light-

weight capsule neural network are discussed in the following

section.

3. EXPERIMENTAL SETUP AND DATASET

The machine with the 2.90 GHz processor, 12 GB RAM

Memory, and 4 GB Nvidia GeForce GTX 1080Ti GPU card

implements the suggested approach for depth-wise lightweight

capsule network-based grape leaves disease detection and

classification. The system above does all of the computations.

Concerning testing accuracy, epochs range from 30 to 50. The

learning rate ranges between 0.01 and 0.001. To accommodate

the network in the GPU, several batch sizes are tested. The

range of the batch size is 5 to 32. It is set to 32 to accommodate

computer memory. Several training parameter volumes are

considered in the dataset throughout the training process [28].

Tables 1 and 2 include the ideal set of hyper-parameters [29,

30] for the ResNeXt model, conventional CapsNet model, and

depth-wise lightweight-based CapsNet. The ResNeXt model

uses the same hyperparameter values used for the classical

CapsNet for batch sizes, epochs, learning rate, optimizer, and

activation.

Table 1. Hyper-parameter of ResNeXt and traditional

capsule network

Hyper-Parameter Value

Convolution output channels 32

Primary capsule convolution

output channels
32

Primary capsule vector length 8

Class capsule vector length 16

Class capsule output classes 4

Reconstruction loss weight 0.0005

Activation ReLu

Optimizer Adam

Learning rate 0.001

Batch size 32

Number of epochs 50

Table 2. Hyper-parameter of depth-wise lightweight capsule

network

Hyper-Parameter Value

Depthwise separable

convolution output channels
32

Primary capsule convolution

output channels
256

Primary capsule vector length 16

Class capsule vector length 16

Class capsule output classes 4

Reconstruction loss weight 0.0005

Activation ReLu

Optimizer Adam

Learning rate 0.001

Batch size 32

Number of epochs 50

2873

The grape leaf image dataset includes images from the

public PlantVillage dataset [31]. We used 12,000 grape leaf

images of four different types from this data set. The different

types of leaves used in this experiment are black rot, black

measles, leaf blight, and healthy leaves.

The dataset is randomly divided into a training set and a test

set, in which the training set is used for training parameters,

and the test set is used to verify the model. The data

distribution of all the four classes is shown in Table 3.

Table 3. The dataset used for CapsNet-based grape leaf

disease classification

Class Total

Black Rot 3000

Black Measles 3000

Leaf Blight 3000

Healthy 3000

Total 12000

4. RESULTS AND DISCUSSIONS

The depth-wise light-weight CapsNet model's accuracy for

grape plant leaf infection is determined to be 95.04% based on

the confusion matrix shown in Figure 3. The confusion matrix

shows the success of the suggested technique for each class.

This makes it possible to evaluate the classifier's effectiveness

visually. Although the rows decide the output class, the

columns provide the actual class. In contrast to diagonal cells,

which indicate misclassified observations, non-diagonal cells

reflect correctly classified data. The results were calculated

and presented as a percentage using the suggested

methodology and the test data. It is evident from Figure 4 and

Figure 5 that all classes are identified using the ResNeXt

model and the conventional capsNet model but with additional

trainable parameters. As per Table 4, The ResNeXt model

accuracy is less than the other two CapsNets Models. Also, All

the metrics like precision, recall, f1-score, and accuracy show

that there is only a very slight difference between the

recommended depth-wise light-weight capsule neural network

classification accuracy and traditional capsule neural network

classification accuracy but with significant differences in

trainable parameters.

Table 5 displays the training time and trainable parameters

for all three models. Traditional CapsNet took more training

time than ResNeXt and LWCN as the trainable parameters of

CapsNet are very high compared to others. We used the

convolution layer in the ResNeXt and conventional CapsNet

model with 50 epochs. Nevertheless, we employed depth-wise

separable convolution layers with 50 epochs in the second

lightweight CapsNet model. Both depth-wise convolution and

pointwise convolution are used in the depth-wise convolution

layers. Pointwise convolution combines the filtered channels

after depth-wise convolution applies a different filter to each

channel of the input picture. By using fewer parameters, this

method speeds up calculation without sacrificing precision. As

a result, the depth-wise lightweight CapsNet has 90% fewer

trainable parameters and training time than the original

CapsNet model. The traditional first CapsNet model's total

trainable parameters were 558,761,188, ResNeXt's total

parameters were 257,864,288, and the depth-wise lightweight

CapsNet model's total parameters were 51,092,559.

The accuracy of the depth-wise lightweight CapsNet model

with fewer trainable parameters was 95.04%, compared to

95.37% for the initial standard CapsNet model with more

trainable parameters. Figure 6 to Figure 11 depict this

accuracy accomplishment and trainable parameters using 50

epochs for all three models. Because there are fewer

parameters and calculations, the depthwise lightweight

CapsNet takes less time to train than the conventional CapsNet

and ResNeXt. The 558,761,188 parameters of the traditional

CapsNet were all trained. 51,092,559 parameters were trained

out of the 51,093,519 parameters in the depth-wise lightweight

CapsNet. Yet, there were only a few changes in the accuracy

that both models provided. Compared to the conventional

CapsNet and ResNeXt, the trainable parameters of depth-wise

lightweight parameters are very low. It will shorten the

computation time for the suggested technique.

Figure 3. Confusion matrix of depth wise light-weight

CapsNet

Figure 4. Confusion matrix of traditional CapsNet

Figure 5. Confusion matrix of ResNeXt

2874

Table 4. Performance evaluation

Model Precision Recall
F1-

Score
Accuracy

ResNeXt 89.64 88.72 89.17 91.64

Traditional CapsNet 93.78 92.78 93.27 95.375

Depthwise

convolution-based

lightweight

CapsNet

93.47 92.89 93.17 95.041

Table 5. Training time and trainable parameters comparison

Model Training

Time

Trainable

Parameters

ResNeXt 4 Hours 23

Minutes
257,864,288

Traditional CapsNet 11 Hours 45

Minutes
558,761,188

Depthwise convolution-

based lightweight CapsNet

2 Hours 11

Minutes
51,092,559

Figure 6. ResNext performance

Figure 7. ResNeXt parameters

A non-linear activation function, a routing mechanism, and

finally, a matrix multiplication operation is used by each

capsule in a typical CapsNet to calculate the output of the

capsule. The need for extra weights and a dynamic routing

process increases the computational cost of this routing

strategy. In contrast, the classic convolution procedure is

divided into a depth-wise convolution and a pointwise

convolution by the depth-wise lightweight CapsNet. Whereas

the pointwise convolution mixes the outputs of the depth-wise

convolution over all channels, the depth-wise convolution

conducts a separate convolution for each channel in the input.

The CapsNet needs fewer parameters and calculations as a

result of this split. Since it utilizes different weight matrices

for each channel in the input, the depth-wise separable

CapsNet has explicitly fewer parameters than other types of

neural networks. Also, since depth-wise convolution only

convolves each channel with a smaller filter, lowering the

overall calculations, the depth-wise lightweight CapsNet

needs fewer computations.

Finally, the disease severity index was computed using

LWCN disease classification performance for the whole

leaves. The disease severity index is calculated by Eq. (11),

which uses the number of diseased leaves and the total number

of leaves. In this work, 9124 leaves got infected among the

12000 leaves. As more than 70% of leaves are affected, i.e.,

the disease severity index was found to be 76.04%, it is

considered the end stage of the disease. If less than 30% of

leaves were infected, the disease would have been considered

a beginning stage. Calculating this disease severity index helps

the farmer get an overall idea about their grape plant.

Figure 8. Traditional CapsNet performance

Figure 9. Traditional CapsNet parameters

2875

Figure 10. Proposed model performance

Figure 11. Proposed model parameters

5. CONCLUSIONS

In this work, we suggest using depth-wise lightweight

CapsNet instead of the standard architecture of capsule

networks and ResNeXt. The advanced Capsule networks are

then empirically compared to the conventional CapsNet and

ResNeXt models. The findings demonstrate that the proposed

depth-wise lightweight Capsule network significantly reduces

the models' size. These overall parameters and training time

were much less than the ResNeXt and conventional CapsNet.

With much fewer parameters, depth-wise lightweight CapsNet

performs on par with traditional capsule models in terms of

accuracy. We also used the proposed capsule networks to find

the disease severity index of grape leaves. In the future, the

disease severity index calculation can be compared with other

metrics to see the overall health of the grape plant. Also, the

LCWNs can be used with other crops with real-time datasets.

REFERENCES

[1] Pasunuri, N.R., Aruva, V., Ashutosh, V., Mukesh, G.

(2023). Analysis of capsule networks to detect forged

images and videos. International Journal of Scientific

Research in Engineering and Management, 7(5): 1-12.

https://doi.org/10.55041/IJSREM17495

[2] Altan, G. (2020). Performance evaluation of capsule

networks for classification of plant leaf diseases.

International Journal of Applied Mathematics

Electronics and Computers, 8(3): 57-63.

https://doi.org/10.18100/ijamec.797392

[3] Patrick, M., Adekoya, A., Ayidzoe, M., Baagyere, E.

(2019). Capsule networks – A survey. Journal of King

Saud University - Computer and Information Sciences,

34(1): 1295-1310.

https://doi.org/10.1016/j.jksuci.2019.09.014

[4] Vasudevan, N., Karthck, T. (2023). A hybrid approach

for plant disease detection using E-GAN and CapsNet.

Computer Systems Science and Engineering, 46(3): 337-

356. https://doi.org/10.32604/csse.2023.034242

[5] Pande, S., Chetty, M. (2019). Analysis of capsule

network (capsnet) architectures and applications. Journal

of Advanced Research in Dynamical and Control

Systems, 10(10): 2765-2771.

[6] Steur, N., Schwenker, F. (2021). Next-generation neural

networks: Capsule networks with routing-by-agreement

for text classification. IEEE Access, 9: 125269-125299.

https://doi.org/10.1109/ACCESS.2021.3110911

[7] Manogaran, U., Wong, Y., Ng, B. (2021). CapsNet vs.

CNN: Analysis of the effects of varying feature spatial

arrangement. Advances in Intelligent Systems and

Computing, Springer, 1251. https://doi.org/10.1007/978-

3-030-55187-2_1

[8] Kushal, M.U., Nikitha, S., Shashank, L.M., Partha, S.S.,

Maruthi, M.N. (2022). Literature survey of plant disease

detection using CNN. International Journal for Research

in Applied Science and Engineering Technology, 10(1):

4721-4724. https://doi.org/10.22214/ijraset.2022.43474

[9] Dong, Z., Lin, S. (2019). Research on image

classification based on Capsnet. In IEEE 4th Advanced

Information Technology, Electronic and Automation

Control Conference (IAEAC), Chengdu, China, pp.

1023-1026.

https://doi.org/10.1109/IAEAC47372.2019.8997743

[10] Zhang, B., Qian, J., Xijiong, X., Xin, Y., Dong, Y. (2021).

CapsNet-based supervised hashing. Applied Intelligence,

51: 5912-5926. https://doi.org/10.1007/s10489-020-

02180-7

[11] Shu, X., Li, J., Shi, L., Huang, S. (2023). RES-CapsNet:

an improved capsule network for micro-expression

recognition. Multimedia Systems, 29: 1593-1601.

https://doi.org/10.1007/s00530-023-01068-z

[12] Wang, Z., Chen, C., Li, J., Wan, F., Wang, H. (2023).

ST-CapsNet: Linking spatial and temporal attention with

capsule network for P300 detection improvement. IEEE

Transactions on Neural Systems and Rehabilitation

Engineering: A Publication of the IEEE Engineering in

Medicine and Biology Society, 1: 1-12.

https://doi.org/10.1109/TNSRE.2023.3237319

[13] Janakiramaiah, B. Gadupudi, K., Prasad, L.V., Karuna,

A., Krishna, M. (2021). Intelligent system for leaf

disease detection using capsule networks for horticulture.

Journal of Intelligent & Fuzzy Systems, 41(1): 1-17.

https://doi.org/10.3233/JIFS-210593

[14] Zhang, Z., Xu, J., Liu, N., Wang, Y., Liang, Y. (2022).

CapsNet-LDA: predicting lncRNA-disease associations

2876

using attention mechanism and capsule network based on

multi-view data. Briefings in Bioinformatics, 24(1).

https://doi.org/10.1093/bib/bbac531

[15] Yadav, D., Jalal, A.S., Garlapati, D., Hossain, K., Goyal,

Ayush., Pant, G. (2020). Deep learning-based ResNeXt

model in phycological studies for future. Algal Research,

50: 102018. https://doi.org/10.1016/j.algal.2020.102018

[16] Bai, Y. (2022). RELU-function and derived function

review. In SHS Web of Conferences, 144: 02006.

https://doi.org/10.1051/shsconf/202214402006

[17] Okwuashi, O., Ndehedehe, C., Olayinka-Dosunmu, D.N.

(2022). Tensor partial least squares for hyperspectral

image classification. Geocarto International, 37(27):

17487-17502.

https://doi.org/10.1080/10106049.2022.2129833

[18] Kumar, S., Mahapatra, R., Kumar, P. (2022). Decoder

Design for massive-MIMO systems using deep learning.

IEEE Systems Journal, 16(4): 6614-6623.

https://doi.org/10.1109/JSYST.2022.3191192.

[19] Zhao, J., Lian, Q.S. (2023). Multi-centers SoftMax

reciprocal average precision loss for deep metric learning.

Neural Computing and Applications, 35: 11989-11999.

https://doi.org/10.1007/s00521-023-08334-1

[20] Jensen, T. (2022). Spatial resolution of airborne gravity

estimates in Kalman filtering. Journal of Geodetic

Science, 12: 185-194. https://doi.org/10.1515/jogs-2022-

0143

[21] Ye, H., Zhu, X., Liu, C., Yang, L., Wang, A. (2022).

Furniture image classification based on depthwise group

over-parameterized convolution. Electronics, 11(23):

3889. https://doi.org/10.3390/electronics11233889

[22] Choi, J., Sim, H., Oh, S., Lee, S., Lee, J. (2022).

MLogNet: A logarithmic quantization-based accelerator

for depthwise separable convolution. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 41(12): 5220-5231.

https://doi.org/10.1109/TCAD.2022.3150249

[23] Xu, X., Ding, Y., Lv, Z., Li, Z., Renke, S. (2023).

Optimized pointwise convolution operation by ghost

blocks. Electronic Research Archive, 31(1): 3187-3199.

https://doi.org/10.3934/era.2023161

[24] Macias, S. (2022). On pointwise smooth dendroids.

Revista Integración, 40(2): 137-158.

https://doi.org/10.18273/revint.v40n2-2022001

[25] Juliantika K., Alchemi, P., Saputra, J. (2022). Impact of

pestalotiopsis leaf fall disease on leaf area index and

rubber plant production. In IOP Conference Series: Earth

and Environmental Science, 995: 012030.

https://doi.org/10.1088/1755-1315/995/1/012030

[26] Patil, S., Shrikant, D., Bodhe, K. (2011). Leaf disease

severity measurement using image processing.

International Journal of Engineering and Technology,

3(5): 297-301.

[27] Zhu, Y., Lujan, P., Dura, S., Steiner, R., Zhang, J.,

Sanogo, S. (2019). Etiology of Alternaria leaf spot of

cotton in Southern New Mexico, Plant Disease, 103(7).

https://doi.org/10.1094/PDIS-08-18-1350-RE

[28] Bhattacharjee, R., Ghosh, D., Mazumder, A. (2021). A

review on hyper-parameter optimization by deep

learning experiments. Journal of Mathematical Sciences

& Computational Mathematics, 2(1): 532-541.

https://doi.org/10.15864/jmscm.2407

[29] Pareek, V., Chaudhury, S. (2021). Deep learning-based

gas identification and quantification with auto-tuning of

hyper-parameters. Soft Computing, 25(4): 14155-14170.

https://doi.org/10.1007/s00500-021-06222-1

[30] Young, S., Rose, D., Karnowski, T., Lim, S., Patton, R.

(2015). Optimizing deep learning hyper-parameters

through an evolutionary algorithm. In International

Conference for High-Performance Computing,

Networking, Storage and Analysis, Texas, Austin.

https://doi.org/10.1145/2834892.2834896

[31] Hughes, D., Salathe, M. (2015). An open-access

repository of images on plant health to enable the

development of mobile disease diagnostics through

machine learning and crowdsourcing. arXiv:1511.08060.

https://doi.org/10.48550/arXiv.1511.08060

2877

