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 Set Partitioning in Hierarchical Trees (SPIHT) represents a leading-edge algorithm in near-

lossless image compression, leveraging the Discrete Wavelet Transform. However, its 

effectiveness diminishes when applied to high-resolution images such as Digital Pathology 

Images (DPIs). This research aims to enhance the SPIHT algorithm specifically for DPIs by 

investigating the impact of applying various wavelets in the wavelet decomposition process 

and the introduction of auto-recursion in the SPIHT algorithm. An extensive selection of 

wavelet types were tested within the wavelet decomposition process integral to the SPIHT 

algorithm. The ultimate goal was to identify the wavelet that yields the highest compression 

ratio and the one that maintains the highest data consistency. The proposed auto-recursion 

was also examined against the original n-recursive algorithm to discern differences in 

compression performance. The results indicated that the BIOR 5.5 wavelet is more apt for 

achieving a high compression ratio, while the BIOR 3.9 wavelet is more suitable for securing 

high compression quality in the compression of high-resolution DPIs. The newly introduced 

auto-recursion feature contributes significantly to optimizing the quality of the compressed 

image. Visual verification of the compressed image's quality, for any potential loss of detail, 

was carried out through expert validation in a clinical setting. This expert validation 

confirmed that the proposed algorithm can produce higher quality compressed images with 

negligible loss of quality. Thus, this research offers a partial solution to current challenges 

in digital pathology related to storage, transfer, and archiving of high-resolution DPIs, by 

providing a more effective compression algorithm. 
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1. INTRODUCTION 

 

Introduced in 1999, Virtual Slides (VS) represent a 

significant advancement in digital pathology, offering high-

resolution images that permit microscope-like operations, 

such as panning, zooming, and navigating the image via a 

mouse and monitor [1]. Whether delineating a specific region 

or encompassing the entirety of a pathology slide, VS has 

begun to reshape the landscape of pathology diagnostics. Over 

a century of reliance on analog methods is gradually yielding 

to an era where examination of tissue and cell structures no 

longer necessitates physical contact with glass slides [2]. 

Prior to the advent of Whole Slide Imaging (WSI), the focus 

of pathologists was on static images, captured using 

microscope-specific optical cameras. These images allowed 

pathologists to highlight regions of interest from the whole 

slide for discussion and educational purposes. In contrast, WSI 

scanners capture sequential images in a tiled or line-scanning 

approach. These images are subsequently assembled or 

stitched together to produce a VS, an exact digital replica of 

the glass slide [3]. 

The creation of such high-quality images involves several 

backend processes, including image acquisition, compression, 

storage, and visualization. A key determinant of the resolution 

of these digital images is the volume of data they contain. A 

large data volume typically yields an image of substantial size 

characterized by high resolution and distinct edges and 

features, culminating in a clear, crisp image [4-7]. 

Additionally, the quality of these medical images is heavily 

reliant on the level of noise and intensity in the image [8-10]. 

The essence of VS resides in its capacity to preserve the 

most minute details in the slides, a critical requirement for 

accurate diagnosis at the cellular and molecular level [11-14]. 

This necessity, however, leads to an increase in image size, 

making storage, transfer, and archiving tasks challenging [12, 

15]. Consequently, image compression has been explored as a 

potential solution. By compressing the images, not only is 

transfer facilitated, but storage is also made more manageable 
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[16, 17]. 

The current standard compression in WSI is the JPEG2000 

compression scheme, which is based on discrete wavelet 

transform [12]. While it has been reported as a useful tool for 

image compression, it falls short of meeting the contemporary 

image advancement criteria [18]. Despite several 

enhancements to the JPEG2000 algorithm aimed at further 

lossless compression, the effectiveness of these improvements 

is contingent on the image type [19, 20]. Some providers of 

virtual slide imaging systems have resorted to proprietary file 

formats specifically designed for storing high-resolution slide 

images. These formats often incorporate custom-made 

compression algorithms tailored to their specific systems. The 

stark differences in the magnification of VS are evident in 

Figure 1. 

Figure 1. a) VS (blood smear) zoomed at 10X with 

6761*3876 pixels, and b) zoomed 40X with dimensions of 

2000*1691 pixels 

Figure 2. Structure of paper 

On the contrary, the Set Partitioning in Hierarchical Trees 

(SPIHT) image compression algorithm currently represents 

the state-of-the-art in wavelet-based image compression. 

Notably, the SPIHT compression algorithm is renowned for its 

ability to produce high-quality compressed images and has 

recently gained traction in the compression of MRI images 

[21]. 

However, the SPIHT compression algorithm has yet to be 

tested on high-resolution images, particularly Virtual Slides 

(VS). Furthermore, the current implementations of the SPIHT 

algorithm are less autonomous, requiring users to input 

specific parameters. The algorithm then operates recursively 

based on these set parameters. Conversely, the JPEG2000 

compression algorithm follows a fixed format, necessitating 

users to possess specific software to view, edit, or utilize 

images in the JPEG2000 format. Therefore, the focus of this 

paper lies in the analysis of the SPIHT algorithm, exploration 

of methods to enhance SPIHT, particularly with respect to the 

compression of high-resolution VS, and presentation of the 

evaluation results of these improvements. 

The structure of this paper is depicted in Figure 2. It 

commences with a discussion on the current work involving 

SPIHT and an analysis of the SPIHT algorithm, followed by 

the presentation of the acquired results. 

2. BACKGROUND STUDY

Numerous image compression algorithms have been 

investigated for their potential in compressing medical 

images, including the Set Partitioning in Hierarchical Trees 

(SPIHT) algorithm. In 2020, Miya proposed a SPIHT image 

compression algorithm specifically designed for compressing 

medical images. The research outlined two wavelet variations: 

the HAAR wavelet and the Biorthogonal 4.4 wavelet. 

Recursion was also tested in the study, although it primarily 

focused on MRI images of kidneys. The recursion aspect of 

the algorithm was examined by manually adjusting the 

recursion limiter number (N) in each iteration, but this was 

only tested within a range from n=0 to n=15 [22]. 

In a similar vein, Sran proposed a SPIHT image 

compression algorithm for compressing brain MRI images, 

introducing a novel function that separates a Region-of-

Interest (ROI) from the images. This ROI is compressed at 

high quality, while the remainder of the image, deemed of 

lesser importance, is compressed at lower quality to achieve 

higher compression rates [23]. However, this strategy of 

reducing complexity by selecting specific features for 

compression is not particularly effective when applied to 

Virtual Slides (VS), where every segment of the image holds 

significance for pathologists during diagnosis. Moreover, 

when the entirety of the image is selected as the ROI, the 

compression quality is poorer compared to the application of 

the original SPIHT image compression algorithm on the 

whole image. 

In 2021, Ahmed proposed a SPIHT image compression 

algorithm for compressing MRI images. This research 

emphasized a hybridized transform technique, whereby the 

curvelet transform supersedes the wavelet transform when 

processing the LH, HL, HH bands in forward and inverse 

transform procedures. This hybridized transform enables more 

detailed control as it further decomposes the bands into three 

layers: coarse, detail, and fine layers for processing [24-28]. 

However, this approach increases the algorithm's complexity, 

leading to higher computational costs. Table 1 provides a 

summary of previous work conducted in the field of SPIHT. 
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Table 1. Previous works in SPIHT 
 

Author Variation Method Modality Gap 

Miya, 2020 Wavelet HAAR Kidney MRI 1. Recursions beyond n=15 not tested. 

 Wavelet BIOR 4.4  2. Only tested on kidney MRI images. 

 Recursion n=0 to n=15   

Sran, 2020 Wavelet DB 4 Brain MRI 1. Lower performance than original when compressing whole image. 

 Zone Region-of-interest  2. Only tested on brain MRI images. 

Ahmed, 2021 Wavelet Hybridization MRI Images 1. Small sample size of only four images. 

 

 

3. METHODOLOGY 

 

3.1 Material 

 

The data used for this research are 50 pathology slide scans 

that are ethically obtained from Hospital Canselor Tuanku 

Muhriz UKM (HCTM) with the help of pathologists (JEP-

2020-134). The slides are then converted to high-resolution 

digital pathology slides using a slide scanner. The digital slides 

have an average dimension of 100,000 pixels in width and 

80,000 pixels in height, with an average uncompressed file 

size of 30 gigabytes each. 

In the pre-processing phase, the individual digital slides are 

then split into multiple tiles for ease of processing as the slides 

are too big to be processed as a whole. Each tile measures 2048 

pixels in width and height respectively. Each digital slide is 

split into 2000 tiles on average, which then forms the dataset 

for the research. Figure 3 shows two sample images from 

HUKM_DP the dataset. 

 

 
 

Figure 3. Sample image from HUKM_DP dataset 

 

3.2 SPHIT analysis 

 

 
 

Figure 4. Block diagram for compression procedure 

The block diagram for this research is presented in Figure 4 

below. The research is carried out in sequence as follows: Pre-

processing, Wavelet Transform, Sorting & Refinement Pass, 

and Automated Recursion. 

In the wavelet transform phase, the dataset is fed through 

the SPIHT image compression algorithm. However, which 

wavelet variation within SPIHT would be the best fit for the 

compression of high-resolution digital pathology images are 

not known. Thus, a wavelet has to be selected as the base 

wavelet for decomposition. Common wavelet options that are 

selected for wavelet decomposition are usually from the Haar 

and Daubechies(db) wavelet families (25) as they have been 

extensively used by numerous researchers since the early days 

of SPIHT and still remains a popular option even till this very 

day. In this research however, a few other wavelet families are 

tested on top of those two, to discover which wavelet and its 

variation works best when compressing high-resolution digital 

pathology images. 

The wavelet families that are tested in this research are as 

follows: Biorthogonal wavelets, Coiflets, Daubechies 

wavelets, Dicrete Meyer wavelet, Fejér-Korovkin filters, Haar 

wavelet, Reverse biorthogonal wavelets and Symlets. 

However, there could be more wavelets that are available 

which are not tested in this research which may give different 

results. Table 2 shows the list of wavelet families and its 

variations which will be tested in this research. Once all 

wavelets are tested, the results are recorded for further analysis 

in the result analysis phase. 

 

Table 2. List of tested wavelets 

 
Wavelet Variations 

Discrete 

Meyer 
DMEY 

Haar HAAR 

Fejér-

Korovkin 
FK4, FK6, FK8, FK14, FK18, FK22 

Coiflet COIF1, COIF2, COIF3, COIF4, COIF5 

Symlet 
SYM2, SYM3, SYM4, SYM5, SYM6, SYM7, 

SYM8 

Daubechies 
DB1, DB2, DB3, DB4, DB5, DB6, DB7, DB8, 

DB9, DB10 

Reverse 

Biorthogonal 

RBIO1.1, RBIO1.3, RBIO1.5, RBIO2.2, 

RBIO2.8, RBIO3.7, RBIO3.9, RBIO4.4, 

RBIO5.5, RBIO6.8 

Biorthogonal 

BIOR1.1, BIOR1.3, BIOR1.5, BIOR2.2, 

BIOR2.4, BIOR2.6, BIOR2.8, BIOR3.1, 

BIOR3.3, BIOR3.5, BIOR3.7, BIOR3.9, 

BIOR4.4, BIOR5.5, BIOR6.8 

 

3.3 SPHIT improvement 

 

In this phase, the recursion module in the SPIHT algorithm, 

which allows the wavelet decomposition process to 

recursively call upon itself, is automated through this research. 

Instead of the usual, where the maximum amount of recursion 
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passes is defined by the user beforehand, the recursion process 

is instead automated, where the process automatically recurses 

to the point where any further recursion would not bring any 

improvement and would be redundant, in order to bring out the 

maximum performance of the compression algorithm in terms 

of image quality. 

Figure 5 shows the proposed automated recursion module. 

Once the data passes through the wavelet transform procedure, 

the List of Insignificant Pixels (LIP), List of Insignificant Sets 

(LIS), and List of Significant Pixels (LSP) are generated. The 

data is then sorted into those lists based on the algorithm’s 

threshold levels, and the data in the list is then parsed 

accordingly. Once the data has been parsed, if there is any 

change to the data, it is then re-sorted into their respective lists 

based on the threshold. The automated recursion module then 

checks for the number of recursions. 

 

 
 

Figure 5. Proposed automated recursion module 

 

If this is the first pass, where the number of recursions, n is 

0, then the current state is recorded as S0 and the next 

recursion call is automatically started, where the data in the re-

sorted lists are then parsed again, and re-sorted accordingly, if 

any data passes the set threshold again after the first recursive 

pass. 

From the second pass onwards, the current state of the data 

is recorded as Sn+1 and is compared with against Sn. If there 

is any change or difference between the states Sn+1 and Sn, it 

marks that there has been an improvement to the data, hence 

the Sn+1 state overrides the Sn state and the next recursive 

pass is called. This happens until a situation where there is no 

change between the states Sn+1 and Sn, which marks that the 

data can no longer be improved by recursive passes, and any 

recursion from this point onwards will only be redundant. The 

automated recursion module then ends, and the data from the 

Sn state is passed on for encoding. By adding a stopping 

criterion to the loop, the best case scenario for this improved 

SPHIT can be Ω(n) as recursive might not be needed anymore. 

The compression performance of the algorithm with the 

automated recursion module is then tested by running the 

compression once again on the same dataset. The results are 

recorded for further analysis. 

Once the compression process is completed and the 

reconstructed images are obtained, the compression quality is 

then evaluated by measuring CR and PSNR values of each 

compression. By evaluating these parameters, a quantifiable 

measure of the quality of the compression, in terms of both 

compression strength and image quality, can be obtained. The 

best wavelet for compression strength and image quality 

respectively can then be found. Also, a comparison between 

the compression performance of the automated and non-

automated recursion module can be measured. 

 

3.4 Evaluation parameters 

 

The performance of an image compression algorithm can be 

evaluated through different aspects, whether it be in terms of 

how much compression has been done, or in terms of the 

quality of the compressed image [26]. 

In order to measure the amount of compression that had 

been applied, Compression Ratio (CR) is used. CR refers to 

the ratio between the number of bits in the original image 

against the number of bits in the compressed image, where a 

higher CR means that the file has been highly compressed. The 

equation to determine CR is as follows: 

 

𝐶𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑖𝑛 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑖𝑛 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒
  (1) 

 

In order to measure the quality of the compressed image, 

Peak Signal-to-Noise Ratio (PSNR) is used. PSNR is measure 

in decibels (dB), and represents the clarity or quality of the 

images in relevance to the size of the error, where a high PSNR 

value represents a low size of error in the compressed image, 

or a high-quality compressed image is produced. The equation 
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to determine PSNR is as follows: 

 

𝑃𝑆𝑁𝑅 = 10 log10

((2𝑏)−1)
2

𝑀𝑆𝐸
  (2) 

 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑ (𝑌𝑖,𝑗 − �̂�𝑖,𝑗)2𝑛−1

𝑗=0
𝑚−1
𝑖=0   (3) 

 

where, b is the maximum number of bits per pixel, m and n are 

the maximum width and height of the image respectively, Y is 

a pixel on the original image with coordinates (i,j), and Y ̂ is a 

pixel on the compressed image with coordinates (i,j). 

 

3.5 Clinical evaluation 

 

In order to visually verify the results of the compression, 

twenty pathologists were selected at random from HCTM to 

serve as domains experts for visual verification of the quality 

of the images. These expert domains are required to seat for an 

online survey which contains 2 sections.  

The first section contains fifteen pair of images. The 

respondents were asked to select the clearer image between 

two similar images, where the images presented were between 

the ones produced by the proposed algorithm against the 

SPIHT algorithm. 

In the second section, which also consists of another fifteen 

pair of images, the respondents were asked if there were any 

discernible loss of detail between the two presented images 

which would affect their diagnosis, where the images are 

between the ones produced by the proposed algorithm against 

the original image. 

All images used in the questionnaire are selected randomly, 

placed in random order, and displayed with the same display 

device. The respondents were not given any info prior to 

answering the questionnaire. 

The questionnaire serves to verify if whether the 

pathologists can indeed visually observe the quality 

improvement between the images produced by the proposed 

algorithm against the SPIHT algorithm, and also to verify that 

there is no loss of detail between the images produced by the 

proposed algorithm against the original image. 

 

3.6 Clinical evaluations 

 

In order to visually verify the results of the compression, 

twenty pathologists were selected at random from HCTM to 

serve as domains experts for visual verification of the quality 

of the images. These expert domains are required to seat for an 

online survey which contains 2 sections.  

The first section contains fifteen pair of images. The 

respondents were asked to select the clearer image between 

two similar images, where the images presented were between 

the ones produced by the proposed algorithm against the 

SPIHT algorithm. 

In the second section, which also consists of another fifteen 

pair of images, the respondents were asked if there were any 

discernible loss of detail between the two presented images 

which would affect their diagnosis, where the images are 

between the ones produced by the proposed algorithm against 

the original image. 

All images used in the questionnaire are selected randomly, 

placed in random order, and displayed with the same display 

device. The respondents were not given any info prior to 

answering the questionnaire. 

The questionnaire serves to verify if whether the 

pathologists can indeed visually observe the quality 

improvement between the images produced by the proposed 

algorithm against the SPIHT algorithm, and also to verify that 

there is no loss of detail between the images produced by the 

proposed algorithm against the original image. 

 

 

4. RESULT AND DISCUSSION 

 

Table 3. Results of testing varying wavelets with SPIHT 

 
Wavelet CR PSNR (dB) SSIM (%) 

BIOR 1.1 29.4321 41.1022 97.6950 

BIOR 1.3 25.7942 41.5721 97.8183 

BIOR 1.5 24.6567 41.0681 97.7154 

BIOR 2.2 34.7661 42.7298 98.2409 

BIOR 2.4 32.9719 43.0507 98.3232 

BIOR 2.6 31.8715 43.1721 98.3545 

BIOR 2.8 31.1469 43.2107 98.3625 

BIOR 3.1 49.5145 40.2996 97.3876 

BIOR 3.3 23.3788 43.3476 98.4346 

BIOR 3.5 23.6553 43.6104 98.4936 

BIOR 3.7 23.5376 43.6207 98.5042 

BIOR 3.9 23.3891 43.7261 98.5243 

BIOR 4.4 52.6860 42.1882 98.0449 

BIOR 5.5 73.7624 41.1724 97.6855 

BIOR 6.8 47.3526 42.6066 98.1645 

COIF 1 40.4681 42.0384 97.9884 

COIF 2 46.4208 42.4226 98.1033 

COIF 3 47.8477 42.4573 98.1088 

COIF 4 48.2989 42.4808 98.1202 

COIF 5 48.5765 42.5224 98.1329 

SYM 2 39.8918 41.9565 97.9786 

SYM 3 44.1829 42.3079 98.0662 

SYM 4 45.8175 42.4016 98.0966 

SYM 5 47.3930 42.4349 98.1044 

SYM 6 47.3407 42.4890 98.1210 

SYM 7 47.9478 42.4884 98.1224 

SYM 8 47.9231 42.4951 98.1281 

DB 1 29.4324 41.1022 97.6950 

DB 2 39.8920 41.9565 97.9786 

DB 3 44.1832 42.3079 98.0662 

DB 4 46.0598 42.3743 98.0924 

DB 5 46.7464 42.4379 98.1090 

DB 6 47.0461 42.4470 98.1121 

DB 7 47.5340 42.4781 98.1246 

DB 8 47.2501 42.4723 98.1250 

DB 9 47.5171 42.5032 98.1303 

DB 10 47.7667 42.4836 98.1302 

DMEY 48.8093 42.5738 98.1483 

FK 4 32.7378 41.6448 97.8743 

FK 6 44.2695 42.2537 98.0608 

FK 8 46.4408 42.4368 98.1062 

FK 14 47.7794 42.4946 98.1346 

FK 18 48.2690 42.5497 98.1474 

FK 22 47.8814 42.5448 98.1462 

HAAR 29.4323 41.1022 97.6950 

RBIO 1.1 29.4321 41.1022 97.6950 

RBIO 1.3 51.0666 41.8967 97.9456 

RBIO 1.5 54.8524 41.9222 97.9562 

RBIO 2.2 34.1890 40.0716 97.1192 

RBIO 3.9 57.8563 41.3367 97.7116 

RBIO 4.4 49.0508 38.9710 96.4904 

RBIO 5.5 52.5052 39.2638 96.6756 

RBIO 6.8 37.9748 42.4642 98.1053 

 

The findings of this research were recorded and the results 

of the performance of the tested wavelets were tabulated. 

Table 3 shows the compression performance of each wavelet 

tested. It also shows that each wavelet produces a different 
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result for the compression of the high-resolution digital 

pathology images. Thus, we can say that the wavelet used does 

indeed affect the results of the compression. The table can then 

be summarized to show the best performing wavelet in terms 

of compression, measured by CR; while image quality was 

measured by PSNR from each wavelet family. 

Figure 6 shows the best performing wavelet in each 

category from each wavelet family. Figure 6 shows that the 

wavelet which produces the highest compression is the BIOR 

5.5 wavelet, with a CR of 73.7624, while the wavelet which 

produces the image with the highest quality is the BIOR 3.9 

wavelet, with a PSNR of 43.7261dB. 

Table 4 shows the compression performance between the 

non-automated recursion SPIHT algorithm against the 

automated recursion SPIHT algorithm, where both algorithms 

applied the BIOR 3.9 wavelet. 

Table 4 also shows that while the automated recursion 

method produces a higher compressed image quality, it is 

achieved at the cost of compression power when compared to 

the non-automated recursion method, as seen by the CR value 

of 10.1413 of the automated recursion methods, against 

23.3891 of the non-automated recursion methods. Also, we 

can say that the automated recursion method does produce a 

higher compressed image quality, as seen by the PSNR value 

of 51.5543dB, when compared to the non-automated recursion 

method, with PSNR value of 43.7261dB. 

From the results, the SPIHT image compression technique 

which utilizes the BIOR 5.5 wavelet produces the highest 

compression when compressing high-resolution digital 

pathology images, while the BIOR 3.9 wavelet produces the 

best quality when compressing high-resolution digital 

pathology images. This indicates that the BIOR wavelet family 

is a good wavelet choice for image compression involving 

wavelet transforms. 

 

 

 
 

Figure 6. Best performing wavelet in terms of CR and PSNR 

from each wavelet family 

 

Table 4. Result of original recursion against the automated 

recursion 

 
Method CR PSNR (dB) SSIM (%) 

original Recursion 23.3891 43.7261 98.5243 

Automated Recursion 10.1413 51.5543 99.8390 

 

It is also worth noted that the automated recursion module 

produces a better result than the manual recursion method, 

with a PSNR of 51.5543dB against 43.7261dB. This is most 

probably due to the quality optimization done by the 

automated recursion module, where it automatically finds the 

highest level of recursion that can be done to the image before 

it reaches redundancy, as compared to a predetermined level 

of recursion by the user in the manual recursion method, where 

the user has no idea whether if the determined level of 

recursion is sufficient, or the best, or redundant. 

Table 5 shows the results of the clinical setup evaluation. 

Where the scores for section 1 shows the mean score of 

respondents selecting the image produced by the proposed 

algorithm as the sharper image against the image produced by 

SPIHT, and the scores for section 2 shows the mean 

percentage of respondents that decided that there would be no 

difference between the image produced by the proposed 

algorithm against the original image. 

Table 5 shows that in general, the respondents were able to 

select the image produced by proposed algorithm as the 

sharper image when compared against the image produced by 

the SPIHT algorithm, resulting in an average accuracy score 

of 86.67%. This has proved that the proposed algorithm has 

produced better image than current compression algorithm. 

The only 4 images with scores lower than 75.00% were images 

4, 6, 11, and 12. From the feedback received by the 

respondents, this is due to bad sampling of the original image, 

where a bad scanning technique of the original image caused 

a low-quality original image, which in turns affects the quality 

of the compressed images where both the image produced by 

the proposed algorithm and the SPIHT algorithm are low in 

quality. 

Table 5 also shows that for section 2 in general, the 

respondents had decided that there would not be any 

discernible loss of details between the image produced by the 

proposed algorithm against the original image, as seen by the 

average score of 99.00% where only 1 respondent had a 

different opinion for images 8, 11, and 13. 

Hence, we can say that by changing the wavelet used in the 

SPIHT algorithm, we have achieved a better result in terms of 

compressed image quality when compared to previous studies. 

Furthermore, the quality of the compressed image is further 

optimized through the use of the automated recursion 

algorithm, instead of ending abruptly due to manual recursion. 

The clinical evaluation has also proven that the image 

produced by the proposed algorithm is indeed sharper than that 

produced by the SPIHT algorithm; and does not suffer from 

any visually discernible detail loss when compared to the 

original image. 

 

Table 5. Results for clinical setup evaluation 

 

Section 
Average 

Score 

ID with < 

Average Score 

1 (if proposed algorithm 

produced better image) 
85% 4,6,11,12 

2 (if produced image had 

retain the image’s details) 
99% 8,11,13 
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5. CONCLUSION 

 

This paper investigates the quality of the compressed image 

by the SPIHT algorithm in the compression of high-resolution 

digital pathology images. Through changing of wavelet and 

automating the recursion module, it has been proven that this 

is a viable solution to solve storage and transfer issues. This 

paper proposed a modified SPIHT algorithm that suited for 

compression of high resolution digital pathology images. An 

automated recursion SPIHT algorithm was enhanced with the 

BIOR 3.9 wavelet, and auto-recursion module for the 

functionality of producing the highest image quality and 

optimize quality of the compressed image.  

The experimental results of this research conclude that the 

modification has indeed produced a better result in the 

compression of high-resolution digital pathology images and 

is indeed a viable solution to storage issues. The automated 

recursion module is indeed able to display the compressed 

image with a higher image quality, with a PSNR value of 

51.5543dB as compared to 43.7261dB when using the original 

SPHIT recursion option. On top of this, 99% agreement during 

clinical verification which were carried out as double blind 

review process and standardized display device for all 

evaluators.  

The proposed algorithm managed to better compress the 

digital pathology images, which were way higher resolution 

compared to radiology images. Thus, it shouldn’t have any 

problem to compress a lower resolution image.  

However, there were limitations in which this paper lacked 

in. One such was that the algorithm was not optimized in terms 

of complexity as the focus of the paper was on maximizing 

image quality. Another limitation would be that as the 

algorithm was tested on high-resolution digital pathology 

images only and not on other commonly tested images such as 

CT, X-ray and MRI, hence we cannot claim that this would be 

the best algorithm for all types of medical images. There is 

however, much potential for future research in terms of 

optimizing the complexity of the algorithm for a faster 

algorithm, or perhaps in the direction of a new wavelet which 

would produce a compression with a higher image quality or 

in the direction of improving compression rates while 

maintaining the current image quality. 
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