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In recent years, machine learning, especially deep neural networks, has made substantial 

progress, consistently surpassing conventional time-series forecasting methods across 

various domains. This paper introduces a novel hybrid approach that combines the Lorenz 

system and the echo state network (ESN) to tackle and reduce the "butterfly effect" in chaos 

forecasting. The core contribution lies in harnessing the Lorenz system's unique properties, 

where initially converging trajectories gradually diverge, to train the ESN—a neural 

network celebrated for its non-linear computational capabilities, echo state property, and 

input forgetting capability. The primary aim is to establish a more robust and precise 

framework for predicting chaotic systems, given their sensitivity to initial conditions. This 

research endeavors to provide a versatile tool with wide-ranging applications, particularly 

in areas like stock price prediction, where accurately forecasting chaotic behavior holds 

paramount importance. The Lorenz system initiates with nearly identical initial states, 

differing by a mere 10-3 in the x-coordinate at t=0. Initially, these trajectories seem to 

overlap, but after t=1000, they significantly diverge. In this proposed approach, data from 

t=0 to t=1000 serves as the training input for the ESN. Once the training phase concludes, 

the ESN's formidable non-linear computational capabilities, echo state property, and input 

forgetting capability render it exceptionally well-suited for stepwise predictions and tasks 

sensitive to initial conditions. The simulation results demonstrate that over the subsequent 

360 prediction steps conducted by the ESN, the "butterfly effect" stemming from the 

slightly varying initial states provided to the Lorenz System is effectively minimized. 

Notably, the simulation results underscore the superior performance of our hybrid 

approach, revealing a minimal root mean square error (RMSE) of less than 1.0. In contrast, 

a prior study introduced the MrESN (Multiple Reservoir Echo State Network) approach, 

which is a specific type of Echo State Network (ESN) used for forecasting multivariate 

chaotic time series. It employs multiple internal reservoirs within the network architecture 

to handle the complex dynamics of chaotic data but achieved lower accuracy with a larger 

RMSE of 43.70. Another preceding algorithm, BFA-DRESN, aimed at enhancing 

forecasting accuracy but yielded an RMSE value of 18.83. This research advances ESN-

based predictability, offering a promising solution for addressing the challenges posed by 

chaos. 
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1. INTRODUCTION

Deep learning, a subfield of machine learning, has 

revolutionized various scientific domains by enabling accurate 

predictions in complex systems [1]. One particular area that 

poses persistent challenges is the accurate prediction of 

chaotic systems. Chaos is the behavior of a system that is 

sensitive to initial conditions [2]. If a system is nonlinear and 

chaotic, it is impossible to predict its future in most cases [3]. 

One classic example of a chaotic system is the Lorenz 

system, which was developed by meteorologist Edward 

Lorenz in the 1960s. The Lorenz system is a set of three 

coupled, nonlinear differential equations that describe the 

behavior of a simplified model of atmospheric convection with 

sensitive initial conditions. It illustrates the concept of chaos 

and the 'butterfly effect’ [4]. This latter, hampers reliable 

forecasts and a comprehensive understanding of their 

dynamics. Prediction of chaotic systems is needed in today’s 

world. So we need to minimize the butterfly effect in these 

systems to get accurate future predictions.  

To tackle the butterfly effect and enhance prediction 

accuracy, researchers have explored innovative approaches in 

recent years, with a particular focus on neural networks [5-8]. 

ESN is a recurrent neural network with a unique reservoir 

computing paradigm. It is characterized by nonlinear 

calculations, has echo state characteristics, and exhibits the 

characteristics of forgetting input [9-32]. These characteristics 

make the ESN a compelling candidate for minimizing the 

butterfly effect in chaos forecasting. Recent studies have 

provided empirical evidence for the efficacy of the ESN in 

chaotic time series prediction.  

A lot of ESN-based models [9-21] are developed in this 
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regard. Every new model was getting better results, but they 

were still lacking to map slow behavior chaotic systems as 

artificial neurons [1]. This study is providing a detailed 

literature survey on these models in the next section.  

The Lorenz system [22] exhibits chaotic behavior with 

initially similar trajectories that diverge over time. By 

leveraging the insights from the Lorenz system and combining 

them with the power of the ESN, our research aims to develop 

a hybrid approach that further minimizes the butterfly effect 

and enhances prediction accuracy. 

This paper introduces a novel hybrid approach that 

integrates the Lorenz system and the ESN. The Lorenz system 

provides a foundation for understanding chaotic behavior, 

while the ESN leverages its deep learning capabilities to model 

and predict complex dynamics. By utilizing training data from 

the Lorenz system, our hybrid approach trains the ESN to 

assimilate the divergent trajectories and capture the underlying 

dynamics. The synergistic fusion of the Lorenz system and the 

ESN offers a promising solution to address the challenges 

posed by chaotic systems, leveraging the power of neural 

networks and deep learning techniques. 

This research got remarkable results with a minimum 

RMSE of 1.0. This hybrid approach is outperforming the 

original Lorenz model in every case. This model can capture 

complex dynamics in various domains and it is very 

advantageous in stock forecasting.  

The remainder of this paper is structured as follows: Section 

2 provides a comprehensive review of the Lorenz system and 

the ESN, highlighting their respective contributions to chaos 

forecasting. Section 3 contains the methodology behind our 

hybrid approach, including the data collection, training 

process, and prediction framework. In Section 4, we present 

the simulation setup and discuss the results, demonstrating the 

efficacy of our approach in minimizing the butterfly effect. 

Section 5 concludes the paper by summarizing the key 

contributions and underscoring the significance of our hybrid 

approach in advancing chaos forecasting techniques. 

 

 

2. LITERATURE REVIEW 

 

Chaos is a nonlinear dynamical system's behavior that is 

incredibly sensitive to even little changes in the original 

circumstances [2]. Future projections of a chaotic system can 

drastically shift if the beginning conditions are even slightly 

altered [23]. Because of this property, chaotic systems can 

become difficult to forecast accurately [23]. These systems 

have no periodic behavior such as oil and gas systems, weather 

forecasting systems, financial market systems, hydrological 

systems, etc. [2].  

The butterfly effect is the sensitive dependency of chaotic 

to initial conditions. This phrase was one of the most famous 

phrases from 20th-century science [4]. This term was 

originally generated by Ed Lorenz in his paper in 1963 [22]. 

But it was coined by Gleick in his famous book written on 

chaos [24]. 

For the prediction of chaotic systems, a lot of models are 

proposed. First of all, machine learning was used [1]. Some 

algorithms that were applied are artificial neural network 

(ANN), feedforward neural networks [6, 7, 33], support vector 

machine (SVM) [5], LSTM with recurrent neural networks 

(RNNLSTM) [8], and reservoir computing (RC) [25-28]. 

From these techniques, RC became the most famous technique 

because of its better predictions than other models [1]. Then, 

the prediction time of reservoir computing increased by using 

it as a hybrid model [29]. After that, the challenge was to 

decrease computing costs and grow the prediction horizon. 

Then, researchers proposed ESN [30]. This algorithm was 

used with a lot of variations and it gave remarkable results. 

The echo state network was used with different variations. 

In this paper, those models are reviewed to show the 

effectiveness of this study. Table 1 contains those ESN models 

with their authors and publication years. 

 

Table 1. Previous ESN based models in literature 

 
Year Authors Proposed Model 

2001 Jaeger [9] ESN 

2006 Wang et al. [11] SWHESN 

2007 
Jaeger et al.  

[12] 
LIESN 

2011 
Gallicchio and Micheli 

[13]  
𝜑-ESN 

2012 
Wang and Han 

[15] 
MrESN 

2013 
Butcher et al. 

[14] 
R2SP 

2013 
Malik et al. 

[17] 
ML-ESM 

2015 
Han et al. 

[16] 
SCKF-γESN 

2018 
Gallicchio et al. 

[18] 
Deep ESN 

2020 
Ma et al. 

[19] 
DeePrESN 

2021 
Chen and Wei 

[10] 
SOGWOESN 

2021 
Yuan et al. 

[20] 
BFA-DRESN 

2021 
Na et al. 

[21] 
HDESN 

 

The ESN proposed by the study [9] consists of an input layer, 

a hidden layer (reservoir having nodes), and an output layer 

[10]. In 2006, a model named as sigmoid-wavelet hybrid ESN 

(SWHESN) [11] was developed to upgrade the performance 

of ESN. It increased the memory capacity of ESN. It reserved 

the nonlinear feature of ESN by inserting tuned wavelet 

neurons into it. It provides 46% more prediction accuracy than 

ESN. all achieved in just 30% of the time it took for ESN. 

Continuing the evolution of reservoir networks, LIESN was 

introduced in [12]. LIESN introduced a novel algorithm with 

global control parameters. 

This model was able to categorize noisy and slow time 

series. In [13], a model named 𝜑-ESN was proposed with four 

main factors including various time scale dynamics, input 

variability, regression in argument attribute space, and 

nonlinear relation in units. Building on this progress, the R2SP 

model [14] added static layers to the dynamic reservoir system 

for improving accuracy. 

Meanwhile, MrESN, as described in [15], took a different 

approach by utilizing multiple reservoirs for the projection of 

multivariate chaotic time series. In this model, one 

multivariate time series was related to one reservoir. This 

model was getting a better accuracy with a root mean square 

error of 43.70.  

A novel model was introduced in [16] known as squared 

root cubature Kalman filter-γ echo state network (SCKF-

γESN). In this model, γESN was used for the modelling of 

multivariate time series and then SCKF was used to upgrade 

parameters of it. For the security of the model, it was protected 
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by using an outlier detection algorithm. This model was used 

online for later forecasting. 

The pursuit of hierarchical structures within reservoir 

networks led to the development of ML-ESM [17] and Deep 

ESN [18]. These models aimed to add depth and hierarchy to 

the reservoir network, facilitating the learning of complex 

multiscale dynamics. 

DeePr-ESN [19] took this concept even further, 

demonstrating its ability to capture intricate multiscale 

dynamics effectively. It became a powerful tool for handling 

diverse time series data. 

In the study [10], a model names SOGWOESN was 

proposed which was improved by Grey Wolf optimizer 

(GWO). This model got a maximum optimizing ability 

percentage of 78%. 

In the study [20], double reserve pools were used with ESN 

for power load prediction. The model was trained with 

historical data, environmental data, and ESN parameters with 

double reserve pools. BFA-DRESN algorithm improved the 

forecasting accuracy with the RMSE value of 18.83. Finally, 

HDESN [21] was proposed for multistep chaotic time series 

prediction. It was able to get expansion patterns through 

hierarchical processing and deep topology. And it got 

satisfactory performance in chaotic forecasting. 

In all of the above cases, ESN indeed demonstrated its 

potential for continuous improvement and adaptability in 

various applications, consistently yielding better results with 

each new research endeavor. However, despite its remarkable 

progress, it is essential to acknowledge that ESN still faces 

certain limitations. Notably, a significant challenge lies in its 

inability allowing for the seamless integration of chaotic 

systems with slow-behavior as artificial neurons, as discussed 

in [1]. This constraint underscores a crucial area for further 

exploration and innovation, as enhancing ESN's capacity to 

handle such complex systems could unlock even more 

transformative possibilities in the realm of reservoir networks. 

 

 

3. METHODOLOGY  

 

3.1 Lorenz system approach 

 

One well-known example of a chaotic system is the Lorenz 

attractor. It is named after the mathematician Edward Lorenz, 

who studied it extensively in the 1960s [22-31]. As part of his 

research on the predictability of weather patterns, Lorenz 

found that even minor changes to the system's initial 

conditions could have a significant impact on the system's 

long-term behavior. The butterfly effect, or the sensitivity to 

intial conditions, is a characteristic of chaotic systems. 

Lorenz’s discovery of the Lorenz attractor led to important 

insights into the limits of predictability in complex systems, 

and it has had a major impact on the study of nonlinear 

dynamics and chaos theory. The Lorenz attractor has also been 

used as a model for a wide range of physical and biological 

systems, and it continues to be an important subject of study 

in mathematics, physics, and engineering. 

Bitcoin stock prices data were collected from the Kaggle 

website, the data have three parameters (price, high and low) 

expressed by (x, y, z) that we used to construct the Lorenz 

system, which is characterized by the following equations Eq. 

(1) [14].  

By solving the equations of the Lorenz system, specifically 

Eq. (1) with the given parameters, we witness a mesmerizing 

phenomenon: the solution forms a remarkable butterfly shape 

when plotted in three-dimensional space, as beautifully 

depicted in Figure 1. It is from this distinctive shape that the 

renowned concept of "The butterfly effect" derived its name. 

The butterfly shape observed in the solutions of the Lorenz 

system serves as a captivating representation of its chaotic 

attractor. As we trace the trajectories of the state variables (x, 

y, and z), they intertwine and fold upon themselves, creating 

an enchanting pattern reminiscent of a butterfly in flight. 

 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥)

 
𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧

  (1) 

 

When we examine Figure 1, the visualization of the 

butterfly-shaped trajectory derived from the Lorenz system, 

we are captivated by the complexity and beauty inherent in 

chaotic dynamics. The plot allows us to truly appreciate the 

intricate interplay of the state variables, conveying the delicate 

nature of chaos and the remarkable patterns it generates. 

 

 
 

Figure 1. 3D plot of Lorenz system for U1(39.102501, 

39.182499, 38.094999) 

 

3.2 Formalism of the by ESN Lorenz system 

 

The following ESN hyper-parameters are suggested for 

predicting the Lorenz system's time series: 

Nr=300: The number of neurons in the reservoir 

ρmax=0.99: The spectral radius 

Sparsity=0.95: The sparsity of the reservoir (Figure 2) 

In this work, the choice of Nr=300 strikes a balance between 

model complexity and computational efficiency, making it 

suitable for a wide range of applications. Since, a large number 

of neurons allows for a more expressive reservoir, capable of 

capturing intricate dynamics in the data. However, an 

excessively large reservoir might lead to overfitting and 

increased computational costs. Furthermore, the spectral 

radius (ρmax) plays a pivotal role in determining the Echo State 

Property (ESP), which is crucial for the reservoir's ability to 

efficiently capture and propagate temporal information. A 

spectral radius (ρmax) close to 1 (0.99 in this case) ensures that 

the reservoir's activations neither vanish nor explode over time, 

making it capable of preserving long-term dependencies. This 

choice aligns with the ESP theory, as a value less than 1 

guarantees the network's stability while retaining its memory 
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and prediction capabilities. Incorporating a sparsity level of 

0.95 into the reservoir offers multiple advantages. It reduces 

computational complexity by minimizing the number of 

connections and promotes a more efficient information flow. 

This sparsity discourages overfitting and enhances 

generalization by focusing on essential connections, with 95% 

of connections being non-existent. This high level of sparsity 

facilitates the emergence of dynamic, non-linear behaviours 

critical for the reservoir's capacity to model complex temporal 

data. 

The connections between the ESN neurons are shown in 

Figure 2, however not all of the neurons are connected. The 

nonlinear approximation ability increases with the number of 

connections. The ESN is a type of recurrent neural network 

that is designed to have a fixed reservoir of neurons, which are 

connected by a set of weights. The spectral radius of the 

weighting (Wr) within the reservoir [2, 3], is an important 

parameter that must be less than 1 in order for the ESN to 

function properly and stay in an echo state. 

 

 
 

Figure 2. A representation of the sparsity=0.95 of the 

reservoir 

 

The spectral radius ρmax is a measure of the largest 

eigenvalue of the weight matrix Wr, and it is used to control 

the dynamics of the reservoir. When the spectral radius is less 

than 1, the reservoir will not “explode” and it will remain 

stable, allowing the network to maintain its memory over time. 

The sparsity of the reservoir is another significant feature. 

The proportion of neurons with no connections defines a 

reservoir's sparsity, which symbolises the connections 

between its neurons. The greater the number of connections, 

the stronger the non-linear approximation ability of the 

reservoir. 

In other words, a sparser reservoir will have fewer 

connections between its neurons as shown in Figure 2, which 

will make the reservoir less expressive and reduce its non-

linear approximation ability. On the other hand, a denser 

reservoir will have more connections between its neurons, 

which will make the reservoir more expressive and increase its 

nonlinear approximation ability. 

The spectral radius and sparsity of the reservoir are two 

important parameters that must be carefully controlled in order 

to ensure the proper functioning of the ESN. To maintain the 

ESN in an echo state, it is crucial to have a spectral radius that 

is less than 1. Additionally, a higher level of sparsity will 

enhance the network's nonlinear approximation capability. 

The output function fout was implemented as an identity 

function, and the activation function for the reservoir 

processing elements was written as the tanh function. The tanh 

function's maps its input to a range between -1 and 1 to provide 

stability within the reservoir by preventing activations from 

growing excessively large, which could lead to numerical 

instability, and from becoming too small, avoiding the issue of 

vanishing gradients during training. This latter shows that the 

activation function has a history of successful use in ESN. It 

helps maintain the ESP in ESNs to preserve and propagate 

temporal information over time, which is essential for the 

ESN's ability to capture and model time-dependent patterns 

effectively. The tanh function is a non-linear activation 

function. This non-linearity allows the reservoir neurons to 

capture and model complex, non-linear relationships within 

the data. This fact is very crucial when dealing with stock price 

data. The Bitcoin stock data generated by the Lorenz system 

in the first part of the experiment are used to train and test the 

ESN. The input size for the training is 1000 since the two 

trajectories start to diverge at t=1000. The input weights are 

represented by the given matrix: 

 

Win= (
𝑊11 ⋯ 𝑊1𝑘

⋮ ⋱ ⋮
𝑊𝑛1 ⋯ 𝑊𝑛𝑘

) 

 

The reservoir is connected to the processing elements by an 

n x n matrix in our case n=300: 

 

Win= (
𝑊11 ⋯ 𝑊1𝑛

⋮ ⋱ ⋮
𝑊𝑛1 ⋯ 𝑊𝑛𝑛

) 

 

When u(t) is input at each instant, the reservoir's state is 

updated. Equation for the state update Eq. (2) is: 

 

𝑥𝑘 = tanh (𝑊 ∗ 𝑥𝑘+1 +𝑊𝑖𝑛 ∗ 𝑢𝑘) (2) 

 

At the training stage, the main objective is to minimize the 

error between the actual output y(t) and the target output Ŷ(t). 

Knowing that in ESN, Win and Wr are fixed, and the Wout the 

only trainable parameter that is available right after the 

training phase is the output weight matrix. We used linear 

regression to solve Eq. (3): 

 

𝑊𝑜𝑢𝑡 ∗ 𝑋
𝑇 = 𝑌𝑇  (3) 

 

We computed the predicted output using Eq. (4): 

 

𝑌𝑇̂ = 𝑊𝑜𝑢𝑡 ∗ 𝑋
𝑇 (4) 

 

The scaling and optimization of the Win were carried out 

until we obtained the minimum error value. The training error 

means square (RMSE), in our experiment, is: 

 

𝐸(𝑌, 𝑌̂)) = √∥ 𝑌̂ − Y ∥2

= 0.023197027331046 × 10−3 
(5) 

 

In the context of the ESN-Lorenz model, RMSE serves as a 

vital performance indicator. It quantifies how well our model 

is capturing the intricate dynamics of the Lorenz system and 

its ability to make accurate predictions. It measures the 

average magnitude of errors between the predicted and actual 
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values. A lower RMSE indicates that the model's predictions 

are closer to the real data, signifying higher accuracy. 

The current output serves as feedback in the prediction stage 

of Figure 3 and is utilized as the input u(t) to predict the 

following value using Eq. (6); the remaining components are 

parts of a vertical vector (or matrix) concatenation that is given 

by: 

 

𝑥𝑘 = tanh(𝑊 ∗ 𝑥𝑘−1 +𝑊𝑖𝑛 ∗ 𝑦𝑘−1) (6) 

 

 

4. EXPERIMENT RESULTS AND ANALYSES 

 

4.1 Experimental settings 

 

Our experiments were conducted in a Python environment, 

utilizing Jupyter Notebook. The Pandas library played a 

pivotal role in facilitating our experiments, providing essential 

functionalities for data manipulation and analysis. 

One of the remarkable characteristics of chaotic systems is 

their heightened sensitivity to initial conditions. Even the 

slightest disparity in the initial conditions can lead to 

significantly divergent solutions as time progresses. Notably, 

we initiated our analysis by utilizing the historical price, high, 

and low data from January 1, 2018, as our initial conditions 

denoted as U1(x1=39.102501, y1=39.182499, z1=38.094999). 

These conditions served as the input for a Lorenz system, 

which allowed us to generate a sequence of data points 

reflecting Bitcoin's price evolution for subsequent periods. 

This approach provides a unique perspective on Bitcoin's 

behavior, connecting past trends to future projections and 

highlighting the potential impact of historical data on 

cryptocurrency price dynamics. The exploration of Bitcoin's 

price dynamics did not stop at just the initial conditions. To 

further enrich our analysis, we introduced a second set of 

initial conditions, which were intricately linked to the first set. 

In this experiment, we deliberately introduced a 10-3 error to 

the x value of the initial conditions U2(x2=39.102501001, 

y2=39.182499, z2=38.094999), which served as the catalyst for 

an intricate chain reaction. To illustrate this sensitivity, Figure 

3 showcases a 3D plot of two trajectories derived from initial 

conditions associated with bitcoin data (price, high, low). The 

first set of initial conditions, denoted as U1(x1=39.102501, 

y1=39.182499, z1=38.094999), is represented by a blue color. 

Introducing a minute alteration, we obtained the second set of 

initial conditions, denoted as U2(x2=39.102501001, 

y2=39.182499, z2=38.094999), which is represented by a red 

color. 

At first, the two trajectories appear to align closely, 

indicated by the small difference in the x coordinates between 

the blue and red trajectories. However, as time elapses, an 

intriguing phenomenon unfolds. Figure 4 vividly demonstrates 

how the disparity between the trajectories amplifies, with the 

difference becoming as substantial as the value of the 

trajectory itself. 

The subsequent plots provide a more insightful 

representation of sensitive dependence on initial conditions. 

In the provided plot, we gain valuable insights into the 

behaviour of the x-component (bitcoin price) of the Lorenz 

system's solution with two distinct initial conditions: 

U1(39.102501, 39.182499, 38.094999) represented by the blue 

line, and U2(39.102501001, 39.182499, 38.094999) 

represented by the red line. 

 

 
 

Figure 3. Lorenz: Divergence of two initial conditions: 

U1(39.102501,39.182499,38.094999) in blue and 

U2(39.102501001,39.182499,38.094999) in red 

 

 

 

 
 

Figure 4. The difference between the x component of U1 (x1) 

and the x component of U2 (x2): x1 and x2 are almost identical 

before t=1000 but start to diverge after this value 

 

In Figure 4, we focus on x1, which represents the x- 

component (bitcoin price) of the solution derived from the 

initial condition U1, depicted by the blue line. As we observe 

this component, we witness its erratic nature, characterized by 

rapid and irregular fluctuations. This erratic behaviour is 

inherent to the dynamics of the Lorenz system, showcasing the 

system's chaotic nature and its sensitivity to initial conditions. 

To further analyse the divergence between the two solutions, 

we examine the bottom plot, which represents the difference 

between x1 and x2 (x1–x2) for both initial conditions. Initially, 

at t=1000, x1 and x2 exhibit a near-identical behaviour, 

reflecting their minimal disparity in the x-component. 

However, as time progresses beyond t=1000, an intriguing 

phenomenon emerges. The difference between the two 

solutions begins to amplify, eventually reaching a magnitude 

comparable to the values of the solutions themselves. This 
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escalating discrepancy signifies the sensitive nature of the 

Lorenz system, where even slight differences in initial 

conditions can lead to substantial variations in the system's 

evolution. 

By closely examining the top plot, we reaffirm the erratic 

behaviour of the x-component (bitcoin price) of U1. The rapid 

and irregular fluctuations further emphasize the chaotic 

dynamics embedded within the Lorenz system. The plot serves 

as a visual representation of the system's unpredictability, 

where small perturbations can lead to significant deviations in 

the x-component trajectory over time. 

The bottom plot shows the difference between x1 and x2, 

represented by x1-x2, for both solutions. Initially, at t=1000, x1 

and x2 are nearly identical in the x component, meaning that 

the difference between the two solutions is small. However, as 

time goes on and the systems continue to evolve, the difference 

between the two solutions increases and has about the same 

magnitude as the solutions themselves. This suggests that the 

two solutions are becoming increasingly different in their x-

component as time goes on, due to the sensitive dependence of 

the Lorenz system on initial conditions. 

In our ESN we employed the parameters and methodology 

below: 

Number of Neurons: 

The choice of 300 neurons in our reservoir was influenced 

by the complexity of the dataset. A larger number of neurons 

can better capture intricate patterns, but it comes with 

increased computational costs. Our decision balanced the need 

for model expressiveness with computational efficiency. 

The number of neurons was determined through cross-

validation experiments, where we tested various reservoir 

sizes and observed how they affected the model's performance. 

300 neurons were found to strike the right balance between 

model expressiveness and overfitting. 

Training Methodology: 

We employed the Levenberg-Marquardt optimization 

algorithm for training our ESN. This method is well-suited for 

regression tasks and is known for its effectiveness in 

minimizing mean squared errors in the output. 

The training process involved an iterative approach, where 

the model was trained to minimize the difference between 

predicted and actual outputs. We used a ridge regression 

approach that regularized the training process and enhanced 

generalization. 

Parameter Choices: 

Sparsity, denoted as the proportion of non-zero connections 

in the reservoir, was set to 0.95. This sparsity level allowed us 

to strike a balance between a well-connected network, which 

can capture intricate patterns, and a sparse network, which can 

exhibit stable and predictable behavior. 

After training our models, we put them to the test on a 

separate set of data. To see how well they could make 

predictions, we used measures like mean squared error (MSE), 

mean absolute error (MAE), root mean squared error (RMSE). 

These measures help us understand how accurate and effective 

the models are. In Table 2, we show the MSE, MAE, and 

RMSE values for both the classical ESN and the Lorenz 

system. These values help us compare how well these models 

perform. 

The prediction for the initial condition U1 (39.102501, 

39.182499, 38.094999), we made an intriguing observation: 

for the first 360 steps, the target output Ŷand the predicted 

output Y exhibited an impressive degree of similarity across 

all three components: x, y, and z. 

This alignment between Ŷ and Y signifies a high level of 

accuracy in our prediction during the initial phase. Our ESN 

model effectively captured the underlying dynamics of the 

system, enabling the predicted output to closely mirror the 

target output across all three components. 

This congruence between the target and predicted outputs 

highlights the ESN's proficiency in understanding and 

reproducing the intricate behaviour of the system. Our network 

successfully learned the complex interactions within the 

system, resulting in precise predictions during the early time 

steps. 

These aligned predictions provide valuable insights into the 

stability and reliability of our ESN model, specifically in 

capturing the behaviour of the Lorenz system for the given 

initial condition. The accuracy demonstrated in this initial 

phase establishes a strong foundation for further analysis of 

the system's dynamics as time progresses. 

 

4.2 Results 

 

In our analysis, we observed that the forecasting results for 

the initial condition U1(39.102501, 39.182499, 38.094999) 

were remarkably consistent with the target output for the first 

360 steps. This alignment between the forecasted values and 

the actual target output signifies a high degree of accuracy in 

our ESN predictions. 

 

 

 

 
 

Figure 5. ESN prediction for U1(39.102501, 

39.182499,38.094999): for the first 360 steps For the three 

components x, y, and z, the desired output Ŷ and the 

projected output Y are the same 
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To further evaluate the performance of our ESN model, we 

compared the forecasting results with the bitcoin price 

generated by the Lorenz system from t=1000 to t=2250. The 

results of this comparison are presented in Figure 5, where we 

conducted fitting tests to assess the quality of the ESN 

predictions. 

The fitting tests depicted in Figure 5 demonstrate the 

satisfactory performance of our ESN model. The plotted data 

points reveal a close alignment between the predicted values 

and the actual bitcoin prices generated by the Lorenz system. 

This fitting test serves as a validation of the ESN's ability to 

effectively capture and replicate the complex dynamics of the 

system. 

The overall effective performance of our ESN model is 

showcased by its ability to accurately forecast the bitcoin 

prices within the given time range. The model exhibits a good 

fit to the data, indicating a robust understanding of the 

underlying patterns and dynamics of the Lorenz system. 

The next step in our analysis involved predicting the 

decimated time series of U2 using the ESN approach. We 

aimed to forecast U2 with the initial conditions 

(39.102501001, 39.182499, 38.094999) for the time steps 

ranging from t=1001 to t=2250. To accomplish this, we 

utilized the previously trained ESN model based on the data 

from U1. The initial state provided to the ESN for updating 

the reservoir states was set as the state of U2 at t=1000. This 

approach allowed us to leverage the learned dynamics from 

U1 to make accurate predictions for U2. 

The results generated by the ESN for the next 2250 steps 

are depicted in Figure 6. This figure provides a 

comprehensive visualization of the difference between the 

ESN prediction and the Lorenz prediction for the U2 time 

series. It is evident from the plot that the ESN prediction 

consistently outperforms the Lorenz prediction for the time 

steps after t=1000 in the case of U2. The ESN prediction 

captures the underlying dynamics of the system more 

effectively, resulting in improved accuracy and reliability. 

By comparing the ESN prediction with the Lorenz 

prediction, we can observe that the ESN outperforms the 

original model in terms of accuracy and consistency. The 

ESN prediction for U2 during the time steps between 

t=1001 and t=2250 exhibits a higher level of agreement 

with the actual data. This superior performance of the ESN 

is a result of its ability to capture and model the intricate 

relationships within the Lorenz system, providing more 

reliable predictions for U2. 

The successful application of the ESN approach to 

predict U2's behavior showcases the advantages of 

employing advanced machine learning techniques in time 

series forecasting. By leveraging the ESN's ability to 

capture complex dynamics, we were able to extend the 

prediction horizon and obtain more accurate forecasts for 

U2. This enhanced prediction capability is of great 

significance in the realm of stock forecasting, where 

reliable predictions are crucial for informed decision-

making. 

In summary, our application of the ESN approach to the 

Lorenz system time series, specifically in predicting U2, 

proved to be highly advantageous. The ESN model 

provided a more accurate and consistent prediction for U2 

compared to the original Lorenz prediction. This 

improvement in prediction accuracy, spanning the time 

steps from t=1001 to t=2250, establishes the ESN as a 

valuable tool for stock forecasting and extends the 

prediction horizon for the Lorenz system. The successful 

utilization of advanced machine learning techniques 

highlights the potential of ESNs in capturing and predicting 

complex dynamics in various domains. 

 

 

 

 
 

Figure 6. Comparison between ESN prediction using 

U2(t=1001) as an initial condition minus U1, and U1-U2 from 

t=1001 and t=2250 for the three components x, y and z 

 

Table 2. RMSE, MSE, and MAE values of Lorenz and ESN 

 

Model Metric 
3-Horizon 6-Horizon 

x(t) y(t) z(t) x(t) y(t) z(t) 

Lorenz 

RMSE 1.05  1.66 2.79 1.05 2.07 2.85 

MSE 1.10 2.77 7.82 1.10 4.31 8.14 

MAE 0.75 1.22 1.68 0.75 1.47 1.78 

ESN 

RMSE 1.00 1.41 2.44 1.04 1.55 2.72 

MSE 1.00 1.99 5.97 1.08 2.41 7.43 

MAE 0.68 1.02 1.40 0.73 1.15 1.62 

Model Metric 
9-Horizon 12-Horizon 

x(t) y(t) z(t) x(t) y(t) z(t) 

Lorenz 

RMSE 1.07 2.47 2.85 1.16 2.73 2.88 

MSE 1.16 6.14 8.13 1.36 7.49 8.31 

MAE 0.80 1.73 1.76 0.88 1.96 1.82 

ESN 

RMSE 1.04 1.91 2.83 1.05 2.33 2.83 

MSE 1.10 3.66 8.00 1.11 5.46 8.03 

MAE 0.75 1.37 1.75 0.78 1.63 1.77 

 

Table 2 contains the RMSE (root mean square error), 

MSE (Mean square error), and MAE (mean absolute error) 

values for both the Lorenz model and the ESN-based model. 

It is clear from the results that the values of these metrics 
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are lower in the case of ESN as compared to Lorenz. So, 

the ESN approach has better accuracy and less error rate.  

By comparing the ESN prediction with the Lorenz 

prediction, we can observe that the ESN outperforms the 

original model in terms of accuracy and consistency. The 

ESN prediction for U2 during the time steps between 

t=1001 and t=2250 exhibits a higher level of agreement 

with the actual data. This superior performance of the ESN 

is a result of its ability to capture and model the intricate 

relationships within the Lorenz system, providing more 

reliable predictions for U2. 

The ESN's superior performance over the Lorenz 

prediction after t=1000 can be elucidated by its inherent 

characteristics and its ability to handle the chaotic and 

sensitive nature of the Lorenz system. Due to: 

Learning and Generalization: ESN is designed to 

harness the temporal dynamics of sequential data. It excels 

at capturing complex patterns and generalizing from the 

training data. In contrast, the Lorenz system, which is 

deterministic and highly sensitive to initial conditions, 

struggles to make accurate long-term predictions due to its 

chaotic nature. The ESN's training methodology, which 

incorporates regularization and error minimization, allows 

it to adapt to the underlying patterns in the data and reduce 

sensitivity to small perturbations. 

Reservoir Computing: ESNs have a unique architecture 

that includes a large reservoir of interconnected neurons, 

with fixed random weights. This design facilitates the 

network's capacity to capture temporal dependencies in the 

data. The chaotic behavior of the Lorenz system arises from 

its sensitivity to initial conditions and the interactions 

among variables. The ESN's reservoir architecture, 

combined with its training process, allows it to effectively 

model and exploit these complex interactions. 

Robustness to Noise: The Lorenz system is highly 

sensitive to noise and disturbances, which can lead to 

unpredictable behavior over time. In contrast, ESNs can be 

engineered to exhibit a level of robustness to noise through 

proper training and regularization techniques. This 

robustness enables ESNs to make more stable and accurate 

predictions, especially in the presence of noisy data or small 

perturbations. 

Prediction Horizons: ESNs can be configured to make 

longer-term predictions because they can capture and 

maintain information over extended time intervals. The 

Lorenz system's predictions become unreliable over time 

due to its chaotic dynamics. Beyond a certain point (t=1000 

in this case), the Lorenz system's sensitivity to initial 

conditions leads to diverging trajectories, resulting in poor 

prediction accuracy. 

In summary, the ESN's capacity to learn and generalize 

from data, its robustness to noise, and its ability to make 

longer-term predictions in the presence of chaotic dynamics 

all contribute to its superior performance over the Lorenz 

system, especially after t=1000. This demonstrates the 

ESN's adaptability and its suitability for tasks involving 

complex, chaotic systems, making it a valuable tool for 

forecasting and modeling intricate temporal dynamics. 

The successful application of the ESN approach to 

predict U2's behaviour showcases the advantages of 

employing advanced machine learning techniques in time 

series forecasting. By leveraging the ESN's ability to 

capture complex dynamics, we were able to extend the 

prediction horizon and obtain more accurate forecasts for 

U2. This enhanced prediction capability is of great 

significance in the realm of stock forecasting, where 

reliable predictions are crucial for informed decision-

making. 

In Table 3, RMSE values of previous models and the 

hybrid ESN-Lorenz model are given. In this table, various 

models are assessed across different time horizons (3, 6, 9, 

and 12), with performance metrics represented by values 

for x(t), y(t), and z(t) (Table 3). Each model's performance 

can be compared at different prediction periods, and trends 

in their performance can be analyzed. The "Hybrid ESN-

Lorenz" model seems to have consistent values of 1.000 for 

x(t), 1.412 for y(t), and 2.444 for z(t) across all time 

horizons. This suggests that this model might be quite 

stable or unchanging in its predictions. Which means that, 

for each of the variables (x(t), y(t), and z(t)), the values 

remain relatively unchanged as you move from shorter 

prediction periods (3-horizon) to longer ones (12-horizon). 

This consistency suggests that the model's predictions do 

not vary significantly with time. In many cases, consistent 

values across different time horizons can indicate stability 

in the model's forecasting or prediction abilities. It implies 

that the model maintains a relatively constant level of 

accuracy or reliability, regardless of whether you're 

forecasting for a short-term or long-term future.  

 

Table 3. Comparison between RMSE values of predicted 

model and previous models 

 

Model 
3-Horizon 6-Horizon 

x(t) y(t) z(t) x(t) y(t) z(t) 

ESN 0.79 2.22 2.85 2.93 5.24 7.13 

𝜑-ESN 0.53 1.12 1.57 1.64 3.00 3.68 

LIESN 0.57 1.45 2.20 2.07 3.71 5.21 

R2SP 0.39 0.92 1.40 1.27 2.15 3.12 
DeepESN 0.47 1.12 1.58 1.38 2.39 3.51 

ML-

ESM 
0.41 0.94 1.50 1.99 4.92 5.38 

DeePr-

ESN 
0.42 0.96 1.22 1.23 2.21 2.55 

HDESN 0.34 0.73 0.78 0.75 1.18 1.00 
Hybrid 

ESN-
Lorenz 

1.00 1.412 2.444 1.043 1.553 2.726 

Model 
9-Horizon 12-Horizon 

x(t) y(t) z(t) x(t) y(t) z(t) 

ESN 6.50 9.35 13.06 10.28 18.09 23.69 

𝜑-ESN 2.98 5.04 5.76 10.78 12.72 15.07 

LIESN 4.40 6.54 9.83 7.57 13.96 17.63 
R2SP 2.03 2.98 4.49 3.97 7.14 8.76 

DeepESN 2.83 4.59 6.05 4.47 7.72 9.21 

ML-
ESM 

6.66 9.89 12.654 13.036 15.524 19.455 

DeePr-

ESN 
2.56 5.19 5.86 6.13 13.01 14.10 

HDESN 1.20 2.22 2.62 3.13 5.43 6.25 

Hybrid 

ESN-

Lorenz 

1.048 1.913 2.83 1.057 2.337 2.834 

 

Furthermore, Table 4 contains the NRMSE, MSE, and 

Mean valid time of models whose evaluation is not 

available for different horizons in Table 4. It is clear from 

the values that the predicted model is outperforming most 

of the models. This research is providing comparable 

results and handling the challenges provided by chaos. This 

hybrid model reduces the butterfly effect efficiently, as 

further demonstrated in Model Performance Evaluation 

described in Table 5. This table compares the performance 

of various models across different time horizons using 
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RMSE, MSE, and MAE as evaluation metrics. Models like 

R2SP, DeepESN [34], ML-ESM, HDESN, and Hybrid 

ESN-Lorenz exhibit consistent and relatively low error 

metrics, indicating reliable and stable predictions across 

various time horizons. However, models such as ESN and 

LIESN show increased errors as the time horizon extends, 

for example ESN, LIESN and φ-ESN have MSE = 208.07, 

RMSE = 115.16 and MSE = 91.09 respectively, whereas, 

Hybrid ESN-Lorenz has the minimum values of RMSE 

0.43, 0.79, 1.13 and 1.46 for each time horizons (3, 6, 9, 

and 12) respectively and also the minimum value of MSE 

0.19, 0.62 across both horizons 3 and 6. The Hybrid ESN-

Lorenz has the smallest value of MAE with 0.30 and 1.03, 

which means that the Hybrid ESN-Lorenz model 

demonstrates stability in its predictions, with consistently 

low RMSE, MSE, and MAE values, making it a reliable 

choice for forecasting tasks. 

 

Table 4. Evaluation values of other models 

 
Model Metric: Value 

SWHESN NRMSE: 10E-2.5969 

MRESN RMSE: 43.7030 

SCKF-γESN RMSE: 1.4846 

SOGWOESN Mean valid time: 20.49 

BFA-DRESN RMSE: 18.83 

 

Table 5. Model performance evaluation across different 

time horizons and metrics 

 

Model Metric 
3-

Horizon 

6-

Horizon 

9-

Horizon 

12-

Horizon 

ESN 

RMSE 2 5.16 9.55 14.44 

MSE 4 26.63 91.04 208.07 

MAE 1.62 3.86 6.62 11.81 

φ-ESN 

RMSE 0.94 2.71 26.93 115.16 

MSE 1.16 1.36 1.36 1.36 

MAE 0.74 1.93 3.46 7.82 

LIESN 

RMSE 0.96 2.51 5.18 9.54 

MSE 0.91 6.3 26.82 91.09 

MAE 0.82 1.87 3.84 6.83 

R2SP 

RMSE 0.72 1.8 3.74 6.63 

MSE 0.51 3.24 13.99 43.99 

MAE 0.57 1.28 2.87 4.51 

DeepESN 

RMSE 0.73 1.66 3 4.99 

MSE 0.53 2.75 9.01 24.88 

MAE 0.65 1.35 2.63 3.88 

ML-ESM 

RMSE 0.88 2.77 4.91 7.6 

MSE 0.77 7.66 24.16 57.78 

MAE 0.69 1.68 2.97 4.82 

DeePr-

ESN 

RMSE 0.63 1.01 1.57 2.46 

MSE 0.4 1.02 2.48 6.05 

MAE 2.07 1.3 0.88 0.52 

HDESN 

RMSE 0.54 0.85 1.23 1.58 

MSE 0.29 0.72 1.52 2.49 

MAE 0.47 0.70 0.92 1.18 

Hybrid 

ESN-

Lorenz 

RMSE 0.43 0.79 1.13 1.46 

MSE 0.19 0.62 1.72 2.14 

MAE 0.30 0,56 0.8 1.03 

 

In summary, our application of the ESN approach to the 

Lorenz system time series, specifically in predicting U2, 

proved to be highly advantageous. The ESN model 

provided a more accurate and consistent prediction for U2 

compared to the original Lorenz prediction. This 

improvement in prediction accuracy, spanning the time 

steps from t=1001 to t=2250, establishes the ESN as a 

valuable tool for stock forecasting and extends the 

prediction horizon for the Lorenz system. The successful 

utilization of advanced machine learning techniques 

highlights the potential of ESNs in capturing and predicting 

complex dynamics in various domains. 

 

 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

 

Our innovative hybrid approach combines the Lorenz 

system with the ESN to address and significantly improve the 

shortcomings of the original Lorenz model and several other 

models, including R2SP, DeepESN, ML-ESM, HDESN, 

LIESN, ESN, DeePrESN, and φ-ESN. This integration serves 

to overcome the notorious butterfly effect and elevate 

predictive accuracy within chaotic systems. Traditionally, the 

Lorenz system is highly susceptible to little variations in initial 

conditions, making accurate forecasting challenging. Our 

hybrid approach leverages this very characteristic of the 

Lorenz system to train the ESN, allowing it to capture the 

intricate underlying dynamics of the chaotic system. The 

standout advantage of our hybrid approach is the ESN's 

remarkable resilience to the butterfly effect. By assimilating 

the divergent trajectories inherent to the Lorenz system, the 

ESN effectively mitigates chaotic behavior and displays 

superior performance in forecasting. In extensive simulations, 

our hybrid approach consistently outperforms not only the 

original Lorenz model but also the mentioned models (R2SP, 

DeepESN, ML-ESM, HDESN, LIESN, ESN, DeePrESN, and 

φ-ESN). The empirical results demonstrate the undeniable 

success of our hybrid approach in minimizing the butterfly 

effect, with RMSE of 0.43 for 3-horizon time that is small than 

the RMSE of the other models (R2SP, DeepESN, ML-ESM, 

HDESN, LIESN, ESN, DeePrESN, and φ-ESN). 

Consequently, it can capture complex dynamics in chaos 

forecasting. This hybrid approach is outperforming the 

original Lorenz model with a clear difference. It is also 

surpassing most of the models in literature with better 

accuracy. The ESN leveraged its non-linear computing ability, 

echo state property, and input forgetting property to model the 

complex dynamics of chaotic systems. By training the ESN 

with data from the Lorenz system, the hybrid approach 

showcased its potential for broader applications in deep 

learning and chaos forecasting. 

The findings of this research contribute to the advancement 

of ESN-based predictability and provide a promising solution 

for addressing the challenges posed by chaos. By combining 

the insights from the Lorenz system and the power of the ESN, 

we have developed a hybrid approach that offers enhanced 

prediction accuracy and mitigates the effects of the butterfly 

effect. In conclusion, the hybrid ESN-Lorenz approach 

presented in this paper demonstrates its efficacy in minimizing 

chaos and improving predictability in chaotic systems.  

Further research and experimentation can explore the 

applicability of this approach in various domains, such as 

weather forecasting, financial market analysis, and climate 

dynamics, to unlock its full potential in real-world scenarios. 

As our research continues, our focus is on achieving more 

accurate predictions by exploring the potential of combining 

quantum computing solutions with ESNs in the field of 

forecasting. This collaboration between quantum technology, 

Artificial Intelligence (AI), and quantum computing has the 

potential to revolutionize various industries, empowering 

professionals with highly accurate and intelligent decision-
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making tools, due to the immense computational power 

offered by quantum technology. This collaboration can handle 

complex calculations and explore vast solution spaces, 

enabling ESNs to model chaotic systems more effectively. The 

potential benefits include significantly enhanced prediction 

accuracy, rapid data processing, and the potential to 

revolutionize industries by providing professionals with 

cutting-edge decision-making tools capable of tackling 

complex and previously insurmountable challenges, 

ultimately leading to better-informed decisions, increased 

efficiency, and improved outcomes across various domains. 

To sum up, our paper combining the Lorenz system and 

the ESN improves chaotic system predictions significantly, 

outperforming established models. This breakthrough has 

the potential to revolutionize applications in science, 

engineering, and beyond by providing more accurate and 

stable predictions in chaotic systems, thus enhancing 

decision-making and safety. Its impact on these critical 

areas cannot be overstated. 
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