
Traceability and Synchronization Between BPMN and UML Use Case Models

Aljia Bouzidi1*, Nahla Haddar1, Kais Haddar2

1 FSEGS, Sfax University, Tunisia
2 FSS, Sfax University, Tunisia

Corresponding Author Email: aljia.bouzidi@gmail.com

https://doi.org/10.18280/isi.240214 ABSTRACT

Received: 18 January 2019

Accepted: 25 March 2019

The purpose of this paper is to ensure and maintain the alignment between business modeling

and requirement elicitation. To do this, we propose an approach that combines the strengths of

traceability and model transformations to bridge the gap between BPMN model and the UML

use Case models in particular, we propose an intermediate integrated model (BPSUC), and

bidirectional transformation rules between the use case and BPMN models into the BPSUC

and vice versa. We have implemented an editor to design and visualize BPSUC, and ATL

transformation rules to carry out transformation and have successfully tested our approach on

a case study, and evaluation criteria. The engineers and the business design can use BPSUC to

work together in a single integrated diagram as well as they can synchronize their initial model

through the bidirectional model transformations.

Keywords:

alignment, traceability, synchronization,

model integration, BPMN, use case

model, integration mechanism, model

transformations

1. INTRODUCTION

The traceability and synchronization (trace&synch) are

widely accepted as crucial concerns to bridge the gap between

heterogeneous models. Organizations Model Driven

Development (MDD) deals with trace&synch through model

transformations (forward: such as transformation from the

Computation Independent Model (CIM) to the Platform

Independent Model (PIM) level of the model-driven

architecture (MDA) [1] or backward). However, by model

transformations trace&synch exclusively emphasize on the

transformed related elements while the non-transformed and

the nonrelated elements are beyond their scope. Therefore,

establishing traceability/synchronization based only on model

transformation may give rise to incomplete and inconsistent

results. Trace&synch may be defined as an external trace

(meta)model to express all relationship types. These

relationships help to understand interrelations among

heterogeneous model elements. A trace&synch (meta) model

may be built through an integration mechanism that defines

explicitly relationships between related elements as well as

maintains traceability information throughout. Hence, an

integration mechanism allows not only associating related

elements but also preserving the nonrelated elements within

the integrated model. Another benefit in favor is that it enables

the coevolution of heterogeneous models by handling

simultaneously all existing elements as well as trace links

between them. However, an integrated trace&synch

metamodel does not tolerate the synchronization of the source

models. Therefore, to obtain a rigorous solution that ensures

trace&synch, it is important to explore both, model

transformation and the definition of an external integrated

trace model. Accordingly, the issues for establishing

traceability as well as synchronization to ensure the global

consistency between information systems and business

processes, and keep them aligned even if they evolve are still

open problems and need methods and approaches to bridge the

gap between requirements and business processes.

To solve these defects, this paper combines the use of both

model transformation and metamodeling mechanisms to yield

an accurate approach that establishes and maintains

traceability as well as synchronization between business

process and requirement models in a straightforward way.

Particular attention is paid to the UML use case models [2] as

the most used models to specify the requirements, and to

BPMN [3] as the most commonly used notation to model

business process models. Thereby, we first define an

integrated trace&synch metamodel for representing the

BPMN and the UML use cases models in the form of a unified

metamodel. Our integrated trace&synch metamodel denotes

explicitly trace links as new modeling elements to correlate

related elements. Then, we define an integrated trace&synch

model as an instantiation of our integrated trace&synch

metamodel. We represent the integrated trace&synch model as

a new diagram that we call BPSUC (Business Process

Supported Use Cases). BPSUC is built not only to keep track

of the transformations between BPMN and UML use case

elements but also to provide a visualization means for

representing graphically the trace links in a user-friendly way.

It combines joint usage of BPMN and UC models. Thus,

business designers can determine more accurately schedules

and costs of business model changes instead of depending on

requirement designers to know which artifacts will be affected

by these changes. Then, we propose sets of forward and

backward transformations that establish traceability links

between BPMN and UML use cases models and ensure a

semi-automated synchronization of them. The transformation

is carried out by going through the BPSUC model to check,

correct and validate the changes performed before integrating

them into the BPMN and the UML Use Case models. We have

implemented a proof of concept prototype in the form of an

editor to design and visualize BPSUC models, and sets of

Ingénierie des Systèmes d’Information
Vol. 24, No. 2, April, 2019, pp. 215-228

Journal homepage: http://iieta.org/journals/isi

215

transformation rules specified with Atlas Transformation

Language (ATL), and we have successfully tested our

approach on a typical case study. We have also evaluated the

proposed approach by applying and analyzing evaluation

criteria and compared it to related approaches.

The remainder of this paper is structured as follows: The

next section provides a global overview of trace&synch.

Section 3 is devoted to discussing related works and we cite

motivations that yield the introduction of our approach. In

section 4, we explain our proposed approach. In section 5, we

show the feasibility of our contributions in practice, and we

apply it to a case study in section 6. In section 7, we evaluate

our approach, and we present the result of the evaluation.

Finally, section 8 concludes the current paper and outlooks

future works.

2. BACKGROUND OF TRACEABILITY AND

SYNCHRONIZATION

The traceability concept has been defined by Drivalos et al.

[4] as: “any relationship that exists between artifacts involved

in the software engineering lifecycle”. Another definition has

been introduced by IEEE Standard Glossary of Software

Engineering Terminology [5] as “the degree to which a

relationship can be established between two or more concepts

of the development process”. According to the aforementioned

definitions, we may consider the traceability as links between

a set of elements that represent the same information but in

different perspectives. This information may be defined at

different abstraction levels or software process development

phases. Traceability is classified in different ways according

to numerous aspects. According to [Model traceability, there

are some fundamental classifications, like forward [6],

backward [5], horizontal (or intra [7]) and vertical (or inter [7])

traceability. The inter traceability is defined by Ramesh and

Edwards [7] as the traceability that describes links between

artifacts of different abstraction levels or software process

development phases. An example of inter traceability is the

establishment of relationships between UC and BPMN

elements.

Traceability practice is an important concern that enhances

quality aspects of the final solution (e.g. efficiency,

maintainability, analyzing impacts of changes...). For example,

functional coverage analysis can be performed by exploring

traceability links between requirements and their realizations.

Moreover, it has a quite important role in maintaining

consistency and establishing synchronization among models:

From the viewpoint of the business manager, it allows

recognizing if each business task is taken and supported by a

software component and if each software component meets a

business task. From the viewpoint of the system manager,

traceability interrelates each requirement to its business

sources by highlighting the necessary information to ensure its

evolution. With full traceability established throughout the

design phase of the system under development, it is possible

to determine more accurate costs and schedules of changes

instead of depending on the programmer to know all the

software components that will be affected by these changes.

Despite the importance of trace&synch in maintaining

model consistency, its practice is not widespread [8]. Hence,

MDD places challenges on trace&synch tools, which should

be able to deal with different types of models such as business,

data, design, and test artifacts. The MDA approach deals with

these challenges by the model transformation mechanism. The

main shortcoming of this mechanism is that the trace links

consider exclusively bijective (onetoone) relationships

between related elements. Moreover, it does not allow

distinguishing between different relationship types with

specific semantics to facilitate reasoning about trace links (part

of, isa, etc.). Therefore, it comes to be very difficult to ensure

and maintain the coevolution of heterogeneous models. The

definition of an explicit trace&synch metamodel may

overcome these challenges. Indeed, a traceability scheme

(metamodel) of a particular domain defines the relationships

between the model elements that will be treated as trace links

and determines the semantics they execute. Still, the absence

of guidelines for defining (meta) model traceability diminishes

the motivation for the creation and the maintenance of

traceability. Although some organizations resort to define

themselves a traceability metamodel, many others avoid

creating it. A commonly stated reason is the high cost of

manual creation and maintenance of traceability information

[8]. To alleviate these issues, it is mandatory to combine the

use of transformation models and a predefined trace

metamodel to promote the customization and definition of

trace links between heterogeneous metamodel elements. An

explicit trace metamodel may be undertaken based on the

integration approach. The main benefit of this approach is that

it keeps existing modeling elements conform to their

metamodels and to customize traceability links between them.

The integrated metamodel will be considered as a traceability

metamodel. To maintain the trace links and synchronize the

change between concepts, we might define transformation

models.

3. RELATED WORK AND MOTIVATIONS

3.1 Related work

We classify related works into two main categories

according to the methodologies of establishing the traceability

between model elements: (1) Approaches based on model

transformation chains, and (2) approaches which define a

traceability metamodel.

Model transformation is often used in MDD to automate

both the creation and the discovery of traceability relationships

[8]. According to the literature review, trace links of a model

transformation may be done according to three different

methods: (1.1) unidirectional transformation such as

transformation from BPMN models to Use case models [9-12].

This method is able fittingly to maintain bidirectional trace

links, though it focuses only on the related and transformed

concepts, which are often related by bijective (onetoone)

relationships. Moreover, it does not allow distinguishing

between different relationship types with specific semantics to

facilitate reasoning about trace links. Therefore,

synchronization becomes very difficult to ensure and to

maintain. (1.2) The second method consists in defining two

separate sets of transformation rules for the bidirectional

transformation. For example, the approach proposed in [4]

defines two separate sets of transformation rules between Use

case and business process models. The main advantage of this

method is that it provides manifold links between transformed

elements. However, the generation process is fixed and cannot

be changed to produce the required traces for a given

traceability scenario. (1.3) The third method is to record the

216

transformation rules during the transformation execution. In

model transformation engines, the traceability is used to keep

record of which elements in a source model map to which

elements in a target model. This method does not require an

additional effort, as just one set of transformation rules is

appropriate to reach both transformation directions. Yet, it is

needed to encode the trace generation. Moreover, trace links

cover exclusively transformed elements. The research

developed by Bulbun and Shahzada [13] uses this method to

define the trace links between the BPMN and Semantics of

Business Vocabulary and Business Rules (SBVR). Hence, the

transformation is made according to a mapping between

BPMN and SBVR elements. During the execution of the

model transformation from BPMN to SBVR, the authors

record the trace of the execution of every transformation rule.

The recorded traces enable to achieve the transformation in the

reverse direction. However, in this approach, the traceability

considers only business modeling. Moreover, only binary

rules are traced.

To store trace links, three approaches may be applied.

(a)The first approach saves trace links as additional model

elements within existing models. The benefits of this approach

is that trace links are presented together with their traced

elements. Yet, it requires additional efforts to adapt the

existing tools to this approach. Moreover, intra-model storage

of traceability links is a human-friendly approach but

progressively pollutes the models involved with information

of secondary importance. The authors of Jouault et al. [14]

propose an extension of the UML use case metamodel to refine

an abstract use case to more refined ones. The refinement of

use cases enables to trace use cases at different abstraction

levels, but the authors do not explain how to establish these

traces. (b) The second approach stores all traceability links

within traceability matrices. The author of Przybylek [12]

proposes a traceability matrix to save the trace links between

the business process and the use case models. When a process

is related to a use case, a mark is placed in the intersecting cell

corresponding to these elements. Moreover, in Silingas and

Butleris [15] a traceability matrix is automatically generated

to store the trace links between a use case and its associated

actors. By using the traceability matrix, trace links are

informally defined (as a text). (c)The third approach stores all

trace links within an external traceability model conforming to

a traceability metamodel. However, this approach is unable to

customize the traceability of all the initial metamodel elements;

only the transformed elements are traced. Several approaches

use this method such as Haidrar et al. [16], which proposes a

profile that helps to capture traceability information from the

requirement model before performing the transformation to a

design model. Generally, model transformation provides the

ability to link model elements, but it is unable to manage the

traceability of all existing heterogeneous metamodel elements.

(2) The second category includes approaches that manually

define traceability metamodels. Creating traceability links in

the form of a separate model that conforms to a well-defined

metamodel is not as human-friendly but demonstrates

significant benefits in terms of consistency, quality and

automation. In such metamodels, it is possible to specify

strongly typed traceability links with project specific

definitions. However, the creation of these specific traceability

metamodels require considerable effort [17]. Recently, the

authors of Meier and Winter, and Bouzidi et al. [18, 19] prove

that the integration of metamodels allow customizing the

traceability efficiently. Indeed, they propose to integrate the

different metamodel elements to a single one. In addition, they

define links, which enable to perform and customize the

traceability information between the metamodel elements.

Furthermore, the approach in Khellad et al. [20] proposes a

change propagation-based coevolution of transformations.

The premise is that knowledge of the metamodel evolution can

be propagated by means of resolutions to drive the

transformation coevolution. To deal with particular cases

where developers must drift from the proposed resolutions, the

authors introduce a composition-based mechanism that allows

developers to compose resolutions meeting their needs. This

approach is useful to validate the maintenance of the

traceability between models or metamodels. Cleland-Huang et

al. [21] introduced traceability approach, where authors deal

only with requirement traceability modeling of software

projects. Another research is introduced by Laghouaouta et al.

[22] to define a traceability metamodel that expresses the

relationship kinds to be kept during the model composition

process. Then, the authors enhance the metamodel traceability

with additional information about trace semantics.

Furthermore, Poggio and Suzana [23] proposes a traceability

model that traces the model elements of the different levels of

the enterprise architecture. Yet, managing all metamodels of

overall levels in a single traceability model may yield complex

models. Unlike Cleland-Huang et al., Drivalos et al.,

Laghouaouta et al., Meier and Winter, and Poggio and Suzana

[17, 18, 21-23] which use general concepts for representing

different artifacts used to model traceability (for instance;

“traceability links”, “Aspect”, “Element”, “requirement”,

etc.) , the authors Pavalkis et al. [24] propose a metamodel

traceability as an extension of the BPMN metamodel. Then,

they define trace links between some elements. On the other

hand, the authors of [10] propose a SYSML profile to enrich

requirement definition and establish traceability. They

propose an algorithm to generate the trace models. These latter

link requirements to their origins and to system design

elements, and map them eventually to the element property

that exactly fulfills them. Overall, the proposed approaches

deal either with requirements [25] or with business process

modeling [24, 26], but no approach proposes a traceability

metamodel for both business and requirement modeling.

To sum up, neither transformation models only nor explicit

traceability models only are able to resolve the traceability

challenges. In addition, none of them gives an explicit

representation of relationships between heterogeneous

metamodel elements. Above all, none of the approaches

studied above offers a rigorous traceability and

synchronization solution between requirements and business

models.

3.2 Motivation

According to the literature review, trace&synch practice

remains an open challenge in the software engineering process,

in particular between business process models and

requirement models. Therefore, we are motivated to define an

approach that should set the following trace&synch needs:

• The traceability information has to be specified in a

separate model to keep the managed models clean, as well

as to allow the model trace to be reused.

• The proposed approach must support a visualization

system, and express the trace relationships in a user-

friendly representation.

• The proposed approach have to enable impact analysis.

217

• The model trace and the model production have to be

automated in order to reduce the time consumed by

manual design.

• The proposed approach have to be able to keep managed

models (origin models) always aligned even if they evolve.

In order to solve the problems mentioned above, first we

should proceed to discover if there exists techniques or

patterns that could help us. Thus, we compare the most

common used techniques for overcoming the alignment

challenges between heterogeneous models in order to make

the right choice. We classify existing techniques into three

categories: the UML profile, the model transformations, and

the integration technique. Applying them strongly depends on

the stockholders purposes, the application context and the

required preconditions of each technique. To make the right

choice for aligning BPMN and use case models, we compare

the models obtained from the application of each technique.

Simultaneously, we take into account the required

preconditions of these techniques because, often,

preconditions may hinder the application of a technique in

spite of the obtained result quality due to the lack of flexibility.

For example, the dependency of a technique on specific

standards may prevent the usage of this technique when users

apply other standards. The evaluation of these techniques base

on the following criteria:

• Complete generated/constructed models (C1): This

criterion checks if the applied technique allows generating

or reconstructing all initial model elements.

• Reverse-engineering (C2): This criterion checks if the

applied technique allows finding or having traces for all

the initial model concepts to retrieve initial models.

• Independency to the semantics of standard languages (C3):

This criterion checks if the application of a technique is

not specifically targeted at a specific standard or specific

fields; if the answer is ’yes’ then the application of this

technique constrains the choice of specific standards or

fields.

• Representation of heterogeneous models together (C4):

This criterion checks if the applied technique allows

representing explicitly heterogeneous models within a

unified model.

• Explicit definition of relationships between concepts (C5):

This criterion is complementary to the former, and it

checks if the applied technique allows visualizing

explicitly the relationships between the concepts of the

models to be aligned.

• Comprehensibility of the obtained models (C6): This

criterion checks if the applied technique allows generating

or constructing comprehensive models.

• Traceability (C7): This criterion checks if the applied

technique allows establishing traceability.

• Trace link visualization (C8): This criterion checks if the

applied technique allows visualizing graphically trace

links between linked elements.

• Alignment maintenance (C9): This criterion checks if the

applied technique allows maintaining the alignment

between the managed (source) models.

• Synchronization (C10): This criterion checks if the applied

technique allows synchronizing heterogeneous models.

• Analysis of misalignment degree (C11): This criterion

checks if the applied technique allows analyzing the

source of eventual misalignment and determining the

origin of misalignment.

Table 1 presents the comparison results of the technique

abilities to reach evaluation criteria. Columns represent the

three techniques, and each row represents an evaluation

criterion.

Table 1. A comparison of the studied techniques that bridge

the gap between heterogeneous models

Evaluation

criteria

UML

profil

Transfor-

mation

model

Model

integration

C1 Y P Y

C2 N P Y

C3 N Y Y

C4 N N Y

C5 N Y Y

C6 Y Y P

C7 Y Y Y

C8 Y N Y

C9 P Y P

C10 P Y P

C11 P P Y
Legend: Y= Yes, N= No, P= Partial.

By analyzing the comparison results, we see that the UML

profile satisfies fully 36 % of the criteria (4/11), the model

transformations reaches 54 % (6/11), and the integration

techniques satisfy 73 % (8/11) of them. The three techniques

satisfy partially three different criteria. Hence, the integration

technique enables to construct a complete model that

incorporates all elements of the source models within a single

intermediate model and trace links between model elements.

Therefore, the reverse-engineering process is easy to

perform. Besides, the intermediate diagram makes it possible

to analyze the source of misalignment if one or both origin

models evolve. On the other hand, the integration technique

helps to create new concepts with new semantics

independently of any existing concepts. At the contrary, the

UML profile is subordinate to the UML language and

reinforces the reuse and the extension of the existing UML

concepts and tools. Hence, the UML profile is adequate only

for users who aim to reuse UML modeling concepts and UML

tools throughout all the steps of the software development

lifecycle. Even if the integration technique enables to reach

73 % of the required criteria, it may yield a complex model.

One can explain this complexity by the fact that users may

integrate several models in a single unified one. The integrated

model comes to be more complex as the number of models to

be integrated increases. To avoid this problem, the number of

models to be integrated should be limited. In addition, some

other criteria with a high priority namely C9 is partially

reached by using the integration technique because an

integrated model can fully reach these criteria only when we

use the integrated model without propagating the changes to

the source models. Actually, it is difficult to propagate the

changes to the source models automatically basing only on the

integrated model. To reach these two criteria fully we have to

use the model transformations. Nevertheless, this technique

does not allow generating a complete model especially if the

source and the target models show different perspectives and

their heterogeneity degree is important. Hence, a mapping

between heterogeneous models cannot cover all source or

target model concepts. Thus, it comes to be impossible to fully

specify relationships between all concepts and perform the

reverse engineering process. Similarly, a UML profile cannot

218

establish the relationships between heterogeneous models

except when constructing an integrated UML profile that

merges other UML profiles. In this case, we implicitly use the

integration technique but also we are still subordinate to the

UML concepts and tools. According to the above discussion,

we choose to combine the use of both the model

transformations and the integration technique, which enable to

reach 100 % of the required criteria fully. Hence, we first

investigate the advantages of both the definition of external

traceability metamodels and the integration technique, and we

define an integrated trace&synch metamodel.

In this way, we assess the reusability of our integrated

metamodel. Due to its specific nature, this traceability

metamodel can express case specific structural constraints,

such as the number or type of elements that can be linked in a

traceability link, and therefore a constraint language is not

needed to specify these structural constraints. Then we

instantiate the trace&synch metamodel in a separate

intermediate diagram. This diagram allows visualizing and

managing the trace links between BPMN and UML use case

models. Therefore, this diagram is practical to use if we want

to analyze the effect of a change scenario. On model the model

elements. Finally, we explore trace&synch in the context of

MDD, and we construct a model transformation tool that

maintains the alignment of the managed models and we use

the intermediate new diagram to validate the changes before

propagating them to the source model. In this way, we ensure

the synchronization of the use case and the BPMN models.

4. PROPOSED APPROACH

In this paper, we propose a joint use of the integration and

the model transformation techniques to propose a semi-

automated approach that establishes and maintains traceability

as well as synchronization between the BPMN and the UML

use case models. The approach is composed mainly of three

steps: In the first step, we define an integrated metamodel

called trace&synch, within which we incorporate all the

BPMN and the use case model elements, and we add trace

definition elements in the form of associations between them.

In the second step, we define an integrated trace&synch model

as an instantiation of the proposed metamodel We draw it as a

new model named BPMN Supporting Use Case model

(BPSUC)that visualizes trace links in a user-friendly

representation. In the third step, we define bidirectional set of

transformation rules between the origin models namely the

BPMN and the use case models, and the proposed trace model

namely the BPSUC. Figure 1 gives an overview of the

proposed approach.

Figure 1. Overview of our approach

In the rest of this section, we further explain, in the first time,

the three steps. Then, we illustrate how we apply the rules to

establish semi-automated trace&synch between BPMN and

UML use case models.

4.1 Integrated metamodel of BPMN and UML use case

Model integration is a mechanism that allows combining

heterogeneous metamodels. Using this mechanism, we can

represent any relationship type between related model

elements.

We define the integrated metamodel as follows. For each

couple of related elements, we add a new relationship

(composition, heritance, association) or a new metaclass. Each

couple of related elements is connected to the new metamodel

element. Table 2 summarizes this mapping between the use

case diagram and the BPMN model (first and third column)

taken from a previous work [9] (the full mapping is available

in [9]). The second column of Table 2 presents the new

elements that replace (and represent) the related elements in

our integrated metamodel.

Table 2. Mapping between BPMN, UML use case and BPSUC models

BPMN element BPSUC element use case element

Lane that incorporates laneSets OUPackage Package

Lane that does not incorporate laneSets OUActor Actor

Sequence of BPMN elements that

handle the same business object, and are

performed by the same role (Fragment)

UCFragment Use case

Fragment within the lowest nesting level

of Lanes
Association Association

Fragment that appears multiple Times
Fragment that appears

multiple times, Includes
Includes

Inclusive Gateway between two

fragments
Inclusive Gateway, Extends Extends

Exclusive Gateway between two

fragments
Exclusive Gateway, Extends Extends

Condition of sequence Flow + the

fragment label that corresponds to the

extending UC

Extension Point Extension Point

219

4.1.1 Organizational-Unit-Actor and Organizational-Unit-

Package

Model In our integrated metamodel, we define a metaclass

called Organizational-Unit-Actor (OUActor) which objects

inherit the properties of actors and lanes (cf. Figure 2). An

OUActor supports the idea of grouping the roles of a lane and

an Actor and combines them without affecting their semantics.

In this way, the OUActor concept maps out lanes onto actors.

In addition, we define an Organizational-Unit-Package

(OUPackage) as a specialization of BPMN lanes and use case

packages. In fact, a lane that contains lane sets is a grouping

design element and has consequently the same role as a UML

package. Hence, an OUPackage establishes a trace link

between a BPMN lane and a use case package.

4.1.2 Fragment

A fragment is a sequence of BPMN elements that handle the

same business object, and which are executed by the same

performer. In our metamodel, we represent fragments as

instances of the Fragment class (cf. Figure 2). As a fragment

is nothing else than an activity, we consider it as a part of a

subprocess, and thus we define an aggregation relationship

between the classes Fragment and subProcess (cf. Figure 2).

The cardinality of this relationship is “1-*” to indicate that

such a subprocess may contain many fragments. To link a

fragment to its performer, we create an association between

the classes OUActor and Fragment with a multiplicity “1-*”.

Moreover, we define a class named BusinessObject to

represent business objects referenced by a DataInput or

DataOutput in a BPMNModel. Then, we add an association

between the classes BusinessObject and Fragment (cf. Figure

2) to link each fragment to the business object it manipulates.

Furthermore, we define a many-to-many reflexive association

from/to the class Fragment to represent the fact that a fragment

may be an aggregation of further fragments (cf Figure 2).

4.1.3 Use case supporting fragment

In UML, a use case is defined as a sequence of actions that

yields an observable result of value to a particular actor. It is a

coarse-grained element, i.e. it supports many business actions.

Hence we map a use case to a fragment (cf. section 4.1.2). In

our integrated trace&synch metamodel, we introduce a new

concept called Use Case supporting Fragment (UCFragment),

which is a specialization of a use case. Besides, we add a

composition relationship between the Fragment and

UCFragment meta-classes to translate the fact that an

UCFragment is a use case that encapsulates its correspondent

fragment. The Fragment definition and the composition

relationship between UCFragment and Fragment allow

encapsulating the sequence of BPMN elements within a use

case. This specification defines the trace link between a use

case and a sequence of BPMN elements. Any modification on

an UCFragment leads to the modification of its corresponding

use case and the sequence of BPMN elements.

Our integrated metamodel is shown in Figure 2. For

readability reasons, only the core elements of BPMN and Use

cases and all the new modeling elements are depicted. Dark

gray meta-classes denote the BPMN elements, light gray meta-

classes represent the UML use case elements, whereas new

elements are represented with a bold line style and white meta-

classes.

Figure 2. The proposed integrated metamodel

4.2 BPMN supporting use case model

To be able to design the proposed integrated trace&synch

metamodel elements, we define an instantiation of the

proposed metamodel. This instantiation is outlined as a model

named BPMN supporting Use Case model (BPSUC model).

Each element in BPSUC has a new graphical representation,

whereas for each element of the UML use case and BPMN

models, we keep the original representation. These extensions

guarantee that experienced business and system modelers are

220

comfortable using BPSUC (cf subsection 5.1.1. to outline the

graphic representation of BPSUC model).

Figure 3. Exemple of BPSUC

Figure 3 represents an example of a BPSUC model. This

diagram contains an OUPackage named “School Library

System” that combines the roles of both a UML Package and

a BPMN lane elements. The OUPackage has four

UCFragments namely “Manage book”, “Identify reader”,

“Check a book availability”, and “Deliver book”. Each

UCFragment represents both a UML Use Case and a sequence

of BPMN elements as well as trace relationships between them.

For example, the UCFragment “Manage book” is a

representation of a UML Use Case element named “Manage

book”. In addition, it contains three OUActors namely

“Reader”, “Librarian” and “Magic Library”. Those OUActors

are used to represent both a BPMN lane as well as an UML

Actor roles together. Note the “Extends” relationship from

“Deliver book” to “Check a book availability”.

4.3 Transformation models

Transformation models provide the ground to define and

apply automatic transformation rules to produce source

models from other ones even though they belong to different

abstraction levels. Each transformation model (TransM)

consists of sets of transformation rules (STRs), which aim to

generate target models (TM) from source models (SM).

Formally, the relationship between TransM, STR, TM and SM

is written as follows:

𝑇𝑟𝑎𝑛𝑠𝑀𝑆𝑇𝑅 = 𝑆
𝑀
𝑆𝑇𝑅
→ 𝑇𝑀 (1)

In our approach, we base on the mapping between BPMN,

BPSUC and UML use case models presented in Table 2 to

propose two sets of forward and backward transformation

rules. These rules are depicted in Table 3 and are expressed in

natural language.

Table 3. Forward and backward transformation rules

from BPSUC into BPMN and UML use case From BPMN and UML use case model into BPSUC

R1: Transform each OUPackage into a BPMN Lane that

incorporates lane sets and into a UML Package

R1’: Transform each lane that incorporates lane sets and the corresponding

UML package into an OUPackage

R2: Transform each OUActor into a BPMN lane which

does not incorporate lane sets and into a UML Actor

R2’: Transform each lane that does not incorporate lane sets and the

corresponding UML actor into an OUActor

R3: Transform each UCFragment into a UML use case

and into a fragment

R3’: Transform each fragment and its corresponding UML use case into a

UCFragment

R4: Transform each association into a BPMN Fragment

within the lowest nesting level of lanes and a UML

association

R4’: Transform each Fragment within the lowest nesting level of lanes and

the corresponding UML association into an association

R5: Transform each “include” relationship into a UML”

include” relationship

R5’: Transform each Fragment that appears multiple Times and the

corresponding UML Includes relationships into an includes relationship

R6: Transform each “extend” relationship into a UML

“extend” relationship and a BPMN inclusive Gateway

R6’: Transform each inclusive gateway between two fragments into an

“extends” relationship and an inclusive gateway

R7: Transform each “extend” relationship into a UML

“extend” relationship and a BPMN exclusive gateway

R7’: Transform each exclusive gateway between two fragments into an

extends relationship and an exclusive Gateway

R8: Transform each extension point into a UML

extension point

R8’: Transform each condition of a sequence flow with the fragment label

that corresponds to the extending UC and an UML extension point into an

extension point

The first column of Table 3 presents the proposed forward

set of transformation rules. This set of rules allows generating

automatically a BPSUC diagram from a BPMN and a UML

use case models. Therefore, SM, TM, and STRs will take the

following values:

• SM = SBPMN,

• SUMLUC, TM = BPSUC diagram.

• STRs = R1 ... R8.

Formally, the relationship between TransM, SBPMN,

SUMLUC and TBPSUC may be expressed as follows:

𝑇𝑟𝑎𝑛𝑠𝑀𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑆
𝐵𝑃𝑀𝑁 + 𝑆𝑈𝑀𝐿𝑈𝐶

𝑅1…𝑅8
→ 𝑇𝐵𝑃𝑆𝑈𝐶 (2)

Two cases are possible to generate BPSUC elements:

(1) The first case consists of transforming BPMN elements

(BPMN!Elements) and UML use case elements

(UMLUC!Elements) into their trace and synchronization

elements (tr&synE) (new modeling elements) of BPSUC.

More precisely, the new modeling elements, notably

OUActor, OUPackage and UCFragment, are derived from the

elements they trace. The definition of their transformation

rules should be established according to the following

procedure:

𝑇𝑟𝑎𝑛𝑠𝑀𝑇𝑟&𝑆𝑦𝑛𝐸 = 𝑆
𝐵𝑃𝑀𝑁!𝐸𝑙𝑒𝑚𝑒𝑛𝑡 + 𝑆𝑈𝑀𝐿𝑈𝐶!𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑅𝑋
→ 𝑇𝐵𝑃𝑆𝑈𝐶!𝑡𝑟&𝑠𝑦𝑛𝐸 (3)

221

For example, the transformation rule R1 allows generating

the OUPackage that is a trace and synchronization element of

the BPMN lane and UML use case package elements.

Therefore, R1 is defined as follows:

𝑇𝑟𝑎𝑛𝑠𝑀𝑇𝑟&𝑆𝑦𝑛𝐸 = 𝑆
𝐵𝑃𝑀𝑁!𝐿𝑎𝑛𝑒 + 𝑆𝑈𝑀𝐿𝑈𝐶!𝑃𝑎𝑐𝑘𝑎𝑔𝑒

𝑅1
→ 𝑇𝐵𝑃𝑆𝑈𝐶!𝑂𝑈𝑃𝑎𝑐𝑘𝑎𝑔𝑒 (4)

(2)The second case is to derive the nonrelated elements

(NRE) from either, the use case model or BPMN model. In

fact, in a BPSUC, each element that represents a nonrelated

element requires only the model where this nonrelated element

belongs to initially. In this manner, the input of these rules is

the BPMN model if the element belongs to BPMN, or the

UML model UML use case will be taken as the input of this

transformation rule. An example of this case is the generation

of a UserTask element, which requires only the BPMN model

as an input of the transformation rule:

𝑇𝑟𝑎𝑛𝑠𝑀𝑁𝑅𝐸 = 𝑆
𝐵𝑃𝑀𝑁!𝑈𝑠𝑒𝑟𝑇𝑎𝑠𝑘

𝑅(𝑈𝑠𝑒𝑟𝑇𝑎𝑠𝑘)
→

𝑇𝐵𝑃𝑆𝑈𝐶!𝑈𝑠𝑒𝑟𝑇𝑎𝑠𝑘 (5)

The second column of Table 3 represents the backward set

of transformation rules that fulfills the reverse direction of the

forward set of transformation rules. The values of SM, TM,

and STRs are changed as follows:

• SM = BPSUC diagram.

• TM = BPMN and UML use case models.

• STRs = R1’...R8’.

We follow the same transformation logic applied on the

forward set of transformation rules to define the backward set

of transformation rules. Hence, the transformation rules of

related elements are defined according to the following

procedure:

𝑇𝑟𝑎𝑛𝑠𝑀𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝑆
𝐵𝑃𝑆𝑈𝐶!𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑅1′…𝑅8′
→ 𝑇𝐵𝑃𝑀𝑁!𝐸𝑙𝑒𝑚𝑒𝑛𝑡 +

𝑇𝑈𝑀𝐿𝑈𝐶!𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (6)

The transformation rules of nonrelated elements are defined

according to the following procedure:

 𝑇𝑟𝑎𝑛𝑠𝑀𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝑆
𝐵𝑃𝑆𝑈𝐶!𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑅1′…𝑅8′
→ 𝑇𝐵𝑃𝑀𝑁!𝐸𝑙𝑒𝑚𝑒𝑛𝑡 /𝑇𝑈𝑀𝐿𝑈𝐶!𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (7)

The proposed forward and backward transformation models

enable to ensure a bidirectional transformation between

BPMN and UML use case models and BPSUC diagram, which

in turn ensures the synchronization between them:

𝑇𝑟𝑎𝑛𝑠𝑀𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝑆
𝐵𝑃𝑆𝑈𝐶!𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑅1…𝑅8+𝑅1′…𝑅8′
↔ 𝑇𝐵𝑃𝑀𝑁!𝐸𝑙𝑒𝑚𝑒𝑛𝑡 + 𝑇𝑈𝑀𝐿𝑈𝐶!𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (8)

4.4 Traceability of the BPMN and UML use case models

Because Traceability between BPMN and UML use case

models is carried out basing on both the integrated (meta)

model and the set of forward transformation rules (from

BPMN & UML use case into a BPSUC model). As we

aforementioned in subsections 4.1 and 4.2, both the proposed

integrated trace&synch metamodel and its instantiation

(BPSUC model) incorporate all BPMN and UML use case as

well as new modeling elements in a unified form. Traceability

links are well established in the integrated trace&synch

metamodel by the new modeling elements namely OUPackage,

OUActor, Fragment, and UCFragment as well as the proposed

new associations between BPMN and UML use case model

elements. Each new metaclass in the integrated trace&synch

metamodel is a representation of traceability links and a

connection of a specific related element couple. An instance

of that is, for example, the OUActor, which represents a

traceability link between a BPMN lane and a UML actor.

Unlike transformation rules that define only bijective and

unidirectional relationships between related elements, the

integrated metamodel enables to deal with all relationships and

relationship types. In addition, the BPSUC model allows not

only to visualize the trace links graphically but also to

represent the nonrelated BPMN and UML use case model

elements. Therefore, nonrelated elements are also traced

within BPSUC by identical elements. Further, our approach

makes it possible to derive automatically the traceability

between BPMN and UML use case models through the set of

forward transformation rules (cf the second column of Table

3). The execution of these rules automatically derives a

complete BPSUC model from BPMN and UML use case

models.

4.5 Synchronization of the BPMN and UML use case

models

Synchronization between BPMN and UML use case models

is carried out semi-automated basing on both the integrated

trace&synch (meta) model and the sets of transformation rules

between BPMN and UML Use Case models on the one hand,

and a BPSUC model on the other hand. We present the

process of synchronization between BPMN and UML Use

Case models by a BPMN diagram as it is depicted in Figure 4.

Our synchronization approach is flexible to support the two

ways to synchronize BPMN and UML use case models; either

by modifying the initials models or directly use of the BPSUC

model.

Figure 4. Process of synchronization between BPMN and

UML Use Case models

(1) In the first case, the requirement designers may want to

add a new UML use case while at the same time the business

designers may change the name of a lane. A direct generation

of a UML use case model from the BMPN model (or the

inverse direction) is not sufficient to consider changes on both

initial models because it leads to the loss of modifications

occurred on the target model. Additionally, the effects of such

222

changes need to be observed before propagating them in other

models to avoid unintentional changes and to prevent from the

violation of structural well formedness constraints. To tackle

this problem, we propose in the first step to execute the

proposed forward transformation rules that generate the

BPSUC from BPMN and the UML use case models (Execute

forward transformation rules).

In this way, all modifications which arise in the BPMN

or/and the UML use case model are taken into consideration

by the BPSUC model.

(2) In the second case, we focus on the investigation of the

BPSUC model to be a means for business and requirement

designers to modify BPMN and UML use case model elements

directly. Hence, as it incorporates all BPMN and UML use

case model elements and the trace links between them,

BPSUC allow the business and the requirement designers to

use it together. Now, BPSUC exhibits as an intermediate

model for the business and requirement designers to intervene

together to check, correct and validate inconsistencies before

propagating the modifications to their initial models (BPMN

and UML use case models) (Manage a BPSUC diagram).

BPSUC helps then business and requirement designers to

estimate the impacts of updating, adding or removing some of

business or system functionalities.

Any occurred modification, namely insertion, deletion or

alteration on a BPSUC element means the change of

corresponding BPMN and UML use case model elements. For

instance, within BPSUC model an OUActor represents a

combined use of both the BPMN lane and the UML actor

elements. Therefore, adding a new OUActor is enough to

establish synchronization between a BPMN lane and a UML

actor because OUActor is a representation of both, the lane and

the actor elements. Consequently, a BPSUC model gives the

opportunity to obtain a BPMN model synchronized with the

UML Use Case model. While the BPSUC is well synchronized

with the modifications made on the initial models until this

step, these models are not yet synchronized with each other.

Therefore, the execution of the set of backward transformation

rules is required to generate automatically new versions of

BPMN and UML use case models from BPSUC model

(Execute backward transformation rules). Now, the generated

models are being synchronized with the BPSUC model as well

as with each other (Obtain synchronized BPMN and UML Use

Case models.

5. IMPLEMENTATION

The implementation process of our approach consists of

developing an editor by using the Graphical Modeling

Framework (GMF) plugin within the Eclipse environment (see

Figure. 10 in appendix B). This editor allows designing

BPSUC models according to the integrated trace&synch

metamodel. On the other hand, we develop two tools to

implement the sets of forward and backward of transformation

rules:

• BPMN&UC2BPSUC: tool which automates the

transformation rules from BPMN and UML use case

models into BPSUC ones.

• BPSUC2BPMN&UC: tool which automates the

transformation rules from BPSUC models into BPMN

and UML use case model.

Figure 5 depicts an overview of the implementation process

of our trace Model.

Figure 5. Overview of the implementation process of our

trace approach

5.1 Implementation of the BPMN supporting use case

model

Within the Graphical Modeling Framework (GMF), we

develop a fully functional graphical editor that implements the

proposed integrated metamodel and allows designing its

instantiation. Hence, we choose ECore as the language that

describes our integrated trace&synch metamodel. Then, we

develop a toolbox to design an integrated trace&synch model

according to our integrated metamodel. Business and

requirement designers may use our editor to deal with

synchronization and traceability between BPMN and UML

use case models by modeling and managing together the

existing BPMN and the UML use case model elements within

a single model (cf. Figure 6). Furthermore, it combines the use

of related concepts through the UCFragment, OUActor and

OUPackage elements. To model the elements of BPSUC

within our editor, we do not introduce new syntax and

notations, but rather we use the original syntax of the existing

BPMN and use case model elements. To avoid introducing

new graphical notations for new modeling elements, we

extend some existing BPMN and UML notations to ensure a

user-friendly representation, which facilitates the

understanding of BPMNSC model. Then, we develop our

editor as an internal plugin that can be installed and used

within the eclipse-modeling framework as an eclipse project.

5.2 Tools for Traceability and Synchronization

between BPMN, UML use case and BPMN-Supporting

Use Case models

We develop two tools called BPMN&UC2BPSUC and

BPSUC2BPMN&UC using the Eclipse Modeling Framework

(EMF). Since BPMN and UML are common standard

modeling notations, which are widely experimented, many

standard plugins and tools are developed and validated to

support them. Among the existing plugins, we choose to use

conFigure.d plugins within EMF; we use Eclipse BPMN2

modeler plugin to design BPMN models, and the UML

designer plugin to design UML use case models. These

plugins have internal metamodels that strictly correspond to

the OMG specifications. Thus, we integrate their metamodels

in the EMF environment to use them during the execution of

223

our tools. We also integrategate our trace&synch metamodel

into the editor to display design BPSUCs models. The prosed

sets of transformation rules are implemented by using the

Atlas Transformation Language (ATL), which is available as

a plugin in EMF 12].

 In the BPMN&UC2BPSUC tool, which automate the

transformation from a BPMN and a UML use case models into

a BPSUC model, the execution of the transformation rules

takes as input two files: (1) A file with “.bpmn” as extension.

This file must comply with the BPMN2.0 metamodel. (2) a file

with “.uml” extension that complies with the UML metamodel.

It generates as output a BPSUC model with “.BPSUC”

extension (cf. Figure 6).

Figure 6. BPSUC notation and the editor environment

caption

6. CASE STUDY

Our illustrative case study (cf. Figure 7) describes a typical

business process for online purchasing and selling. The

process starts when a customer selects the purchasing product

and adds it to the cart in order to specify an online purchase

order and send it to the seller. Before filling his personal

information, the customer may cancel preparing the purchase

order. Otherwise, he should fill his personal information and

send the online purchase order to the stock manager. Once the

online purchase order is received, the stock manager checks

the availability of the ordered items in the warehouse to see if

there are enough products to fulfill the purchase order. If not,

the restock process is performed to reorder raw materials

basing on the suppliers catalog and manufacture the ordered

products. This activity may be repeated multiples times in the

same business process instance. An exceptional case occurs

when raw materials are unavailable. If not, the sales confirm

the purchase order, creates an invoice and starts collecting and

packaging items for shipment.

The process finishes when the sales receives the payment.

and archives the delivered order. On the other hand, purchase

order cancellation requests may occur before the purchase

order is confirmed. Thus, the sales proceeds to a purchase

order cancellation and charges a penalty to the customer.

We decompose the online purchasing and selling BPMN

model into fragments according to our fragment definition (c.f

Figure 7). For example, the fragment F1 is limited by the data

objects “Cart” and “Product” which represent the input

business objects, and the data object “Purchase order” that

represents the output business object. As the fragments F3, F5-

F9 are composed of one task, the name of each one of them is

the name of the task it contains. For example, F2 is called

“Retreive product from warehouse”, whereas F1, F4, and F5

contain many tasks. Therefore, we manually name them as

follows;

• F1: Manage preparing purchase order

• F2: Acquire raw materials

• F4: Manage Charge penalty and compensate.

By applying the transformation rules of Bouzidi et al. [9],

we obtain the use case diagram presented in Figure 8 (you

can consult to show the transformation rules details).

Figure 7. An online purchasing and selling process

224

Figure 8. The generated use case diagram for the online

purchasing and selling business process model

Both the BPMN model presented in Figure 7 and the use

case diagram presented in Figure 8 may be designed

together by using our new diagram and basing on the

mapping between the BPSUC, BPMN and the use case

elements. Figure 9 presents the designed BPSUC diagram.

It is noted that this diagram may be manually designed by

designers as well as automatically generated by executing

the tool “BPMN&UC2BPSUC”.

In Figure 9, we show that each fragment and the

corresponding use case, these elements are combined and

represented together through the UCFragment. For example,

we combine the Fragment F1 with the use case “Manage

preparing purchase order” to be represented together by the

UCFragment “Manage preparing purchase order”. This

UCFrament is able to represent explicitly the F1 elements

(“receive purchase order, “check stock availability”).

Similarly, we present each actor and the corresponding

empty lane by an OUActor, and the package “Seller” with

the lane “Seller” by the OUPackage “Seller”. For example,

the actor “Stock manager” and the empty lane “stock

manager” by the OUActor “stock manager”.

Now, suppose that the business and systems designers are

working together on the BPSUC model, and they have

agreed to evolve their business and system functionalities to

manage the online purchasing and selling. Consequently,

they add a new UCFragment named "Prepare purchase

order" and a new OUActor named “Customer” to handle the

purchase preparing by the Customer. As the UCFragment is

a trace link between a sequence of BPMN elements and a

UML use case element, it represents simultaneously UML

use case named “Prepare purchase order” and a fragment

that incorporates two tasks named "Check product items"

and "Fill cart". However, the initial models (BPMN and

UML use case models) are not synchronized with BPSUC

model after the changes. To synchronize them, we should

execute BPSUC2BPMN&UC tool that generates” from the

BPSUC model of “Online purchasing and selling” new

versions of the BPMN and the UML use case models. Hence,

the execution result of this tool is a BPMN model that

incorporates two tasks named items" and "Fill cart", which

belong to a new pool named “Customer”, and a UML use

case model augmented by a new use case named “Prepare

purchase order” and a new Actor named “Customer”.

Figure 9. Traceability between BPMN, UML use case and BPSUC models

225

7. EVALUATION

7.1 Comparison of our approach and existing approaches

The current approach explores model transformations and

integration techniques to bridge the gap between the BPMN

model and the UML use case diagram. Thereby, defining a

trace&synch metamodel and a new diagram as well as a chain

of transformation rules, which ensure backward and forward

transformations between BPSUC, BPMN and the use case

diagrams. To evaluate the trace&synch metamodel and

BPSUC, we compare them to the related works, which

introduce a traceability and/or a synchronization (meta)model

according to the following criteria:

• Source metamodels (C1): This criterion checks the source

and target (meta) models.

• Types of relationships established between metamodel

elements (C2): This criterion checks if the approach

explicitly provides relationships and allows visualizing

the combination of the usage of the source metamodel

elements.

• Existence of a supporting modeling tool (C3): This

criterion checks if the authors provide a modeling tool to

support their approach.

• Proposition of a notation (C4): This criterion checks if the

approach provides a notations for its metamodel elements;

• Approbation type (C5): This criterion checks how the

approach is proved: Case Study (CS), modeling tool (T)

or no testing (N).

Table 4 presents the results of the comparison. The columns

correspond to the proposed approaches and each row in the

table represents a comparison criterion.

Table 4. Comparison of the existing works and our approach

Drivalos

et al. [17]

Haidrar

et al. [25]

Laghouaouta

et al. [22]

Meier and

Winter [18]
Haidrar et al. [24]

Poggio and

Suzana [23]

Wautelet

and

Poelmans

[26]

Our approach

C1

New
modeling

language

SYSML

model

Generic

approach

Requirements,
class diagrams,

and source code.

BPMN models
computational

models of EA

RUP/UML

BUC Model

and the
BPMN

BPMN and Use Case models

C2 P Y N P Y P N Y

C3 N N N Y Y N P Y

C4 N N N Y N N Y Y

C5 CSs CS+T CS+T CS+T N N CS+T CS+T

 Legend: Y= Yes, N= No, P= partially provided CS= case study T= Tool

According to the comparison results, our approach satisfies

all the evaluation criteria. Although, the approaches proposed

by Meier and Winter, Laghouaouta et al., and Poggio and

Suzana [18, 22, 23] may support BPMN and UML use cases,

the proposed metamodel concepts are specified by black box

meta-classes, which cannot be precise enough. In addition, due

to their generic nature, the proposed traceability metamodel

cannot express case specific structural constraints, such as the

number or types of elements that can be linked in a traceability

link and therefore a constraint language is needed to specify

these structural constraints. Therefore, considerable efforts are

required to refine them. Moreover, the approach in [Towards

Traceability Metamodel for Business Process Modeling

Notation] represents explicitly relationships between BPMN

model elements through the extension of properties of its

elements. Similarly, the approach proposed by Wautelet and

Poelmans [26] provides a framework that allows modeling

both the strategic, tactical and operational layers of a business

model in the form of an integrated model. However, the

authors Pavalkis et al., and Wautelet and Poelmans [24, 26]

focus only on the traceability business modeling problem,

while the integration of the information system models with

the business model is out of their scope. Hence, no approach

explicitly defines the traceability between the UML use case

and the BPMN models. On the other hand, the established

relationships between the model elements are specified only at

the metamodel level, while at the model level, they are

represented separately. In this case, users cannot explicitly

visualize the combined use of elements of these heterogeneous

models and traceability links between the source models may

be lost at this level.

7.2 Limits of our approach

One of the main downsides of the proposed approach is that

we evaluated and refined the syntax and semantics of BPSUC

only through two illustrative examples, which are not

sufficient to validate BPSUC expressiveness. Hence, the

BPMN model presented in Figure.7 does not incorporate all

BPMN elements. Similarly, the use case diagram is simple to

validate the accuracy of the diagram BPSUC. Therefore, we

are working on testing BPSUC through more complex case

studies to estimate its accuracy and correctness. Moreover,

synchronization is performed only by applying the forward or

the backward transformation rules, which must regenerate all

elements even if they are not affected by the changes made.

We are working to enhance our transformation to ensure

incremental transformation rules that should regenerate only

the elements impacted by the changes. In addition, our

intermediate diagram does not allow detecting automatically

changes made on the source models (for example BPMN) only

if we re-execute the transformation from the source model into

BPSUC. We aim to enhance BPSUC tool to be able to detect

the changes made on the source models automatically and to

indicate the elements that will be affected by the changes.

8. CONCLUSIONS

In this paper, we addressed the traceability and

synchronization challenges between business process and

requirement models. To do this, we based on both the

integration technique and the model transformation to propose

a traceability approach for the BPMN and the UML use case

models. In the first step, we defined an integrated metamodel

226

that incorporates all BPMN and use case model elements. Next,

we defined a BPSUC model as an instantiation of the proposed

integrated trace&synch metamodel. Using this model to

design together BPMN and UML use case models ensures

maintaining the BPMN and the use case models always

synchronized and coherent.

Moreover, we proposed two sets of forward and backward

model transformation chains between BPMN and UML. To

prove the feasibility of our approach, we developed a proof of

concept prototype in the form of an editor that supports our

integrated trace&synch metamodel and allows visualizing,

designing and modifying BPSUCs with respect to the

proposed integrated trace&synch metamodel. Besides, we

implemented two tools, which computerize the proposed sets

of transformation rules. On the other hand, we applied our

approach to an illustrative example.

In future research, we are looking forward to establish and

maintain traceability and synchronization between UML use

cases and sequence diagrams.

REFERENCES

[1] OMG-MDA. (2015). MDA Guide revision 2.0.

[2] Object Management Group. (2012). Unified Modeling

Language: Superstructure, formal.2012-05-07. ISO as

the 2012 edition standard: ISO/IEC 19505-2: 2 0 1 2 (E.

[3] Object Management Group. (2013). Business Process

Model and Notation (BPMN)-Version 2.0.2. OMG.

[4] Drivalos, N., Paige, R., Fernandes, K.J., Kolovos, D. S.

(2008). Towards rigorously defined model-to-model

traceability. ECMDA, Berlin, Germany, 17–26.

[5] IEEE Standards Board. (1990). IEEE Standard Glossary

of Software Engineering Terminology. IEEE Std 610.12-

1990. IEEE Press, Piscataway.

[6] Winkler, S., Pilgrim, J. (2010). A survey of traceability

in requirements engineering and model-driven-

development. Journal of Software and Systems Modeling,

9(4): 529-565. https://doi.org/10.1007/s10270-009-

0145-0

[7] Ramesh, B., Edwards, M. (1993). Issues in the

development of a requirements traceability model.

Proceedings of the IEEE International Symposium on

Requirements Engineering, IEEE Computer Society,

New York, pp. 256-259.

https://doi.org/10.1109/ISRE.1993.324849

[8] Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-

Gafni, Y. (2006). Model traceability. IBM Systems

Journal, 45(3): 515-526.

[9] Bouzidi, A., Haddar, N., Ben Abdallah, M., Haddar, K.

(2017). Deriving use case models from BPMN models.

Proceedings of the 14th International Conference on

Computer Systems and Applications (AICCSA),

Hammamet, Tunisia, pp. 238-243.

https://doi.org/10.1109/AICCSA.2017.49

[10] Cruz, E.F., Machado, R.J., Santos, M.Y. (2015).

Bridging the gap between a set of interrelated business

process models and software models. Proceedings of the

International Conference on Enterprise Information

Systems, 2: 338-345.

[11] Park, G., Fellir, F., Hong, J.E., Garrido, I.L., Noguera,

M., Chung, L. (2017). Deriving use cases from business

processes: A goal-oriented transformational approach.

Proceedings of Symposium on Applied Computing (SAC)

ACM, pp. 1288-1295.

https://doi.org/10.1145/3019612.3019789

[12] Przybylek, A. (2014). A business-oriented approach to

requirements elicitation. Proceedings of the 9th

International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE’14),

Lisbon, pp. 152-163.

https://doi.org/10.5220/0004887701520163

[13] Bulbun, G.U.D., Shahzada, H.M.A. (2016). BPMN

process model checking using traceability. Proceedings

of the 6th Conference of Innovation of Computer

Technology (INTECH), pp. 694-699.

https://doi.org/10.1109/INTECH.2016.7845098

[14] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez,

P. (2006). ATL: A QVT-like transformation language.

21st ACM SIGPLAN Symposium on Object-oriented

Programming Systems, Languages, and Applications, pp.

719. https://doi.org/10.1145/1176617.1176691

[15] Silingas, D., Butleris, R. (2008). UML-intensive

framework for modeling software requirements.

Proceedings of the 14th International Conference on

Information and Software Technologies, pp. 334-342.

[16] Haidrar, S., Bencharqui, H., Anwar, A.J., Ruel, MB.,

Roudiès, O. (2017). On the use of model transformation

for requirements trace models generation. Proceedings of

the RE Workshops, pp. 26-35.

[17] Drivalos, N., Kolovos, D.S., Paige, R.F., Fernandes, K.J.

(2009). Engineering a DSL for software traceability.

Edited Software Language Engineering, Springer, Berlin,

Heidelberg, pp. 151-167. https://doi.org/10.1007/978-3-

642-00434-6_10

[18] Meier, J., Winter, A. (2018). Traceability enabled by

metamodel integration. Software Technik-Trends, 38(2).

[19] Bouzidi, A., Haddar, N., Ben Abdallah, M., Haddar, K.

(2018). Alignment of business processes and

requirements through model integration. Proceedings of

the 15th International Conference on Computer Systems

and Applications (AICCSA)., Aqaba, Jordan, pp, 1-8.

[20] Khelladi, D.E., Kretschmer, R., Egyed, A. (2018).

Change propagation-based and composition-based co-

evolution of transformations with evolving metamodels.

MoDELS, 404-414.

https://doi.org/10.1145/3239372.3239380

[21] Cleland-Huang, J., Hayes, J., Domel, J.M. (2009).

Model-Based Traceability. TEFSE (2009), 6-10.

[22] Laghouaouta, Y., Anwar, A., Nassar, M., Coulette, B.

(2017). A dedicated approach for model composition

traceability. Journal of the Information and Software

Technology, 91: 142-159.

https://doi.org/10.1016/j.infsof.2017.07.002

[23] Poggio, J.R, Suzana, R. (2017). Towards a models

traceability and synchronization approach of an

enterprise architecture. Proceedings of the 29th

International Conference on Software Engineering and

Knowledge Engineering, pp. 24-29.

[24] Pavalkis, S., Nemuraite, L., Milevičienė, E. (2011).

Towards traceability metamodel for business process

modeling notation. Skersys, T., Butleris, R., Nemuraite,

L., Suomi, R. (eds) Building the e-World Ecosystem. I3E

2011. IFIP Advances in Information and Communication

Technology, vol 353. Springer, Berlin, Heidelberg, 2011.

[25] Haidrar, S., Anwar, A., Roudies, O. (2017). A SYSML-

based Approach to manage stakeholder requirements

traceability. Proceedings of the 14th International

227

Conference on Computer Systems and Applications

(AICCSA), Hammamet, Tunisia, pp. 202-207.

https://doi.org/10.1109/AICCSA.2017.183

[26] Wautelet, Y., Poelmans, S. (2017). An integrated

enterprise modeling framework using the RUP/UML

business use-case model and BPMN. Poels, G., Gailly,

F., Serral Asensio, E., Snoeck, M. (eds). The Practice of

Enterprise Modeling. PoEM 2017. Lecture Notes in

Business Information Processing, Springer, Cham, p. 305.

https://doi.org/10.1007/978-3-319-70241-4_20

NOMENCLATURE

SM Source Model

TM Target Model

TransM Transformation model

STRs transformation rules

R(x) Transformation rule of the element x

NRE non-related elements

RE related elements

Sm!e The element e of the source model m

Sm!e The element e of the target model m

APPENDICES

Appendix A

This appendix presents an extract of the different part for

implementing the editor that allows of our new diagram

BPSUC.

Figure 10. Extract of the editor for developing the new diagram BPSUC

Appendix B

This appendix represents how we use the BPSUC as an internal plugin within the eclipse-modelling framework.

Figure 11. Using the BPSUC as an internal plugin within the eclipse modelling framework

228

