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Smart grid systems are vulnerable to electricity theft, which endangers operational safety, 

sustainable development, and income integrity. This paper explores the use of one-

dimensional (1D) and two-dimensional (2D) convolutional neural networks (CNNs) for 

efficient detection of electricity theft. One notable feature of 1D CNNs is their ability to 

extract patterns from sequential data, but 2D CNNs are better at handling pictorial data. An 

inventive method is presented to tackle the problem of missing values in the dataset, 

improving the performance of the models that are in use. The results show that the 

performance of electricity theft detection systems is greatly improved by these improved 

models. 
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1. INTRODUCTION

Electricity stands as the predominant energy source on our 

planet. Within this context, electricity companies provide a 

range of services encompassing energy generation, 

transmission, distribution, and sales, catering to consumers, 

businesses, and industries alike. The operations of these 

entities are closely monitored by various federal agencies. 

Electricity theft is a prevalent issue that contributes to energy 

losses. It involves the unauthorized installation of devices or 

methods to bypass the meters responsible for measuring 

energy consumption. This illegal practice is carried out with 

the intention of reducing the recorded consumption amount or 

evading billing for the energy used. Typically, electricity theft 

involves the installation of hidden systems or mechanisms that 

allow consumers to bypass the meter without detection. This 

form of illicit activity has detrimental effects on power grids, 

leading to a decline in power supply quality and a decrease in 

operating profits.  

Electricity theft detection is a critical issue due to its 

widespread prevalence and significant consequences. It is 

driven by factors such as high energy costs, economic 

inequality, and weak law enforcement. The impacts of 

electricity theft are substantial, including financial losses for 

utility companies, compromised service quality for legitimate 

consumers, reduced government revenue, system 

inefficiencies, and safety risks. Effectively addressing 

electricity theft requires advanced technologies, collaboration 

among stakeholders, and public awareness campaigns. 

Implementing robust detection systems and comprehensive 

strategies is crucial to protect revenue, ensure reliable service 

delivery, promote fairness, and maintain a sustainable energy 

distribution system. 

By combating electricity theft, utility companies can 

safeguard their financial viability and invest in infrastructure 

improvements. Governments can generate sufficient tax 

revenue, implement energy sector reforms, and provide 

reliable electricity to their citizens. Moreover, addressing theft 

promotes a culture of compliance, fairness, and responsible 

energy consumption, contributing to energy efficiency and 

environmental sustainability. Overall, tackling electricity theft 

is essential for the economic, social, and environmental well-

being of communities and the stability of energy systems. 

Furthermore, the smart grid, representing an advanced 

iteration of the traditional power grid, presents an opportunity 

to revolutionize the energy sector and usher in a new era of 

enhanced dependability. The smart grid incorporates modern 

technologies and communication systems to enable more 

efficient and intelligent management of electricity generation, 

distribution, and consumption. By integrating real-time data 

monitoring, automation, and advanced analytics, the smart 

grid facilitates improved power grid stability, reliability, and 

resilience. It enables better load management, fault detection, 

and self-healing capabilities, thereby minimizing disruptions 

and maximizing the overall efficiency of the energy system. 

The smart grid's ability to optimize energy usage, integrate 

renewable energy sources, and empower consumers with 

information and control has the potential to transform the 

energy sector and meet the increasing demand for reliable and 

sustainable electricity supply. 

Moreover, smart grids, an evolved iteration of conventional 

grids, present an opportunity to usher in a fresh era 

characterized by enhanced reliability, accessibility, and 

efficiency, thereby contributing to economic and 

environmental prosperity [1]. The smart grid represents a 

digital innovation that facilitates bidirectional communication 

between utilities and consumers. Its "smart" attribute stems 

from sensor networks integrated into transmission lines. The 
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two-way interactivity inherent in smart grids allows for 

automated rerouting in response to equipment malfunctions or 

breakdowns, thereby bolstering the resilience and readiness of 

electrical energy systems during emergencies. 

Convolutional neural networks (CNNs) are extensively 

employed in contemporary artificial intelligence applications, 

specifically for image and audio data processing. A standard 

CNN architecture comprises convolutional layers, followed by 

a pooling layer and a fully connected layer. These 

characteristics remain consistent across various dimensions. 

One-dimensional CNNs (1D CNNs) excel in signal analysis, 

particularly for fixed-length signals, as they are adept at 

detecting basic patterns that contribute to the creation of more 

complex patterns in subsequent layers. When working with 

fixed-length segments of a dataset where the positional 

information of features within the segments is not essential, 

1D CNNs demonstrate high efficacy. They are commonly 

utilized in audio signal analysis and find applicability in 

certain natural language processing.  

The choice of dimensions (1D, 2D, or 3D) for a CNN 

depends on the specific problem at hand. For example, 1D 

CNNs are typically employed for audio signals, 2D CNNs for 

images, and 3D CNNs for movies. Despite dimensional 

disparities, CNNs share similar properties and approaches. 

 As a result, this investigation centers predominantly on the 

application of deep learning for detecting fraud within smart 

grids. 

The primary goal of this paper is to explore the potential 

application of convolutional neural networks (CNNs), 

specifically in their 1D or 2D variants, for the purpose of 

identifying electricity consumers engaged in fraudulent 

activities. By leveraging the capabilities of CNNs, we aim to 

investigate their effectiveness in detecting and flagging 

instances of electricity fraud. Through this research, we seek 

to contribute to the development of advanced techniques that 

can aid in the identification and prevention of fraudulent 

behavior within the electricity sector. 

Distinguishing itself from prior studies, our approach 

exhibits the following unique characteristics: 

·The problem of missing values has been resolved by 

imputing the averages of daily electricity consumption for 

each customer category (fraud or no fraud) into the respective 

columns. 

·Various deep Convolutional Neural Network (CNN) 

architectures have been proposed. 

· The integration of CNNs has yielded notable 

enhancements in accuracy, AUC, and other assessment 

metrics, attributed to their capacity for feature extraction and 

generalization. 

· Subsequent to the implementation of these 

aforementioned measures, the need to address the challenge of 

highly skewed data, linked to instances of electricity theft, has 

been obviated. 

The paper is structured as follows: In Section 2, we present 

an in-depth exploration of energy fraud terminology, covering 

key concepts such as Energy Loss Types, Electricity Theft 

Methods, and Smart Grids Fraud Methods. This section aims 

to provide a comprehensive understanding of the various types 

of fraud involved in the energy sector. Moving on to Section 

3, we conduct a thorough review of relevant literature to 

establish a strong background for our research. By examining 

previous works and studies, we gain valuable insights and 

identify any existing gaps in knowledge that our research aims 

to address. Section 4 focuses on our suggested model design, 

where we outline the steps involved in its development. This 

model serves as a framework for effectively combating energy 

fraud. Additionally, Section 5 presents the findings from our 

study, offering a comprehensive overview of the research 

outcomes. We also introduce the implementation tools we 

utilized, shedding light on their effectiveness in addressing and 

mitigating energy fraud. Finally, in the concluding section, we 

summarize the key findings, discuss the implications of our 

study, and highlight potential avenues for future research and 

improvement in the field of energy fraud prevention. 

 

 

2. THEORETICAL BACKGROUND 

 

Energy plays a crucial role in advancing economies and 

technological development. The infrastructure required for 

service provision encompasses extensive networks of 

pipelines or transmission lines, reaching millions of meters for 

monitoring individual customer consumption. 

 

2.1 Energy loss types 

 

Within the energy sector, a persistent challenge is the 

discrepancy between energy billing and supply, known as 

energy loss. These losses are typically categorized as 

Technical Losses (TL) and Non-Technical Losses (NTL) [2]. 

Technical Losses (TLs) occur due to energy dissipation in 

the electricity transmission system, specifically the joule effect 

on power lines and transformers made of copper or iron [3]. 

TLs are a normal part of the system, relatively constant, and 

independent of consumer behavior. They have a tolerable 

impact on the economy. Calculating TLs is complex, as it 

involves determining the point of loss and estimating the 

amount of energy lost. While it is not possible to completely 

eliminate TLs, they can be reduced by implementing 

modulation techniques throughout the system [4, 5]. 

Non-Technical Losses (NTLs) are the residual losses that 

remain unaccounted for after subtracting the calculated TLs. 

NTLs represent abnormal power consumption patterns that 

cannot be explained theoretically. Estimating NTLs is 

challenging as they are typically caused by external factors 

outside the power system, such as electricity theft. NTLs can 

significantly harm power providers' economic performance 

and lead to safety issues, including equipment damage, power 

outages, and injuries [6]. 

 

2.2 Electricity theft methods 

 

Electricity theft is the practice of tampering with electrical 

equipment or circumventing energy meters in an effort to 

lower usage or avoid being charged. By putting in secret 

methods to go around the meter, this illegal technique aims to 

stop the proper recording of electricity usage. Power grids 

suffer from the effects of electricity theft, which lowers 

operational revenues and has negative effects on the quality of 

the power supply. 

Figure 1 illustrates various methods of electricity theft, 

highlighting the diverse ways through which illegal 

consumption of electricity can occur. Among these methods, 

meter tampering stands out as the most prevalent form of 

electricity theft. Meter tampering involves fraudulent 

manipulation of the meter reading on an electromechanical 

meter device. By tampering with the meter, fraudsters aim to 

deceive the system and avoid accurate measurement of their 
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actual energy usage. Another method of theft is through 

unregistered connections, where consumers do not report their 

meter readings to the electricity supply company. Direct 

hooking from the mainline of a high transmission line (HTL) 

is another prevalent technique, accounting for 80% of 

worldwide electricity theft. In this method, consumers tap 

directly into the HTL without using the electricity meter panel 

[7]. 

Modifying the meter itself is another way to steal electricity. 

This can involve pressing outer materials into the meter, 

creating holes in the electromechanical meter, using highly 

viscous liquids to reset meter readings, damaging the rotating 

density coil with meter screws, or using solid neodymium 

magnets to disrupt the disk. Electromechanical meters are 

susceptible to tampering using these methods. Additional 

methods of meter modification include inverse meter reading, 

where intruders reverse the actual meter reading. This is 

typically done by opening the protective shield cover of the 

electricity meter. 

These are just a few examples of the different techniques 

used in electricity theft, highlighting the need for effective 

fraud detection and prevention measures to safeguard the 

integrity of the power system [8]. 

 

 
 

Figure 1. Energy consumption fraud methods 

 

2.3 Smart grids fraud methods 

 

In order to prevent electricity theft and reduce losses in 

energy transmission and distribution, certain countries have 

implemented the transformation of their conventional power 

grids into smart grids. This transition not only delves deeper 

into the concept of smart grids but also addresses potential 

fraudulent practices associated with them. 

In a bid to counteract conventional electricity theft 

techniques, numerous nations have undertaken the 

transformation of their conventional grids into smart grids. A 

smart grid can be defined as the utilization of digital 

information technology to optimize the generation, 

distribution, and utilization of electrical power [9]. This term 

encapsulates the integration of communication and control 

functionalities into the traditional grid, comprising 

transmission lines, substations, transformers, and other key 

components responsible for the transmission of electricity 

from power plants to residences and commercial 

establishments [10]. Regrettably, despite the advancement in 

technology, instances of electrical network breaches and 

subsequent electricity theft persist. Upon a thorough 

examination of security concerns surrounding smart grids, 

certain vulnerabilities have been identified that may lead to 

instances of electricity theft [11]: 

·Fraudsters have the capability to manipulate or alter 

meter firmware, enabling complete control over the meter's 

functions. Organized criminal entities exploit firmware 

updates, generating revenue by marketing meter hacking kits. 

However, a more significant apprehension revolves around the 

surreptitious consumption of electricity without triggering 

detection mechanisms. 

·Password exploitation: Smart meters store passwords that 

can be communicated through messages, allowing fraudsters 

to obtain these passwords, thus facilitating non-technical 

losses (NTL) fraud. 

·Man-In-the-Middle (MIM) attacks involve intercepting 

confidential data like network passwords and keys. Such 

attacks occur when an intruder infiltrates communication 

between smart meters or between a smart meter and the head 

end of a smart grid, deceiving them into believing they are 

engaged in direct interaction. 

·Key spoofing involves the illicit acquisition of encryption 

keys for the purpose of decrypting messages or subverting 

authentication processes. This fraudulent activity includes 

extracting keys from smart meters and relies on diverse side-

channel attacks, such as channel timing attacks and cold boot 

attacks. 

 

2.4 Electricity fraud detection impacts and methods 

 

The identification of electricity theft is a pervasive issue 

with serious ramifications that call for better solutions. 

Numerous elements, such as economic inequality, high energy 

costs, and lax law enforcement, have an impact on the 

frequency of electricity theft. These circumstances foster an 

environment where people and businesses turn to illicit means 

of obtaining electricity in order to avoid paying for it. The 

effects of energy theft are vast and include operational, social, 

and financial ramifications. Due to significant financial losses, 

utility firms experience diminished revenue, impaired 

profitability, and a lack of resources for infrastructure 

maintenance and upgrades. In consequence, this may lead to 

recurrent power outages and an unstable energy supply for 

lawful users. Governments also experience a decline in tax 

revenue, which limits their capacity to spend money on public 

services and pursue energy sector changes. Additionally, since 

law-abiding consumers must pay higher prices to cover the 

losses brought on by theft, power theft threatens the justice and 

equity of the energy system. 

Addressing electricity theft detection presents several 

challenges that need to be overcome. Traditional detection 

methods, such as manual inspections, are often inefficient, 

time-consuming, and prone to errors. Perpetrators employ 

sophisticated techniques to bypass detection, making it 

difficult to accurately identify instances of theft. Moreover, 

weak law enforcement, corruption, and societal acceptance of 

theft in some regions further complicate the issue. To tackle 

these challenges, there is a need for better solutions. Advanced 

technologies, such as smart metering, data analytics, and 

machine learning algorithms, hold promise for more accurate 

and efficient detection of theft patterns and anomalies. 

Collaborative efforts among utility companies, governments, 

and regulatory authorities are crucial to strengthen 

enforcement, implement stricter penalties, and raise public 

awareness about the detrimental effects of electricity theft. 
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Additionally, addressing the underlying socioeconomic 

factors that drive theft, such as economic inequality and high 

energy costs, can contribute to long-term solutions. By 

developing comprehensive strategies that combine 

technological advancements, robust enforcement, and social 

interventions, stakeholders can work together to mitigate 

electricity theft, protect revenue, and ensure reliable and 

equitable energy distribution. Long-term solutions can also be 

aided by tackling the underlying socioeconomic issues, such 

as economic inequality and high energy costs, that motivate 

theft. Stakeholders can collaborate to reduce electricity theft, 

protect income, and guarantee dependable and equitable 

energy distribution by adopting comprehensive solutions that 

integrate technology developments, strict enforcement, and 

social interventions. 

The present techniques for Non-Technical Loss (NTL) 

detection can be classified as follows: 

·Hardware-Based Solutions: Approaches reliant on the 

creation and design of devices aimed at detecting and 

estimating fraudulent activities [12]. 

The implementation of options such as meter reversal and 

disconnection offers the advantage of completely eradicating 

theft. Additionally, advanced systems provide the capability to 

detect non-technical losses (NTLs) both at the meter and 

within the network, improving overall efficiency. Moreover, 

these systems enable the identification of various NTLs 

throughout the grid. However, there are disadvantages to 

consider, such as the high cost associated with installing 

hardware in numerous households and the financial burden of 

equipment expenses. Furthermore, the effectiveness of anti-

theft measures heavily relies on the availability and integration 

of smart metering systems. 

·This approach is centered around identifying alternatives 

to hardware-based methods, which are often impractical for 

numerous Power Distribution Companies (PDCs), especially 

those in underdeveloped nations where creating new 

infrastructure can be cost-prohibitive. The proposed solution 

involves utilizing software-based classification techniques to 

determine and estimate the existence of Non-Technical Losses 

(NTLs) based on analysis of consumers' electricity 

consumption data [12]. 

 

 

3. LITERATURE REVIEW 

 

This section will examine previous studies that have utilized 

various machine learning and deep learning techniques to 

develop systems for detecting fraudulent behavior among 

smart grid customers: 

 

3.1 Machine learning-based works  

 

Nagi et al. [13] employed Support Vector Machines (SVMs) 

to evaluate fraudulent activities within a power grid. The study 

utilized historical customer data extracted from TNBD's 

electronic Customer Information Billing System (e-CIBS), 

encompassing a dataset of 265,870 customers spanning 25 

months. The researchers constructed an SVM classifier, 

training it with 330 profiles representing legitimate usage 

patterns and 53 profiles associated with fraudulent activities. 

This training yielded an accuracy of 86.43%. 

In the realm of fraud detection, various supervised learning 

algorithms, including K-Nearest Neighbors (KNN), Logistic 

Regression, Support Vector Machines (SVMs), and Extreme 

Gradient Boosted Trees (XGBoost), were applied [14]. 

Testing was conducted on real data from Spain's prominent 

distribution company, Endesa, yielding an impressive 91% 

Area Under the Curve (AUC) score through the employment 

of the XGBoost classifier. 

Pereira and Saraiva [15] compared various data balancing 

techniques, including cost-sensitive learning, random 

undersampling, random oversampling, K-Medoids-based 

undersampling, SMOTE, and Cluster-Based Oversampling 

(CBOS). Machine learning techniques like Logistic 

Regression, Random Forest, SVMs, and ANNs were 

employed to detect power theft. 

 

3.2 Neural networks and deep learning based works 

 

Ford et al. [16] utilized Artificial Neural Networks (ANNs) 

to identify fraudulent activity within the smart grid. Their 

study consisted of two main phases. Initially, they trained the 

neural network using energy consumption data from the 

European Central Bank (ECB). Next, they developed a model 

simulating a scenario where a malevolent actor tampered with 

a smart meter, causing temporary disruptions in readings. 

Their findings demonstrated an accuracy of 84.37%. 

Costa et al. [17] introduced a method for identifying energy 

fraud via a multilayer perceptron. Their research harnessed 

data from a Brazilian electric power distribution firm 

encompassing over seven million consumers. Their outcomes 

indicated an accuracy of 87.17%, precision of 65%, and recall 

of 29.5%. 

A CNN and LSTM based strategy for detecting electricity 

theft was proposed [5]. To address data gaps, the authors 

devised an inventive data preparation algorithm founded on 

local values. Results showcased an F1-score of 94%, accuracy 

of 89%, precision of 92%, and recall of 96%. 

In the context of electricity fraud identification, Rouzbahani 

Aldegheishem et al. [18] proposed two distinct models. The 

initial model employed Synthetic Minority Oversampling 

Technique (SMOTE) and processed nearest neighbor 

algorithm for data balance while leveraging AlexNet for 

dimensionality reduction and feature extraction. Light 

Gradient Boosting served as the classification algorithm, 

achieving an AUC of 90.6%. The second model employed a 

Generative Adversarial Network (GAN) with gradient penalty 

and utilized GooLeNet for dimensionality reduction, with 

adaptive boosting as the classification algorithm. This model 

excelled, attaining an AUC of 96%. 

A methodology combining CNN and Bidirectional Gated 

Recurrent Unit (BiGRU) was put forth [19], using data from a 

Colombian electric provider. The reported accuracy, precision, 

recall, and AUC values were 92.9%, 88.5%, and 96.6% 

respectively. 

To address data imbalance in the SGCC dataset, authors [20] 

proposed a strategy involving random bagging to create 

balanced subsets. A model composed of nine deep CNNs with 

a voting system achieved a precision of 90%, recall of 91%, 

and accuracy of 89%. 

Based on the cited works, it can be observed that studies 

utilizing simple machine learning algorithms have generally 

achieved lower accuracy compared to those employing more 

complex architectures based on deep learning approaches. The 

use of deep learning techniques allows for the extraction of 

intricate patterns and features from the data, leading to 

improved performance in electricity theft detection. However, 

it is important to note that even with deep learning models, 
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additional techniques are often required to address the 

challenge of imbalanced data.  

In summary, the works cited above suggest that utilizing 

complex deep learning architectures can improve accuracy in 

electricity theft detection compared to simple machine 

learning algorithms. However, it is necessary to employ 

additional techniques to tackle the challenge of imbalanced 

data and ensure robust and reliable detection performance. 

By leveraging the inherent capabilities of CNNs in 

extracting spatial and temporal features from data, our 

approach successfully overcomes the challenges associated 

with imbalanced data. The CNN architecture's capacity to 

learn and represent intricate patterns within the data likely 

contributes to its ability to achieve higher accuracy in 

electricity theft detection. While our approach does not 

incorporate additional techniques tailored for imbalanced data, 

it is worth exploring the potential benefits of integrating such 

techniques to further enhance the performance and robustness 

of the model in scenarios with varying degrees of data 

imbalance. 

 

 

4. PROPOSED METHODOLOGY 

 

In this study, we introduced a novel approach utilizing 

convolutional neural networks (CNNs) for the purpose of 

identifying instances of electricity theft. The architecture of 

our model is visually represented in Figure 2. 

 

 
 

Figure 2. Schematic representation of the proposed system 

 

Our approach commences with the acquisition of the Smart 

Grid (SG) dataset, which is a one-dimensional dataset 

requiring refinement and filtration for effective training 

suitability. The preprocessed dataset is then partitioned into 

two segments: the training set and testing sets. The training set 

is employed to facilitate the training and construction of 

predictive models using the 1D/2D-CNN algorithms. 

Following the training phase, the derived models are 

subsequently employed to analyze the testing dataset. 

 

4.1 Dataset description 

 

We employed an authentic electricity consumption dataset 

made accessible by the State Grid Corporation of China 

(SGCC) [3]. The dataset encompasses electricity consumption 

records for 42,372 customers spanning 1,034 days (from 

January 1, 2014, to October 31, 2016). Among these records, 

approximately 9% (3615 individuals) were identified as 

engaging in fraudulent activities (refer to Table 1). 

To prepare the dataset for analysis, we conducted cleaning, 

filtering, and addressed missing data. 

 

Table 1. Dataset description 

 
 Normal Fraud Total 

Before Cleaning 38757 3615 42372 

After Cleaning 36679 3579 40258 

 

4.2 Preprocessing 

 

Data preprocessing plays a crucial role in enhancing data 

quality, making it more amenable to extracting meaningful 

insights. This phase encompasses a series of tasks, including 

(see Figure 3): 

 

 
 

Figure 3. Preprocessing phase 

 

·Removing Null Rows: Within the SGCC dataset, certain 

entries are found to be empty. Consequently, a decision was 

made to eliminate these rows, resulting in the removal of 2,114 

rows during this process (refer to Table 1). 

· Addressing Missing Values: A significant challenge 

within the SGCC dataset is the presence of missing values. 

Various factors contribute to these gaps, including meter and 

power failures, unscheduled maintenance, sensor damage, and 

cyberattacks [20]. A distinctive contribution of our work 

involves an innovative approach for addressing these gaps in 

the dataset. Our strategy is rooted in the assumption that 

electricity consumption patterns of fraudulent customers 

might exhibit similarities. As a result, we propose categorizing 

the training set into two groups: those involved in fraud and 

those not engaged in fraudulent activities. Subsequently, for 

each consumer category, we employ an approach to impute the 

missing values for each day using the average daily electricity 

consumption. To prevent data leakage, we ensure that the 

averages from the training dataset are employed to fill in the 

missing values in the testing dataset. 

· Data Normalization: Employing data normalization 

enhances the consistency of diverse entities within a data 

model. The data normalization process encompasses multiple 

tasks. Initial focus is on purging any duplicated entries within 

the dataset. Subsequently, emphasis is laid on logically 

structuring the data. The neural network's effectiveness can be 

impacted by the variability of data values. To mitigate this 

concern, dataset normalization becomes essential. Our 

approach involves the utilization of the MAX-MIN scaling 

technique, as described by the following equation: 

 

𝐹(𝑥𝑖) =
𝑥𝑖 −min(𝑥)

max(𝑥) − min(𝑥)
 (1) 
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4.3 Convolutional neural networks learning 

 

Convolutional neural networks (CNNs) are widely utilized 

in various Computer Vision tasks [21], encompassing image 

processing and natural language processing, among others. 

The term "convolution" denotes a mathematical operation that 

combines multiple functions. A traditional CNN architecture 

comprises one or more convolutional layers, followed by a 

pooling layer and a fully connected layer [22]. 

The attributes of CNNs remain consistent across different 

dimensions—be it 1D, 2D, or 3D. These dimensions share 

common traits and methodologies. Nevertheless, the primary 

distinction lies in the input data's dimensionality and the 

manner in which filters, also known as convolution kernels or 

feature extractors, traverse the data. 

Given our focus on the smart grid domain, the available data 

pertains solely to one-dimensional (1D) power consumption 

data, which manifests as sequential data. Our approach centers 

around the use of the 1D-CNN model for identifying 

fraudulent customers. Furthermore, we explore the potential of 

the 2D-CNN model, which converts one-dimensional input 

into a two-dimensional matrix, thereby enabling the 

transformation of data. 

 

4.4 Evaluation metrics 

 

Numerous metrics are available for assessing the 

effectiveness of classification models. The primary method for 

evaluation and validation involves utilizing a confusion matrix. 

This matrix summarizes the performance of the classification 

algorithm, computing the following:  

·True Positives (TP) and True Negatives (TN): Count of 

correctly predicted samples. 

·False Positives (FP) and False Negatives (FN): Count of 

misclassified samples. 

Furthermore, our models were evaluated using metrics 

(defined in Table 2) such as Precision, Recall, F1-score, and 

AUC. 

 

Table 2. Evaluation metrics for classification models 

 
Metric Definition Formula 

Precision 

Assesses the model's 

overall predictive 

performance across 

multiple classes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 

Analyzes the model's 

ability to discover all 

positive individuals. 
Recall =

TP

TP + FN
 

F1-score 

A metric that combines 

precision and recall 

values. 

F1 − score

=
2 ∗ Precision ∗ Recall

Precision + Recall
 

AUC 

AUC stands for Area 

Under the Curve. AUC 

curve represents the 

relationship between false 

positives (FPR) and true 

positives (PR). 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

 

5. RESULTS AND DISCUSSION 

 

We executed various components of this project utilizing 

the Kaggle platform. Additionally, open-source machine-

learning libraries like Tensorflow, Keras, and Pandas were 

leveraged. Our models were compiled with a categorical 

Cross-Entropy Loss Function and an Adam Optimizer. To 

address missing values in the dataset, the SimpleImputer 

function from the sklearn library was applied. The models 

were trained for 100 epochs. 

Validation accuracy assessment was performed using the 

test dataset as a validation set. Throughout the learning phase, 

we preserved the best-performing model that exhibited 

optimal results for consumer class prediction. 

The initial architecture employed (see Figure 4) comprises 

a 1D-CNN design, featuring two convolution layers, a batch 

normalization layer, a fully connected layer, and a dense layer. 

The progression of learning and validation rates is depicted in 

Figure 5. 

 

 
 

Figure 4. Proposed 1D-CNN structure 

 

 
 

Figure 5. 1D-CNN model accuracy evolution 

 

The second CNN model (refer to Figure 6) employed is a 

2D-CNN architecture. In this configuration, we converted our 

1D data into a 2D format, yielding a 33x33 matrix. To ensure 

a column count that is a multiple of 33, we introduced 55 

additional zero columns. Our 2D-CNN model consists of three 

convolution layers, followed by a fully connected layer and a 

dense layer. Figure 7 illustrates the progression of learning and 

validation accuracy rates throughout the training process. 

 

 
 

Figure 6. Proposed 2D-CNN Structure 
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Figure 7. 2D-CNN model accuracy evolution 

 

The confusion matrix is shown in Figure 8 for a 1D-CNN 

model that uses 80% training data. This matrix reveals the 

need for enhanced accuracy in classifying 4 out of 703 

fraudulent customers, while accurately identifying all normal 

customers. Consequently, the recall measure for this model 

stands at 99.42%, with precision reaching 100%. The F1-score 

and AUC measurements register at 99.71%, as detailed in 

Table 2, signifying the model's excellence. 

In contrast, Figure 9 portrays the confusion matrix for the 

2D-CNN model. In this scenario, only two fraudulent 

customers are misclassified, leading to a recall rate of 99.71%, 

precision of 100%, and an F1-score of 99.86%. The AUC 

value, as evidenced in Table 3, nearly reaches one, indicating 

the effectiveness of the 2D-CNN model. 

 

 
 

Figure 8. Confusion matrix evaluating our 1D-CNN model 

 

 
 

Figure 9. Confusion matrix evaluating our 2D-CNN model 

 

The outcomes of the experiments, with adjustments made to 

the training and test set ratios (60:40, 70:30, 80:20, and 90:10), 

are presented in Tables 3 and 4. These tables reveal a slight 

performance advantage of the 1D-CNN-based model (Table 3) 

over the 2D-CNN-based model (Table 4). Notably, altering the 

training set size did not yield any noticeable impact on the 

superior classification prowess exhibited by the proposed 

models. 

 

Table 3. Results achieved by the 1D-CNN model 

 
 90:10 80:20 70:30 60:40 

Accuracy 99.93% 99.95% 99.94% 99.91% 

Recall 99.17% 99.42% 99.44% 99.14% 

Precision 100% 100% 99.90% 99.78% 

F1-score 99.58% 99.63% 99.67% 99.45% 

AUC 99.59% 99.71% 99.71% 99.56% 

 

Table 4. Results attained from the 2D-CNN model 

 
 90:10 80:20 70:30 60:40 

Accuracy 99.93% 99.97% 99.95% 99.93 % 

Recall 99.17% 99.71% 99.44% 99.36% 

Precision 100% 100% 100% 99.79% 

F1-score 99.58% 99.85% 99.72% 99.57% 

AUC 99.58% 99.85% 99.72% 99.67% 

 

Table 5. A contrast with prior research 

 
Approach Recall Precision F1-Score AUC 

2D-CNN 99.44% 100% 99.72% 99.72% 

1D-CNN 99.44% 99.90% 99.67% 99.71% 

EDCNN [19] 91% 90% 89% 99.30% 

CNN-LSTM [5] 91% 87% 89% - 

Wide-deep CNN [3] - 97% - 78.60% 

 

In Table 5, a comparison is drawn between our proposed 

models and prior investigations employing the SGCC dataset 

and a training set ratio of 70%. Notable among these studies 

are Wide and Deep CNN [3], CNN-LSTM [5], and EDCNN 

[19]. The results underscore the superior performance of our 

suggested models in detecting electricity theft, surpassing all 

preceding endeavors. 

 

 

6. CONCLUSIONS AND FUTURE WORKS 

 

The objective of this study was to develop a deep learning-

based classification model to detect fraudulent behavior in 

power usage, with a specific focus on the State Grid 

Corporation of China (SGCC) as a case study. To mitigate 

NTLs, we employed deep convolutional neural networks 

(CNNs) in our models, we proposed a new method, to fill in 

the missing values, based on consumers' behavior. It should be 

noted that this proposal led to an amazing improvement in the 

results obtained. 

The results demonstrated that our CNN models surpassed 

earlier studies discussed, with 2D-CNNs (99.97%) yielding 

more accurate outcomes compared to 1D-CNNs (99.95%). 

Consequently, convolutional neural networks offer interesting 

implications, as they can be applied to identify fraudulent 

energy consumers. Overall, our models exhibited favorable 

classification results. So, our proposed models for electricity 

theft detection have significant real-world applications and 

impact. They empower utility companies to protect their 

revenue streams, allocate resources efficiently, and enhance 

service quality. 

Moving forward, this research aims to explore avenues for 
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improving the model, including the utilization of alternative 

datasets, investigating various deep learning approaches, and 

exploring different preprocessing methods. 
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