
A New Multi-Dimensional Hybrid Deep Neural Network Based Spectrum Inference for 

Cognitive Radio Network 

Mudassar H. Naikwadi1* , Kishor P. Patil2

1 Sinhgad Academy of Engineering, SPPU, Pune & Department of E&TC, N. B. Navale Sinhgad College of Engineering, 

PAHSU, Solapur 413003, India 
2 Department of E&TC, Sinhgad Academy of Engineering, SPPU, Pune 411048, India 

Corresponding Author Email: mudassar.naikwadi.nbnscoe@sinhgad.edu

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.18280/ria.370615 ABSTRACT 

Received: 7 September 2023 

Revised: 20 September 2023 

Accepted: 25 October 2023 

Available online: 27 December 2023 

In wireless communications, cognitive radio (CR) technology has significantly enhanced 

radio spectrum efficiency. Spectrum sensing is a key process in CR along with other major 

functions namely spectrum decision, sharing and mobility. Minimizing the processing 

delays, energy consumption of these functions and enhancing spectrum utilization is a 

major challenge. Spectrum inference has been proposed as a viable solution to overcome 

these problems. Many machine learning-based spectrum inference techniques using 

artificial neural networks (ANNs) and deep neural networks have been proposed in 

literature. In this paper we aimed to determine whether hybrid deep neural network based 

spectrum inference model outperform single model in time and frequency domains for 

spectrum occupancy dataset. Radial basis function (RBF) neural network tend to excel in 

extracting spatial features of spectrum data whereas bidirectional long short-term memory 

(BiLSTM) work very well for temporal dependencies of this data. Spectrum dataset exhibit 

both short-and-long term temporal/spectral dependencies. In this paper we have proposed 

spectrum inference based on a hybrid deep neural network RBF and BiLSTM. The 

proposed algorithm has been simulated using real time spectrum measurement data with 

time dimension ranging from (1 to 7 days), spectral range (0.7 GHz to 2.7 GHz) across 

three geographically varying locations Pune, Solapur and Kalaburagi in India. Hybrid deep 

neural network integration of RBF and BiLSTM is built, tested and compared with single 

models LSTM, BiLSTM for accuracy and speed. The hybrid method has outperformed 

single models to achieve Precision, Recall, F1 scores of 0.9959, 0.9575, 0.9763 respectively 

and training time improvement of 57.60% for GSM and whole band in frequency and time 

dimensions. 
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1. INTRODUCTION

Wireless communication is a vital means of communication. 

It uses radio spectrum which is a limited natural resource. Due 

to exponential growth in wireless services and applications 

spectrum has become scarce. Studies have also reported 

inefficient spectrum management due to static allocation 

policies. To overcome this dynamic spectrum access has been 

proposed as solution. Cognitive Radio (CR) is an enabling 

technology for dynamic spectrum access. It is an intelligent 

radio which efficiently manages spectrum between primary 

user and secondary users [1]. 

CRs exhibit four major functions spectrum sensing, 

spectrum decision, spectrum sharing and spectrum mobility 

[2]. Spectrum sensing is at the core of these four functions to 

determine unused vacant bands. However, the available 

spectrum sensing techniques hinder CR performance due to 

inevitable sensing time delays, high energy consumption and 

slow speed. To overcome these deficiencies spectrum 

inference has been proposed as novel technique to predict 

unused bands using historical spectrum occupancy data. It has 

become popular amongst researchers due to its pro activeness 

and widening of sensing scope in different bands across 

different locations [3]. 

Machine learning and deep learning algorithms based on 

artificial neural networks (ANN) are being employed for 

implementing spectrum inference in CRs. Multi-Layer 

Perceptron (MLP), Radial Basis Function (RBF), Long Short 

Term Memory (LSTM) have been used for implementing 

spectrum inference. 6G CRNs major emphasis is on 

intelligence and spectrum inference compliments this 

approach. It is a realm where communication meets Artificial 

Intelligence (AI). Machine learning techniques applied to 

cognitive radios have been detailed by Bkassinyin et al. [4]. 

Arivudainambi et al. [5] have reported enhanced prediction 

accuracy and decrease in sensing time with spectrum inference 

using ML technique. Classical statistical occupancy prediction 

and ML based spectrum occupancy prediction has been 

detailed by Eltom et al. [6] Supervised and unsupervised ML 

algorithms for spectrum occupancy prediction have been 

analyzed by Azmat et al. [7]. 

Shrestha and Mahmood [8] have presented a comprehensive 
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review of deep learning architectures, trainings, issues and 

implementations. Yu et al. [9] proposed spectrum prediction 

LSTM model validated by real-world spectrum dataset with 

taguchi method. Aygul et al. [10] has proposed composite 2D 

LSTM model for spectrum inference by harnessing 

correlations in the measured data. Siami-Namini et al. [11] has 

compared the performance and behavioral analysis of LSTM 

and BiLSTM and reported better predictions compared to 

LSTMs by almost 38% error rate reduction. A hybrid approach 

combining ANNs and deep neural networks has been 

employed in many fields. Hybrid approach has been employed 

by Fathi et al. [12] for stock price prediction. Riyaz et al. [13] 

has developed a deep neural network prediction model for 

heart disease with a novel ensemble technique. Kowsher et al. 

[14] deeply integrated BiLSTM-ANN and LSTM-ANN and 

reported performance improvements than single BiLSTM, 

LSTM and ANN models. Patil and Adhiya [15] have 

addressed automated evaluation of short descriptive answers 

using Siamese stacked BiLSTM model. Wang et al. [16] has 

proposed long short-term memory time forecasting with back 

propagation method and has reported 1% to 2% rise in 

prediction accuracy compared to LSTM. 

In this study the dataset is a complex time series featuring 

different telecommunication bands and has both short as well 

as long term dependencies. RBFN networks have capability to 

model complex nonlinear data, in high dimensional data with 

good degree of accuracy. It also achieves fast inference with 

fast training as radial basis function simplifies computations. 

BiLSTM networks work well for data with complex 

dependencies over long intervals. It employs dual training for 

better extraction of context in data. Combining RBFN and 

BiLSTM can help model temporal, spectral dependencies and 

nonlinear patterns collectively in our dataset. Since RBFNs 

excel in meaningful extraction of features of complex data and 

BiLSTMs effectively capture context and dynamicity in 

dataset. Hence these advantages complement each other for a 

comprehensive learning and can deliver benefits of accurate 

fast prediction for spectrum dataset. So a hybrid model 

combining these two networks has been chosen for research in 

this paper.Hybrid deep neural network model can significantly 

enhance cognitive capability and adaptability of 6G CRNs. 

Especially in spectrum inference this approach can lead to 

increase in spectrum awareness, optimal decisions for 

spectrum access, better optimization of network parameters. 

This can lead to overall improvements in efficiency, reliability, 

security and capabilities of 6G CRNs. 

To our knowledge till now nobody has investigated the use 

of RBF with BiLSTM for spectrum occupancy dataset. Major 

research questions to be addressed included: 

·Does RBF neural network model outperform MLP neural 

network in terms of prediction accuracy for time and 

frequency dimensions of spectrum data? 

·If yes, then can hybridization of RBF with either LSTM 

or BiLSTM further enhance accuracy over existing techniques? 

·Can this model deliver enhanced prediction accuracy 

with high speed? 

In this paper we have tried to address these research 

questions by conducting several simulation experiments on 

real world spectrum occupancy dataset we have measured in 

our previous spectrum measurement campaigns detailed in the 

study [17] and validated the results for performance evaluation 

with existing techniques proposed in literature. Our major 

contributions include: 

·We have designed and developed a multi-dimensional 

hybrid approach/algorithm by combining RBF and BiLSTM 

deep neural networks.  

·The developed algorithm has been tested and validated 

against standalone techniques using a real world dataset in 

frequency range (0.7GHz to 3GHz) captured across three 

different sites with varying teledensity and durations ranging 

from 1 to 7 days. The time span under consideration 

encompasses variations like holiday and busy working days 

telecom traffic. 

·We have investigated both GSM band and entire wide 

band in both time and frequency dimensions to validate the 

results of developed algorithm with existing ones and found 

that our algorithms outperforms the performance in terms of 

enhanced prediction accuracy and improved speed. 

The rest part of paper has been presented as, Section 2 

discusses the system modeling and the algorithms employed. 

Here we outline and define the performance metrics used for 

evaluation. Section 3 discusses the proposed methodology for 

spectrum prediction analysis of GSM band and entire band in 

both time and frequency dimensions. Section 4 we present the 

results followed by performance evaluation and comparison 

with existing techniques. Section 5 presents the conclusion 

with future directions in this research. 
 

 

2. SYSTEM MODELING AND METHODOLOGY 
 

2.1 System model 
 

In this paper we have used real time spectrum dataset 

collected from our previous spectrum measurement campaigns. 

This dataset features radio signal power spectral density values 

measured in dBm at frequency resolution of 200 KHz from 

700 MHz to 2.7 GHz. This interval of 200 KHz represents a 

channel, collection of all such channels for a telecom service 

represent a band. After data pre processing we first convert the 

signal power data in time/frequency domain to a binary 

occupancy matrix using thresholding technique described in 

the study [17, 18]. This matrix is used to compute band wise 

spectrum occupancy.  

In spectrum inference, spectrum occupancy states are 

predicted over frequency range based on the measured 

occupancy data in time and frequency domain. Each measured 

frequency point is considered to be representing a frequency 

channel with busy and free channel state given by following 

hypothesis Eq. (1): 

 

𝑦 = {
𝑛, ℋ0 ∶  𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑠 𝑓𝑟𝑒𝑒

𝐻𝑥 + 𝑛, ℋ1 ∶  𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑
 (1) 

 

where, x denotes transmitted signal, 𝑛 represents noise, 

ℋ represents channel matrix and 𝑦 denotes received signal. 

Let Ot(k),f(n) represent multi-dimensional spectrum 

occupancy of telecommunication bands in two dimensions 

with time instant t(k) and frequency f(n). Following Eq. (2), 

shows hypothesis for classifying a channel band as occupied 

and free using real time measured Power Spectral Density 

(PSD) Pγ value in dBm and comparing with the decision 

threshold γ: 

 

𝑂𝑡(𝑘),𝑓(𝑛) = {
0, 𝑃𝛾 < 𝛾

1, 𝑃𝛾 > 𝛾
 (2) 

Eq. (3) shows calculation of average occupancy of each 

spectrum band, N is the total number of the measured 
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frequencies in complete band, K denotes the number of 

corresponding time samples at this frequency: 

𝑂 =
1

𝐾𝑁
∑ ∑ 𝑂𝑡(𝑘),𝑓(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

(3) 

The dataset generated is a multi-dimensional 

time/frequency occupancy matrix [18]. This data exhibits 

temporal and spectral correlation. Study has revealed short 

term dependency in terms of channel vacancy durations and 

long-term dependencies with respect to service rate 

congestions [17]. These features can be used with the dataset 

for training, testing and validating machine learning, deep 

learning and hybrid deep learning models for inferring 

spectrum. 

2.2 Artificial neural network based machine learning 

models 

Multi-layer Perceptron (MLP) artificial neural networks 

employ single input/output layer and multiple hidden layers. It 

uses activation functions like sigmoid, tanh (hyperbolic 

tangent function) tanh, ReLU (Rectified Linear Unit) to learn 

complex patterns in the data. It uses back propagation 

algorithm and adjusts its weights and biases for error 

minimization via gradient descent. It has a complex structure 

and is difficult to interpret due to large number of parameters 

involved. It can suffer over fitting easily when handling high 

dimensional spectrum data and becomes computationally 

expensive when dealing with large datasets like spectrum data. 

2.2.1 Radial basis function neural network (RBFNN) 

RBF neural networks are feed forward neural networks in 

structure same as MLP network. It has only one hidden layer 

as shown in Figure 1. This hidden layer forms the feature 

vector. A non-linear transfer function called radial basis is 

applied to the feature vector to increase dimension before 

being fed for classification.As shown in Figure 1, nodes of 

hidden layer do radial basis transformation. Here hidden layer 

outputs are linearly combined with hidden layer outputs to 

generate final output value. The neural activation function for 

RBFNN is given by Eq. (4): 

𝝋(𝒙) = 𝒆−𝜷‖𝒙−𝒄𝒊‖𝟐
(4) 

where, 𝛽 =
1

2𝜎𝑗
2. 

Figure 1. Structure of radial basis function neural network 

where, ‖. ‖ is the Euclidean norm, c denotes center and σ is a 

width parameter. The output of a node k of the output layer is 

given by Eq. (5): 

𝑦𝑘 = ∑ 𝑤𝑗𝑘𝜑𝑗(𝑥)

𝑛

𝑗=1

(5) 

where normally, Least Mean Square (LMS) algorithm is 

employed for error minimization by continuous updating 

weights. Network training is terminated when error condition 

meets decision threshold criteria. Testing and validation of 

network is then done for newly updated weights.  

RBF networks have been chosen for this study since they 

tend to be effective in dealing with dataset where data points 

tend to cluster around a center point. In spectrum data the 

occupancy tends to cluster in downlink, uplink and center 

frequencies. RBF networks tend to generalize better and 

quickly due to their abilities to focus around local clusters. 

This is an added advantage which makes them less susceptible 

to over fitting. In RBF networks initially numbers of radial 

basis functions are determined with their corresponding 

centers. In this case clustering algorithm like k-means may be 

used. The next step is to measure closeness of input data with 

the established center. This is done using a gaussian activation 

radial basis function. Here weights are determined using least 

square estimation or gradient descent. Training includes 

optimization of centers, widths of radial basis functions and 

weights.  

2.2.2 LSTM neural network 

LSTM based on Recurrent Neural Network (RNN) 

architecture deals excellently with data which is temporally 

correlated; it cannot handle long term time dependency in 

practice. Basic LSTM cell unit comprises of three gates 

namely input (i), output (o) and forget (f). These gates have 

control over what is being read, written and stored in the cell 

unit. Additionally candidate cell unit (g) is used to add 

information to cell. An LSTM layer has an output state (called 

hidden state) and intermediate cell state. LSTM cell unit 

shown in Figure 2 retains information from past states. At 

every time step LSTM layer adds or deletes information using 

gates. In this way long-term dependencies amongst different 

time steps are learned for time series or sequence data. 

Different weights involved in learning include W (Input 

Weights), R (Recurrent Weights) and b (Bias). 

W = 

o

g

f

i

W

W

W

W

, R = 

o

g

f

i

R

R

R

R

, b = 

o

g

f

i

b

b

b

b

, 

For every time step t cell state is given by Eq. (6): 

ct=ft⊙ct−1+it⊙gt (6) 

where, ⊙ being the Hadamard product. 

For time step t the hidden state is given by Eq. (7): 

ht=ot⊙σc(ct) (7) 

where, σc is the state activation function normally hyperbolic 

tangent function (tanh). 

The formulae’s used for computation at different gates are 

shown in Table 1. 
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Figure 2. LSTM cell unit 

Table 1. Mathematical formulae for computation at gates 

Component Formula 

Input gate it=σg(Wi xt+Ri ht −1+bi)

Forget gate ft=σg(Wf xt+Rf ht−1+bf)

Cell candidate gt=σc(Wg xt+Rght−1+bg)

Output gate ot=σg(Woxt+Roht−1+bo)

where, σg is gate activation function normally sigmoid 

function 𝜑(𝑥) =
1

1+𝑒−𝑥. 

2.2.3 BiLSTM neural network 

Individual ANNs like MLP and RBF are prone to vanishing 

gradient problems when subjected to long sequential data. 

They are inefficient to capture long term dependencies. To 

overcome this LSTM/BiLSTM networks are particularly 

designed to learn from long sequence data. They have memory 

cell gate units to remember long term dependencies and forget 

gate mechanism to discard redundant information. This 

mechanism of selectively remembering and discarding 

information makes these networks efficient for long datasets 

like spectrum data.  MLP and RBF are suitable for dataset 

where data points are independent of each other but in case of 

spectrum dataset where data is sequential a recurrent neural 

network like LSTM and BiLSTM can offer better results. With 

this intuition these deep neural networks have been 

investigated for their performance for spectrum dataset. 

Figure 3. BiLSTM network 

Better training can beachievedin Bidirectional LSTM 

(BiLSTM) model by two way information flow one from past 

and another from future. The immediate advantage of such 

capability is additional training to enhance prediction accuracy. 

In Figure 3, a model structure for BiLSTM is shown with 

different layers and Input/Output. 

2.3 Methodology 

2.3.1 Proposed methodology 

ANNs excel in extracting spatial features of data whereas 

RNN work very well for temporal dependencies. A hybrid 

approach thus tends to learn more information and has a better 

representation. ANNs can generalize data patterns effectively 

and RNNs can extract contextual information in long 

sequential data. The spectrum dataset has short term 

dependencies given by channel vacancy durations and have 

long term dependencies across locations, services given by 

service congestion rates [17]. In this work the hybridization of 

ANN and RNN is being motivated by intrinsic characteristics 

of data dependencies in spectrum dataset both short term and 

long term. Our research questions are aimed at determining 

whether it is possible to produce hybrid models that 

outperform single models with different domains and types of 

datasets.  

LSTM and BiLSTM are proven algorithms in many 

applications domains. Here we investigate use of a hybrid 

model based on these networks for spectrum occupancy 

inference. We have investigated deep integration of two major 

recurrent neural networks namely LSTM and BiLSTM to 

build a hybrid model with RBF. In our proposed model Hybrid 

RBF-BiLSTM (Hyb R-BiLSTM) has been further analyzed to 

investigate its competitiveness with existing classical neural 

networks MLP, RBF, HNN and deep neural networks LSTM, 

BiLSTM, Hybrid MLP-LSTM (Hyb M-LSTM) and Hybrid 

MLP-BiLSTM (Hyb M-BiLSTM). The proposed 

methodology is as illustrated in Figure 4. 

Figure 4. Methodology of the proposed Hybrid model 

Figure 5. Hybrid R-BiLSTM based spectrum occupancy 

prediction model architecture 

In order to hybridize two different neural network 

architectures we use a Flatten mechanism to convert the 

MLP/RBF output to a single featured vector data to be 

processed by fully connected layer of LSTM/BiLSTM. This 

mechanism basically reshapes the data vectors to match the 

mini batch dimensions of underlying layers. The evaluation 

metrices under consideration includes F1 score, RMSE (Root 

Mean Square Error), Recall and Precision. This proposed 

Hybrid R-BiLSTM based spectrum occupancy prediction 

model architecture is as seen in Figure 5. 
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The detail steps for predicting future spectrum occupancy 

states in time and frequency dimensions are outlined in the 

proposed algorithms. In the first algorithm we train our model 

with RBFNN model as the first step and then combine the 

result in second algorithm with Hybrid BiLSTM based 

prediction. 

 

2.3.2 Proposed algorithms 

Algorithm 1: To design a radial basis function network for 

spectrum inference in cognitive radio network 

Input: Historical spectrum occupancy data in time and 

frequency dimensions with feature vectors 

Output: RBFN neural network 

Load dataset with feature vectors frequency wise 

1. Initialize design parameters for two layer Radial basis 

network (RBFN) model 

2. Select inputs  

a. XP-by-Q matrix for the input N vectors 

b. VR-by-S matrix of M vectors as targets 

3. Set MSE (mean square error) as design goal 

4. Add neurons in steps to radial basis network’s hidden 

layer and compute MSE and evaluate the set goal. 

5. Set second parameter ‘spread’ for radial basis 

function 

RBFN Simulation steps 

1. Set ‘radbas’ neurons for first layer 

2. Calculate weights ‘dist’ and ‘netprod’ for net input 

3. Set purelin neurons for second layer 

4. Calculate ‘dotprod’ for weighted input and ‘netsum’ 

for net inputs 

a. do while (input vector has high error) 

i. add radbas neuron to vector with 

corresponding weights 

ii. update ‘purelin’ layer weights such 

that error is minimum 

b. Return (new radial basis network) 

c. end 

5. Save RBFN network 

 

Algorithm 2: To design a hybrid RBFN based BiLSTM 

network for spectrum inference in cognitive radio network  

Input: Historical spectrum occupancy data in time and 

frequency dimensions with feature vectors 

Output: Predicted spectrum occupancy states 

Start 

#Import predesigned RBFN network from Algorithm 1 

1. Initialize 

2. Load RBFN designed network 

3. Assign inputs xdata1 data1 and target data2 

4. Simulate the specified model RBFN using existing 

model configuration parameters 

#Database creation 

1. Create Database with feature vectors and target 

vector. 

2. Initialize Sequence Length to create dataset input for 

BiLSTM model 

3. Create a Hybrid Database by combining feature 

vectors from input dataset feature file and targets 

from simulated RBFN network model as per 

Sequence Length. 

4. Flatten the data input of RBFNN to compact it with 

HybridInput 

5. Initialize ResultDatabase to Hybrid Database 

6. Select training & testing samples from Hybrid 

Database as per training & testing sample ratio. 

a. resTrainFeature vector inputs from 

Hybrid Database 

b. occTrainTarget output from Hybrid 

Database 

#Training 

1. Initialize learning parameters for Hybrid R-BiLSTM 

network 

a. set numFeatures no. of feature vectors 

b. set numHiddenUnitsno. of hidden layers  

c. set numResponse occupancy 

2. set MaxEpoch maximum no. of iterations 

3. set miniBatchSize no. of observations for each 

iteration 

4. Initialize different layers of deep neural network 

a. sequenceInputLayer with numFeatures 

b. BiLSTM layer with numHiddenUnit 

5. fullyConnectedLayer 

6. regressionLayer 

7. Set options for training the network  

8. Choose appropriate solver (optimizer) for training 

network ‘adam’ 

9. Set the ExecutionEnvironment 

10. Turn on Plots and training-progress 

11. Train HybridDeepNeuralNetwork model for 

regression with  

a. occTrain time series predictors  

b. restrain  responses 

12. Save HybridDeepNeuralNetwork model as 

HybRBiLSTM net 

#Testing 

1. Initialize   

a. occTest target samples form Database 

b. resTesttesting samples from 

ResultDatabase 

2. Predict responses YPred using the trained 

HybridDeepNeuralNetwork model and update the 

network            

3. Stop 

#Error & Accuracy Performance Analysis 

1. Compute error e = (resTest-YPred) 

2. Compute all network performance functions of the 

designed network 

a. Mean of Squared Errors 

b. Mean of Absolute Errors 

c. Root of Mean of Squared Errors 

3. Compute network performance accuracy of the 

designed network with confusion matrix as a metric 

to evaluate precision, accuracy and F1-score 

Stop 

 

2.3.3 Performance metrics for evaluation and comparison 

Confusion matrix is used here for quantifying accuracy with 

performance metrics f1-score, precision and recall. To 

compare error performance following metrics given by Eqs. 

(8-10) have been computed. 

Mean Absolute Error (MAE): 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦 − �̂�|

𝑠𝑢𝑚

 (8) 

 

where, y is true output value and �̂� is predicted output value. 

Mean Square Error (MSE): 
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𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

(9) 

Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

(10) 

3. RESULTS AND DISCUSSION

3.1 Dataset generation 

3.1.1 Measurement locations and set up 

Our spectrum measurement setup comprised of a discone 

antenna (AOR DA5000), Rohde & Schwarz R&S FSH3 

spectrum analyzer and data processing/analysis machine 

(laptop/PC). Our dataset comprises of spectrum occupancy 

information measured as Power Spectral Density (PSD) values 

in dBm across time (ranging from 24 hours to 7 days) and 

frequency dimensions (0.7 GHz to 2.7 GHz/200KHz 

resolution) measured across three geographically varying 

locations (Pune, Solapur, Kalaburagi in India). We intend to 

cover all telecommunication bands (GSM900, GSM1800, 

IMT-3G, LTE (2100, 2300)), broadcasting and wireless 

services, Broadband Wireless Access (BWA), ISM band etc. 

Out of the entire dataset 70% has been used for training, 20% 

for testing and 10% for validation of model. 

Figure 6. MLP network 

3.1.2 Noise thresholding 

The noise measurements for threshold calculations were 

carried out for 2 hours with 50Ω matching load termination. 

Three popular decision thresholding techniques in literature 

namely Max Noise, m-dB and PFA noise. After doing 

competitive analysis of these three techniques PFA 

thresholding with 1% probability of false alarm setting was 

selected as threshold viz -91.343dBm, -91.903dBm and -

91.616dBm respectively for Pune, Solapur and Kalaburagi. 

3.2 ANN based spectrum occupancy prediction 

3.2.1 Design of MLP, RBFNN and HNN neural networks 

Initially we have used artificial neural networks namely 

MLP, RBF and HNN (Hybrid Neural Network) for spectrum 

occupancy prediction [19]. The designed neural networks have 

been depicted in Figures 6, 7 and 8. 

Figure 7. RBF network 

Figure 8. Hybrid neural network 

The model parameters under considered for spectrum 

prediction as shown in Table 2. 

Table 2. Simulation parameters 

Parameter Value 

No. of neurons in first layer 10 

No. of neurons in the second layer 05 

No. of hidden layers 02 

Learning function Resilient backpropagation 

Learning rate 0.01 

No. of epochs 1000 

Achievable goal 1e-2 

Minimum gradient 0.000001 

Performance function RMSE 

3.2.2 ANN performance analysis 

The error performance comparison of three networks has 

been summarized in Tables 3 and 4 above. RBF Neural 

Network shows best performance than MLP and Hybrid 

Neural Network. The analysis of network performance has 

been performed by confusion matrix using True positives (TP), 

True negatives (TN), False Positives (FP) and False Negatives 

(FN) values 

Table 3. Performance comparison of MLP, RBF and HNN neural networks 

Parameter MLP RBF HNN 

No of neurons in first layer 10 88 10 

No of neurons in second layer 5 1 5 

No of neurons in third layer -- -- 1 

No of hidden layers 2 2 3 

Accuracy 75.78% 100.00% 84.61% 

Table 4. Confusion matrix for MLP and RBF neural networks 
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 MLP RBF HNN 

Actual Predicted Predicted Predicted Predicted 

Busy Idle Busy Idle Busy Idle 

Busy 251 

(TP) 

84 

(FN) 

252 

(TP) 

0 

(FN) 

252 

(TP) 

54 

(FN) 

Idle 1 

(FP) 

15 

(TN) 

0 

(FP) 

99 

(TN) 

0 

(FP) 

45 

(TN) 

The performance evaluation metrics pecision (π), recall (ψ) 

and F1- score are defined as follows: 

 

𝜋 =
𝜉

𝜉+ 𝜐
, 𝜓 =

𝜉

𝜉+ 𝜇
, 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×

𝜋×𝜓

𝜋+𝜓
 

 

here, ξ (true positive), υ (false positive) and μ (false negative). 

Major performance metrics precision, recall and F1 score have 

been computed and listed in Table 5. Thus RBFNN has the 

best performance with all scores reaching the best values as 

seen in Figure 9. 

 

1) Precision (π)=
𝑇𝑃

𝑇𝑃+𝐹𝑃
= 0.996,1,1 

2) Recall (ψ)=
𝑇𝑃

𝑇𝑃+𝐹𝑁
= 0.7492,1,0.8253 

3) F1- score= 2 ×
𝜋×𝜓

𝜋+𝜓
= 0.8551,1,0.9043 

 

Table 5. Performance metrics for ANNs 

 
Sr. No Parameter MLP RBF HNN 

1 Precision (π) 0.996 1 1 

2 Recall (ψ) 0.7492 1 0.8253 

3 F1- score   0.8551 1 0.9043 

 

Error Performance graphs in Figures 10-11 and error 

computations Table 6 clearly depict that RBF Neural 

Networks outperform MLP and HNN for both time and 

frequency wise GSM 900 band prediction. These results 

motivate us to incorporate RBFNN as a hybrid component for 

proposed Hybrid Deep Neural Network based prediction.

 

Table 6. Performance metrics for ANNs 
 

ANN Technique 

GSM 900 Band (890MHz to 960MHz) 

Frequency Dimension Time Dimension 

MSE MAE RMSE MSE MAE RMSE 

MLP 0.0808 0.17 5.3241 0.0047 0.0654 2.3384 

RBF 9.56E-06 0.0011 0.0579 9.96E-06 0.0019 0.1075 

HNN 0.5201 0.6665 13.5116 0.0033 0.0532 1.9677 

 
 

Figure 9. Performance comparison of ANN networks 

 

 
 

Figure 10. MSE and MAE performance of ANNs 

3.3 Hybrid deep neural network based prediction 

 

3.3.1 LSTM and BiLSTM based prediction 

 

 
 

Figure 11. RMSE performance of ANNs 
 

Table 7. Simulation parameters 

 
Parameter Value 

No. of features 03 

No. of Hidden Units 100 

Response variable 01 

Optimizer function ‘adam’ 

Learning rate 0.001 

Maximum epochs 50 

Performance function RMSE 

Minimum batch size 5 

Execution environment cpu 
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The described data set is now used for training and testing 

an LSTM and BiLSTM networks. For training and validation 

of network the model parameters considered for hybrid deep 

neural network based spectrum prediction are as shown in 

Table 7. 

 

3.3.2 Spectrum occupancy prediction 

Both signal power and band occupancy can be predicted 

with LSTM/BiLSTM neural network predictor. Figure 12 

shows plots of occupancy (duty cycle) being plotted against 

GSM900 band frequency range 890 MHz to 960 MHz. Here 

spectrum occupancy plot of the measured data is compared 

and plotted with the predicted data. The trained model is saved 

and used for prediction of future signal strengths and 

occupancy. The predicted signal strengths and occupancy of 

GSM 900 band at Kondhwa, Pune. 

 

3.3.3 Hybrid R-LSTM and Hybrid R-BiLSTM based 

prediction 

The same data set is now used for training and testing 

proposed hybrid models Hybrid R-LSTM and Hybrid R-

BiLSTM. The results in Figure 13 indicate far more 

improvement in prediction accuracy. This model combines the 

advantage of high prediction accuracy of RBFNN after 

integration with BiLSTM model known for its high prediction 

accuracy due to forward and backward training capability. 

 

 
 

Figure 12. LSTM and BiLSTM GSM900 band occupancy 

prediction 

 

3.3.4 Network performance analysis 

Initially out of total 320 spectrum data points there are 71 

Idle (unoccupied) states and 249 Busy (occupied) states for 

GSM900 band data at Kondhwa Pune location. Using this data 

confusion matrix in Table 8 is computed for spectrum 

occupancy data. The sequence length taken into consideration 

is 31. 

 
 

Figure 13. Hyb R-LSTM and Hyb R-BiLSTM spectrum 

occupancy prediction 

 

The performance metrics are tabulated in Table 9 and 

plotted in Figure 14 below. 

 

 
 

Figure 14. Performance comparison of hybrid networks 

 

3.3.5 Error performance evaluation and comparison 

The error performance comparison of proposed models has 

been summarized in Table 10. The proposed Hybrid RBF-

BiLSTM Neural Network outperforms all other models for 

both GSM band and Whole band considering time as well as 

frequency dimension wise predictions. The results have been 

illustrated graphically in Figures 15-17. Finally the training 

time in Table 11 and comparison plot Figure 18 depicts 

improvement in computational speed with the proposed Hyb 

R-BiLSTM model requiring relatively low training time 

compared to classical LSTM and BiLSTM with approximately 

57% improvement in computation speed. 

 

Table 8. Confusion matrix for LSTM neural networks 

 
Channel 

State/Network 

LSTM BiLSTM Hybrid R-LSTM Hybrid R-BiLSTM 

Busy Idle Busy Idle Busy Idle Busy Idle 

Busy 249 

(TP) 

68 

(FN) 

249 

(TP) 

55 

(FN) 

246 

(TP) 

17 

(FN) 

248 

(TP) 

11 

(FN) 

Idle 0 

(FP) 

3 

(TN) 

0 

(FP) 

16 

(TN) 

3 

(FP) 

54 

(TN) 

1 

(FP) 

60 

(TN) 

 

Table 9. Performance metrics of hybrid networks 
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Sr. No Parameter LSTM BiLSTM Hybrid R-LSTM Hybrid R-LSTM 

1 Precision (π) 1 1 0.9879 0.9959 

2 Recall (ψ) 0.7854 0.8190 0.9354 0.9575 

3 F1- score 0.8798 0.9005 0.9609 0.9763 

Table 10. Error performance metrics of hybrid networks 

GSM 900 Band (890MHz to 960MHz) Whole Band (700MHz to 2.7GHz) 

Frequency dimension Time dimension Frequency dimension Time dimension 

MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE 

Hybrid M-

LSTM 
0.0846 0.1792 5.2045 0.0047 0.0657 2.2978 0.2221 0.3238 47.6002 

8.24E-

04 
0.0239 1.2354 

Hybrid M-

BiLSTM 
0.0855 0.1843 5.2311 0.0041 0.0617 2.1625 0.2264 0.3218 48.0629 

9.50E-

04 
0.0252 1.327 

Hybrid R-

LSTM 
0.0059 0.0288 1.3686 

1.60E-

04 
0.0101 0.4246 

2.10E-

03 
0.0117 4.6438 

5.60E-

05 
0.0056 0.3221 

Hybrid R-

BiLSTM 
0.0067 0.0524 1.4657 

1.76E-

04 
0.0107 0.4454 

2.20E-

03 
0.0142 4.7177 

5.48E-

05 
0.0056 0.3187 

Table 11. Performance evaluation of LSTM neural network 

Technique 
Training Time GSM Band (in Seconds) Training Time Whole Band (in Seconds) 

Freq dimension Time dimension Freq dimension Time dimension 

LSTM 48 156 3051 273 

BiLSTM 73 249 6426 413 

Hybrid R-LSTM 47 159 1783 264 

Hybrid R-BiLSTM 79 253 2724 435 

Figure 15. MSE comparison plots of hybrid networks 

Figure 16. MAE comparison plots of hybrid networks 

Figure 17. RMSE comparison plots of hybrid networks 

Figure 18. Training time comparison plots of hybrid 

networks 
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4. CONCLUSIONS

In this paper, we have proposed a hybrid deep neural 

network model combining RBF and BiLSTM neural networks 

for spectrum inference in cognitive radio network. We tested 

the performance of this model on our real world spectrum 

dataset for GSM 900 band (890 MHz to 960 MHz) and entire 

band (700 MHz to 2.7 GHz) in both time and frequency 

dimensions.  

We compared the performance of this hybrid model with 

single models like LSTM and BiLSTM. We studied the 

influence of dataset for both time and frequency dimensions 

and noted that hybrid model outperforms both single models. 

We compared performance of hybrid model and single models 

for precision, recall, F1 score and error performance with 

metrics MSE, MAE, RMSE. We found that this hybrid 

approach gives high prediction accuracy and optimal speed. 

Our experiments reveal that hybrid approach gives better 

results for spectrum inference than individual single model 

approach for spectrum dataset. We have also observed that the 

effectiveness of this hybrid approach also depends on domain 

of spectrum dataset.  

This hybrid approach can be further enhanced to include 

spatial dimensions to delve further deep into spectrum dataset. 

In future this technique can be optimized with a modular 

approach to fit the requirements of different 

telecommunication bands. In conclusion hybrid deep neural 

network can significantly enhance the capabilities of spectrum 

inference in CRNs. 
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