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The analysis of electrocardiogram (ECG) signals is imperative for the diagnosis of cardiac 

anomalies. However, the integrity of ECG signals is often compromised by the presence of 

noise, such as Additive White Gaussian Noise (AWGN) and Power Line Interference (PLI), 

which can obfuscate critical signal characteristics during acquisition. AWGN typically 

permeates ECG recordings through electronic noise, movement artifacts, and 

environmental factors, whereas PLI is commonly induced by alternating current power 

sources at frequencies of either 50 or 60 Hz, contingent upon the geographical location. In 

this investigation, a novel denoising strategy employing a synergistic application of the 

Genetic Algorithm (GA) and Wavelet Transform (WT) is presented. The WT parameters 

are meticulously optimized through the Genetic Algorithm, which conducts a systematic 

search to ascertain the optimal decomposition levels and thresholding values for noise 

reduction. This iterative optimization process refines WT parameter settings to attenuate 

noise effectively. The efficacy of the proposed approach is rigorously evaluated using the 

benchmark MIT-BIH Arrhythmia Database, a renowned and publicly accessible collection 

of annotated ECG recordings. Objective metrics, namely the Signal-to-Noise Ratio (SNR) 

and the Percentage Root mean square Difference (PRD), are utilized to validate the 

performance enhancements achieved by the proposed method. Results indicate that the 

method substantially mitigates both PLI and AWGN, yielding a cleaner ECG signal that is 

more amenable to subsequent medical analysis. Notably, for PLI at 50 Hz with an input 

SNR of 10 dB, the algorithm achieved an output SNR of 22.56 dB and a PRD of 7.46%. 

Similarly, under AWGN conditions with an equivalent input SNR, an output SNR of 18.31 

dB and a PRD of 12.16% were realized. These outcomes signify a notable improvement 

over existing methodologies documented within the literature, affirming the proposed 

method's potential for advancing ECG signal processing in medical applications. 
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1. INTRODUCTION

Electrocardiogram (ECG) signals illustrate the human 

heart's electrical activity during the depolarisation and 

repolarisation of myocytes over time [1]. This technique is 

non-invasive which enables the efficient display of relevant 

electrical data received by a collection of electrodes that are 

affixed to the exterior of the human body [2]. Accurate ECG 

signal analysis is paramount for healthcare practitioners in the 

diagnosis and management of cardiac disorders. While 

acquiring an ECG signal, different forms of noise with a broad 

spectrum are present, degrading its quality.  

These noises contain Power Line Interference (PLI) (A 

narrow frequency range of 1 Hz) that is typically caused by the 

presence of alternating current (AC) electrical power lines, 

often operating at 50 or 60 Hz depending on the region, 

whereas White Gaussian Noise (AWGN), characterized by a 

normal distribution of amplitude values and equal power 

across all frequencies, can infiltrate ECG recordings through 

sources such as electronic noise, movement artefacts, and 

environmental factors. The presence of WGN may impede the 

accurate analysis of ECG signals. Baseline Wander (BW) in 

ECG signals, originating from factors like patient motion, 

respiration, electrode issues, introduces low-frequency noise 

(0.15-0.3 Hz) that disrupts ECG signal interpretation by 

causing slow, rhythmic baseline fluctuations and obscuring 

vital waveform features, hindering accurate diagnosis of 

cardiac conditions. Muscular Movement Artifacts (EMG) in 

ECG signals, originating from skeletal muscle contractions 

near electrodes due to factors like shivering or electrode 

movement, introduce high-frequency noise that appears as 

rapid spikes, hindering accurate interpretation and potentially 
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causing misdiagnosis in cardiac analysis [3]. 

The prevalence of these aberrations has a substantial impact 

on diagnostic information present within an ECG signal, 

thereby making diagnosis exceedingly difficult. These 

artefacts must be removed for a precise diagnosis. In the study 

[4], a FIR digital filter with a reduced number of inputs is used 

to eliminate PLI with a high frequency. The authors [5] 

executed an IIR notch filter with transient reduction with the 

intention of canceling PLI. The adaptive notch filter is more 

effective at lowering residual signal entropy [6] and more 

computationally efficient when compared to non-adaptive 

notch filters for removing 60 Hz noise in the study [7]. Using 

the Empirical Wavelet Transform (EWT), the researchers [8] 

developed an empirical wavelet filter bank, whereas in the 

study [9], a technique called Eigen Value Decomposition 

(EVD) was implemented by decomposing a Hankel matrix. In 

the study [10], an approach using the Fourier Decomposition 

Method (FDM) was introduced, which utilise a discrete 

Fourier Transform for denoising ECG signals. A denoising 

method that involved an adaptive Kalman filter bank that 

consists of two filters specifically designed for reducing noise 

in high-frequency and low-frequency components was 

proposed in the study [11]. In the studies [12, 13], a method 

based on the Variational Mode Decomposition (VMD) 

technique was employed for the purposes of analysis, whereas 

in the study [14], a method based on Principal Component 

Analysis (PCA) was used to enhance the efficacy of noise 

reduction. Empirical Mode Decomposition (EMD) has been 

applied to remove different types of artefacts present in ECG 

signals [15-17]. 

Several effective denoising techniques based on wavelets 

have been suggested owing to the non-stationary nature of 

ECG signals. In the study [18], a modula-maxima technique 

based on DWT was employed, whereas in the study [19], the 

coefficients of the decomposed signal were processed using a 

technique based on thresholds. Methods [20, 21] based on the 

dual-tree and dual-tree complex Wavelet Transforms were 

employed. In the study [22], the Stationary Wavelet Transform 

(SWT) method was used [23], a Wavelet Lifting Scheme-

based DWT method was investigated. Several ECG noise 

elimination approaches, including filtering and adaptive 

thresholding, have been proposed in the literature. Recent 

wavelets transform (WT) applications for denoising of 

biomedical signals, such as ECG and EEG [24, 25], have been 

effective.   

In a number of engineering fields, the  Genetic Algorithm 

(GA) has been successfully applied to various problems of 

optimisation and produced excellent results. However, the 

objective of this paper is to utilise the GA to iteratively explore 

the search space of the Wavelet Transform (WT), aiming to 

identify the most suitable decomposition level and threshold 

value by means of a sequence of consecutive iterations to 

effectively remove noise from the ECG signal. This paper's 

primary goal is to improve the accuracy of cardiac signal 

analysis for further classification in healthcare applications. 

The results achieved by employing our approach to the MIT-

BIH database using the Signal-to-Noise Ratio (SNR) and the 

Percentage Root mean square Difference (PRD) metrics 

proved very effective in suppressing noise, as they 

outperformed other state-of-the-art methods.  The paper's 

remaining sections are organised as follows: Section 2 

provides a theoretical overview of our proposed approach, 

which combines the GA and the WT. In Section 3, we outline 

the proposed technique (GA-DWT) that effectively removes 

noise. This method introduces a novel approach to determining 

the optimal level of decomposition (L) and the value of the 

threshold (ϭ) using the Daubechies-13 DWT as the mother 

wavelet. Results and discussion are shown in Section 4. 

Section 5 provides the conclusion and future perspectives. 

 

 

2. MATERIALS AND METHODS 

 

This section discusses the theoretical foundation of our 

proposed ECG signal noise reduction technique, utilising WT 

and GA.  

 

2.1 Predominant noises in ECG 

 

The noises and disturbances reside within the spectral range 

of interest and manifest themselves predominately as 

morphological characteristics similar to the ECG's inherent 

characteristics or disease-specific characteristics. Below is a 

concise description of the predominant ECG noises. 

PLI introduces synchronised noise components, often 

originating from external sources such as electrical devices, 

potentially causing misinterpretation or misdiagnosis. In 

contrast, AWGN, a random noise following a Gaussian 

distribution, obscures finer ECG signal details. Baseline 

Wander, typically occurring between 0.15 Hz and 0.3 Hz, 

leads to rhythmic baseline oscillations, hindering the accurate 

diagnosis of cardiac conditions by obscuring critical waveform 

components. Muscular Movement Artifacts, characterised by 

high-frequency noise (typically 25-50 Hz and above), manifest 

as rapid spikes and interference, complicating the 

interpretation of underlying cardiac electrical activity.  

 

2.1.1 Power-line interference 

During ECG signal acquisition, inductive and capacitive 

couplings of 50/60 Hz power lines cause PLI disturbances as 

seen in Figure 1 (where the record number 100 was polluted 

with noise at an input SNR of 10 dB) [26]. It has a narrowband 

bandwidth of 1 Hz and an amplitude of up to 50% of full-scale 

deflection (FSD). The morphology of the signals is distorted 

when the PLI and ECG are combined. This results in P-wave 

distortions, which can contribute to an incorrect diagnosis of 

atrial arrhythmias such as atrial enlargement and fibrillation 

[27]. 

 

 
 

Figure 1. (a) the original signal, (b) signal polluted with PLI 

 

2.1.2 Channel noise 

 

 
 

Figure 2. (a) the original signal, (b) the signal with AWGN 
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When ECG signals are transmitted over a channel with 

weak channel conditions, such as AWGN, channel noise is 

induced as seen in Figure 2 (where the record number 100 was 

polluted with noise at an SNR input of 10 dB). 

 

 

2.2 Database 
 

The MIT-BIH databases were one of the earliest publicly 

available test materials utilised to evaluate arrhythmia 

detection. Since 1980, more than 500 institutions around the 

world have used it for research on heart dynamics [28, 29]. 

The BIH Arrhythmia Laboratory collected 48 half-hour 

samples from 47 participants' 24-hour ECG recordings with 

two channels. The recordings were digitized at a rate of about 

360 samples per second, according to channel, with a precision 

of 11 bits and a dynamic range of 10 mV. More than two 

cardiologists annotated the records individually, and conflicts 

were settled to generate machine-readable reference 

annotations for every pulse (approximately 110,000 

annotations in total). ECG signals can be obtained from the 

MIT-BIH database of arrhythmia and analysed. 
 

2.3 Discrete Wavelet Transform (DWT) 
 

By means of a sequence of high-frequency filters (H) and 

low-frequency filters (L), the DWT decomposes a signal into 

coefficients with varying frequency levels. Analysing the 

high-frequency and low-frequency components enables the 

elimination of the presumed noise-causing small detail 

coefficients. Mathematically, the Wavelet Transform is 

determined with Eq. (1): 

 

𝑊𝑥(𝑎, 𝑏) =
1

√𝑎
∑  

𝑁−1

𝑛=0

𝑠(𝑛)𝑁𝜓∗ (
𝑛 − 𝑏

𝑎
) (1) 

 

where, the DWT yields a large number of wavelet 

coefficients  𝑊𝑥(𝑎, 𝑏) , 𝑎  represents the scale (dilation) 

parameter  𝑎 = 2𝑗  and  𝑗 = 0,1,2,3 … , log2 ( length (𝑠(𝑛)) ,

𝑏 represents parameter for translation 𝑏 = 𝑘2𝑗 ,  𝑆(𝑛) 

represents the signal with noise and 𝜓 represents the mother 

wavelet. In DWT techniques, the high-pass and low-pass filter 

outputs are downsampled by a factor of 2 to compute the 

approximation coefficients 𝐴(𝐾) and detail coefficients 𝐷(𝐾). 

These DWT coefficients play a crucial role in reconstructing 

the signal using a basis function 𝜓  and a discrete scale 

function 𝛷(𝑛)  through Eqs. (2-4). 
 

𝑦(𝑛) =
1

√𝑎
∑𝑘   A(𝑗, 𝑘)𝛷𝑗,𝑘 + ∑𝑗=0

𝑚  ∑𝑘  D𝑗(𝑘)𝜓𝑗,𝑘(𝑛) (2) 

 

D𝑗(𝑘) =
1

√𝑎
(∑𝑛  𝑠(𝑛)𝜓𝑗,𝑘(𝑛)), 𝑘 = 0,1,2, … , 2𝑗−1 (3) 

 

 A𝑗(𝑘) =
1

√𝑎
(∑𝑛  𝑠(𝑛)𝛷𝑗,𝑘(𝑛)) (4) 

 

𝑗 = 0,1,2,3 … , log2 (length(𝑠(𝑛)) 𝑘 = 0,1,2, … , 2 (𝑗−1) ,  𝑛  

represents the signal's duration. Following an analysis of the 

processes, the adjusted signals have been sampled and filtered 

with synthesis filters, which are comprised of H′ and L′. The 

sum of H′ as well as L′ outputs are equivalent to the initial 

signal. Figure 3 depicts the DWT decomposition and 

reconstruction procedure. 
 

2.4 Generator of additive noise 
 

ECG signals are frequently contaminated by numerous 

types of noise, which degrade signal quality and interpretation. 

In such circumstances, the DWT is among those 

demonstrating extremely high levels of success. However, a 

noise signal typically manifests as a coefficient with a high 

frequency.  

 

 
 

Figure 3. Decomposition and reconstruction of signals using 

the Wavelet Transform 

 

A noisy signal can be characterised by a substantial quantity 

of detail coefficients exhibiting low magnitudes on both the 

negative and positive ends. In this regard, our goal will also be 

to eliminate noise while preserving the signal's characteristics. 

Using Eq. (5), the clean ECG signal is corrupted with PLI and 

with AWGN using Eq. (6). 

 

𝑁(𝑡) = 𝐴 ∗ sin(2 ∗ 𝜋 ∗ 𝑓 ∗ 𝑡) (5) 

 

𝑁(𝑡) = 𝑥(𝑡) + 𝜎 (6) 

 

2.5 Genetic Algorithm (GA) 

 

The problem of global optimisation was addressed using the 

Genetic Algorithm (GA) technique, which incorporates 

natural selection and genetics. Beginning with a random 

sample of prospective solutions, their performance is 

evaluated using a fitness function [30]. During the evaluation 

phase, this function examines the performance of the GA in a 

specific environment and evaluates the quality of each solution. 

The purpose of denoising is to effectively eliminate 

disturbance and restore the original ECG signal. Maximizing 

the signal-to-noise ratio (SNR) between the original ECG 

signal and the denoised ECG signal is a typical optimization 

objective in ECG noise suppression. The SNR is therefore 

selected as the fitness function. Consider an original signal 

𝑥(𝑛) with N samples and a reconstructed approximation of 

this signal denoted �̂�(𝑛) to compute the SNR. 

 

SNR = 10log10

∑ [x(n)]2N
n=1

∑ [x(n) −  x̂(n))]2N
n=1

 (7) 

 

We selected SNR as the fitness function for our GA to 

enhance the optimisation process. SNR quantitatively assesses 

ECG signal quality relative to noise, offering a clear metric for 

signal quality evaluation. By maximising SNR, the GA aims 

to find an optimal parameter and filter combination to reduce 

noise from Baseline Wander, Muscular Movement Artefacts, 

PLI, and AWGN, aligning with our goal of enhancing the 

accuracy and reliability of ECG signal interpretation for 

precise cardiac condition diagnoses. This approach focuses on 

maximising signal quality while minimising noise effects, 
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including PLI and AWGN, to improve the utility of ECG data 

in clinical applications.  

GAs develops global optimised parameters for the network 

using three fundamental operators: (1) the selection operation, 

(2) the crossover operation, and (3) the mutation. The 

population of potential solutions is used in GA. Based on the 

principles of natural selection and survival of the fittest, the 

optimal solution is determined by the Genetic Algorithm 

through the repeated execution of computations on the 

operators, namely selection, crossover,  mutation, and the 

population size, the possibility for crossover, and the 

possibility of mutation are all control variables for the GA. 

Chromosomes represented alternate solutions, or a fix for the 

problem that produces positive results in accordance with the 

fitness function, are generated successively by GA. The 

fundamentals of conventional GAs are covered in detail. The 

phases of the executed Genetic Algorithm will be described in 

the following manner [31, 32]: 

New populations are generated through three distinct 

procedures. A selected pair of beginning individuals using the 

roulette wheel to commence. Second, by applying crossover 

operations on them (Figure 4), in the third phase, mutation 

processes are applied to the newly created individual by 

multiplying each of the coefficients by a random number 

between [0.8 and 1.2]. 

 

 
 

Figure 4. Operation crossover 

 

where, the population size of the GA is 50, the maximal 

number of iterations is set to 100. The mutation rate is 

established at 0.02, and the crossover rate is determined to be 

1. 

 

Algorithm 1 Genetic Algorithm Code 

1: Xchrom← Generate_Initital_Population 

2: Evaluate (Xchrom) 

3: while (Stopping criterion is not met) do 

4: Xchrom’← Selection (Xchrom) 

5: Xchrom’’← Crossover (Xchrom’) 

6: Xchrom’’’← Mutation (Xchrom’’) 

7: Evaluate (Xchrom’’’) 

8: Xchrom← Replacement (Xchrom’’’ ∪ Xchrom) 

9: end while 

 

 

3. ECG SIGNAL DENOISING USING THE PROPOSED 

GA-WT 

 

Considering that noise has contaminated the ECG signal. 

Using the GA technique, the most appropriate WT denoising 

settings to eliminate noise through ECG signals were 

determined. Figure 5 depicts the proposed GA-WT noise 

reduction technique. The developed GA-WT method for noise 

suppression can be described as follows: 

 

Algorithm 2 Tuning WT Parameters Using GA Algorithms 

to obtain ECG Signal Noise-reduction 

1: Initialise the noisy ECG signals (nECG) and estimate 

the SNR for the ECG signal input. 

2: Initialise GA operators, initialise solution(s)  

    Xi (i = 1, 2) Xi (L, ϭ) represents the initial solution 

(where L and ϭ are the level of decomposition and threshold 

value, respectively). 
3: X’opt = GA (X, Xi), X’opt (Lopt, ϭopt) 

4: ECG Denoised = DWT (X’opt, nECG) 

5: ECG Out Signals = Evaluation (ECG Denoised, 

SNRout, PRD) 

 

 
 

Figure 5. The proposed method 

 

3.1 Noise removal using wavelet denoising 

 

There are two varieties of thresholding functions that can be 

used to eliminate noise in the wavelet domain: hard 

thresholding and soft thresholding as seen in Figure 6. In the 

process of hard thresholding, any detail coefficients (CD) with 

absolute values below the specified threshold are set to zero, 

while the remaining coefficients remain unchanged (as 

described by Donoho and Johnstone [33]). In contrast, soft 

thresholding resembles hard thresholding but decreases the 

magnitude of wavelet coefficients that exceed the threshold. 

While soft thresholding demands additional computational 

resources, it provides improved denoising capabilities [34, 35]. 

 

 
 

Figure 6. Hard and soft thresholding methods 

 

Hard 𝑡ℎ𝑟 (𝑥ℎ𝑡) = {
CD𝑗 , |CD𝑗| ≥ 𝛽𝑗

0, |CD𝑗| < 𝛽𝑗

 (8) 

 

𝛽𝑗: The value of the threshold 

 

Soft thr (𝑥𝑠𝑡)

= {
sign (CDj)(CDi − |𝛽j|), |CDj| ≥ 𝛽j

0, |CDj| < 𝛽j         

 
(9) 

1390



 

The selection of the value of the threshold is an important 

matter that requires careful consideration. The threshold may 

be executed on a global or local scale. With regards to global 

thresholding, all detail coefficients are assigned a singular 

value. In the local case, various threshold values are selected 

at every wavelet level. This research bases the threshold of 

noise on universal threshold (β) that Donoho and Johnstone 

[36] proposed. The Eq. (12) expresses this. 

 

𝛽𝑗 = 𝜎𝑗
Noise √2log (𝑁𝑗) (10) 

 

where, 𝑁𝑗  denotes the signal length at the scale j and 𝜎𝑗
Noise  

denotes the variance of the noise, which can be calculated 

using the Eq. (10). 

 

𝜎𝑗
Noise =

median (|CDj|)

0.6745
 (11) 

 

Selecting an appropriate wavelet mother function, in 

addition, is a critical step in demonstrating the benefits of 

DWT in denoising. At the moment, no generic approach suited 

for ECG data has been proposed to select the mother wavelet 

based on wavelet features, and the researchers have not yet 

been adequately described. The mother wavelet function 

selection rules apply in numerous fields. Our research, on the 

other hand, outlines three basic steps: Choosing the mother 

wavelet, which is tuned experimentally, as well as the optimal 

level and threshold value, which are obtained using the 

Genetic Algorithm and can be used to denoise the ECG signal 

to obtain a perfect reconstruction and avoid distortion, some 

wavelet types, such as the Symlet and Daubechies wavelets, 

have been proposed to reduce noise in ECG signals [37, 38]. 

We used the Daubechies wavelet family (db-13) [39]. In 

summary, Figure 7 depicts the wavelet denoising principle, 

which is based on three fundamental steps: (1) decomposition, 

(2) threshold detail transactions, and (3) reconstruction. The 

noisy signal is divided into multiple levels of approximation 

and detail coefficients in the first stage. 

Denoising processes a large number of detail coefficients 

for low-frequency noises; furthermore, besides the 

approximation coefficients, which possess the potentiality to 

contain low-frequency noises, there exist various other factors 

that must be taken into consideration, thereby constraining the 

noise threshold. In the event of low SNR, however, 

experimentally weak signals are frequently difficult to 

examine. As a result, decisions must be made on the best 

wavelet method, mother wavelet, and decomposition level 

number (L), which was considered between 1 and 10. The 

threshold function will comprise the next phase; the crucial 

aspect of threshold applications is establishing the value of the 

threshold. It should be noted that it ultimately includes a trade-

off between retaining some noise in the data and deleting some 

signal detail. Finally, the reconstructed denoised signal is 

generated without loss of information using the final level and 

the threshold detail coefficients from all levels. 

 

 
 

Figure 7. ECG denoising process [29] 

 

In the initial step, both the value of the threshold and the 

level of decomposition (2.55 and 3), respectively, are 

considered. For optimising these two values, the quest for the 

appropriate solution commences within the space of the search. 

Using the proposed approach, the two appropriate parameters 

(X'opt) are determined. Using the GA, the pre-selected DWT 

is used for filtering the signal and producing a maximum SNR 

and minimum PRD using the following formulas: 

 

SNRinput = 10log10

∑ [x(n)]2N
n=1

∑ [x(n) −  x̃(n))]2N
n=1

 (12) 

 

SNRoutput = 10log10

∑ [x(n)]2N
n=1

∑ [x(n) −  x̂(n))]2N
n=1

 (13) 

 

SNRimp = SNRoutput −  SNRinput (14) 

 

PRD = 100 ∗ √
∑ [x(n) − x̂(n))]2N

n=1

∑ [x(n)]2N
n=1

 (15) 

 

where, 𝑥(𝑛) represents the original ECG signal, �̃�(𝑛) denotes 

the noisy ECG signal, �̂�(𝑛)  represents the denoised ECG 

signals are produced by adjusting the wavelet settings with the 

GA, with 𝑁 being the number of points in the data set (record). 

The objective evaluation is shown in Table 1 of our 

proposed method using SNR as well as PRD metrics. The table 

compares our approach, which incorporates a GA-enhanced 

DWT, with an ECG denoising technique using the basic DWT 

across different input SNR levels. 

 

Table 1. The performance of the basic and optimised DWT in terms of SNRout and PRD 

 
SNRinput (dB) L -DWT L-Opt  Ϭ -DWT Ϭ -Opt   SNRout-DWT SNRout-Opt PRD-DWT (%)  PRD-Opt (%) 

10 

3 

3 

2.55 

0.19 20.94 21.04 9 8.9 

15 3 0.08 20.98 22.32 8.96 7.67 

20 2 0.04 20.99 25.99 8.95 5.01 

25 2 0.02 21 29.33 8.94 3.41 

 

The 'dB13' mother wavelet function is employed in both 

methods. The first column of Table 1 displays the input SNR 

values, representing the level of noise introduced to the clean 

ECG signal. In each table, the columns denoted as the second 
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and third columns indicate the initial and optimised the WT's 

values decomposition level parameter, respectively. The 

fourth and fifth columns show the basic and optimised 

threshold values of the WT parameter. The remaining columns 

in each table exhibit the SNR and PRD outputs for both the 

basic and enhanced GA-DWT methods. 

The results clearly indicate that our proposed GA-WT 

enhancement surpasses basic DWT, as evidenced by higher 

SNR outputs and lower PRD ratios. Additionally, the table 

demonstrates that the output SNR and PRD ratios for the basic 

DWT remain relatively consistent regardless of the input SNR 

value. However, for the enhanced DWT, as the input SNR 

increases, the output SNR also increases while the PRD 

decreases. According to Table 1, which utilises the "dB13" 

wavelet function, the output SNR value for the basic DWT 

ranges between 20.94 and 21 when the input SNR varied 

between 10 and 25 dB. Consequently, the SNR output remains 

consistently low, irrespective of the input SNR. Conversely, 

our optimised DWT method exhibits an increasing output 

SNR as the input SNR. For example, a 25 dB input SNR results 

an output SNR of 29.33 dB. Therefore, our proposed method 

generates a higher SNR output compared with the basic DWT, 

especially for the noisier ECG signals. The best input SNR 

value of 25 dB corresponds to a clearer ECG signal. In 

conclusion, the superiority of our proposed enhanced DWT 

method using GA over the basic WT for noise reduction from 

ECG signals is evident through the higher SNR output 

achieved. 

Figure 8 illustrates the results of an initial subjective 

evaluation conducted at f = 50 Hz. It depicts the clean Figure 

(8-a) represents the original ECG signal, while Figure (8-b) 

illustrates the ECG signal with added noise. Figure (8-c) 

displays the denoised ECG signal. Which were generated 

using the suggested method. This figure plainly demonstrates 

that the original ECG signal and the denoised ECG signal are 

extremely similar. The similarity observed between the two 

signals demonstrates the efficacy of the proposed technique 

for ECG noise removal, which involves optimising DWT with 

GA. 

 

 
 

Figure 8. (a) clean, (b) noisy and (c) denoised ECG signal 

using GA-WT at SNRinput=10dB 

 

Table 2. SNR improvements and PRD with various inputs SNR values for each ECG record with 50 Hz PLI 

 

ECG 

Record 

SNRimp PRD 

-10 -5 0 5 10 -10 -5 0 5 10 

100 23.76 19.05 14.22 10.37 7.90 20.99 20.30 19.89 17.34 12.87 

103 22.31 17.54 12.89 9.39 6.96 24.91 24.25 23.25 19.41 14.18 

105 27.95 24.77 20.55 15.84 11.00 12.70 10.30 09.41 09.10 08.94 

109 31.76 29.01 25.05 20.44 15.68 8.17 6.30 5.59 5.34 5.20 

116 26.86 22.46 17.66 12.89 9.29 14.45 13.49 13.18 12.85 10.90 

123 28.04 23.85 19.14 14.34 10.68 12.61 11.47 11.09 10.84 9.29 

201 27.20 22.85 18.08 13.23 8.93 13.90 12.89 12.55 12.34 11.34 

221 22.59 21.05 16.19 11.64 6.87 16.79 15.94 15.68 14.86 14.01 

231 20.22 15.36 11.14 7.70 6.90 32.32 31.82 28.81 23.88 14.30 
 

Table 3. SNR improvements and PRD with various inputs SNR values for each ECG record with AWGN 
 

ECG 

Record 

SNRimp PRD 

-10 -5 0 5 10 -10 -5 0 5 10 

100 16.22 11.59 7.78 6.58 5.58 52.57 54.47 42.08 26.62 16.73 

103 12.28 8.53 7.48 5.83 5.86 115.41 78.02 44.10 28.61 16.31 

105 12.12 10.35 9.19 7.96 6.99 95.64 55.22 34.88 22.69 14.40 

109 14.52 12.22 10.94 9.06 8.31 71.15 43.16 28.66 19.93 12.16 

116 15.29 10.41 8.52 7.49 6.07 64.24 63.19 37.37 23.88 15.79 

123 18.96 14.44 9.63 7.80 6.73 36.37 35.85 34.13 22.96 14.65 

201 12.92 9.98 8.42 7.61 5.95 103.78 60.10 38.35 23.68 15.80 

221 12.23 10.01 8.13 7.12 5.69 92.70 60.13 39.75 25.05 16.56 

231 11.38 8.13 6.73 5.98 5.67 133.63 83.02 48.76 28.46 16.74 

Table 2 shows the denoised PLI signal's improved SNR and 

values for several ECG recordings at different input SNR 

levels. When the input SNR is low, the SNRimp values remain 

around 25 dB and decrease with increasing SNR. 

Estimated PRD values for record 105 are 12.70, 10.30, 9.41, 

9.10, and 8.94 at the specified degrees of noise. When the 

proposed method is used to eliminate AWGN noise, the 

relevant improvement values are recorded in Table 3. The 

output signal and results are extremely good, regardless of the 

quantity of input noise. 

 

 

4. RESULTS AND DISCUSSION 

 

In this section, we will show the results that have been 

obtained by applying our proposed approach for noise removal 

from ECG signals. This technique is based on optimising the 

two primary parameters of the DWT, which are the level of 
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decomposition L and the threshold value ϭ, respectively, and 

it was implemented with the use of GA. It should be noted that 

this work was done using the code of the Matlab 2018-B 

edition using Wavelet Toolbox in this software program. In 

addition, we compared the filtering of two distinct kinds of 

noise, namely Power Line Interference and additive Gaussian 

noise. Several records from the MIT-BIH database were used 

for the experiments described in this paper. 
 

4.1 AWGN noise removal 
 

The efficiency of the suggested approach to remove noise 

from ECG signals that are contaminated with AWGN noise is 

illustrated in Table 4. Using record numbers 100, 101, 102, 

and 103 obtained from the MIT-BIH database. The values of 

SNRout and PRD at 5 dB and 10 dB of input noise are 

displayed. These values were contrasted with the results of the 

methods: EMD-ASMF [40], GAMNVE [41], PLI-SWT [42], 

and 1DTV [43].  

The values highlighted in bold in the table are the highest 

values for each SNR record and the corresponding PRD for 

each ECG record. These results show the efficacy of our 

suggested technique for eliminating this type of noise. 

Another comparison was made when introducing high-

noise SNR at values -5 and 0 using records number 100, as 

seen in Figure 9, and Figure 10 which shows the superiority of 

our proposed method over both NLM and CF methods, as we 

obtained the highest SNR improvement and lowest PRD. This 

result demonstrates the efficiency of the proposed method. 

 

Table 4. Values of performance parameters for arrhythmia ECG records contaminated by AWGN. 

 

Signal SNR Input SNR Output      PRD      

 GA-WT EMD- ASMF GAMNVE NIWT PLI- SWT 1DTVD GA-WT EMD-ASMF GAMNVE NIWT PLI- SWT 1DTVD 

100 5  11.58 8.87 10.88 5.11 4.99 13.34 26.62 36.05 28.65 55.54 56.30 21.59 

10 15.58 12.78 15.09 10.13 9.99 13.93 16.73 22.98 17.65 31.18 31.67 20.11 

101  5 14.14 9.66 10.94 5.15 4.99 13.25 19.91 32.92 28.47 55.32 56.31 21.78 

10 16.48 13.52 15.31 10.15 9.99 13.62 15.00 21.09 17.22 31.09 31.67 20.86 

102 5 11.38 8.70 10.16 5.13 4.99 10.97 27.00 36.77 31.10 55.44 56.32 28.29 

10 14.69 12.50 14.40 10.14 9.99 11.15 18.00 23.72 19.08 31.14 31.68 27.71 

103  5 10.83 9.24 10.71 5.10 4.99 13.48 28.61 34.55 29.24 55.59 56.30 21.21 

10 15.86 13.32 15.47 10.11 9.99 14.41 16.31 21.59 16.94 31.24 31.66 19.05 

 

 
 

Figure 9. The improvement in SNR for various denoising 

methods 

 

 
 

Figure 10. The improvement in PRD for various denoising 

methods 
 

 

4.2 PLI noise removal 

 

The Tables 5 and 6 show the values obtained by applying 

our method to different records of the ECG signal from the 

earlier mentioned database, where the first column shows the 

number of records (100,103,105,109,116,123,201,221,231), 

and in the remaining columns we find the various methods 

used in previous studies to compare them with our proposed 

method at various SNR Input values. The resulting SNR 

output of the denoising method (GA-WT) is compared with to 

other state-of-the-art denoising methods in these two tables, 

namely: the EVD-based technique [9], the MRLS-based 

technique [44], and the EMD-WT technique [45], which are 

used to reduce PLI noise. Table 5 demonstrates the superior 

performance of our proposed methodology when subjected to 

increased noise levels, specifically by introducing an SNR 

input of -10 dB at a frequency of 50 Hz. In this context, we 

observed a substantial improvement in the average SNR 

compared to the other techniques under consideration. It is 

worth highlighting that the advantages of our proposed 

approach extend beyond these elevated noise levels, as it also 

exhibits superior performance in certain recordings when the 

noise levels are comparatively lower. Another important point 

is that the suggested method outperformed other earlier 

techniques when employed to reduce noise at a frequency of 

60 Hz at inputs 0 and 5 of SNR, as demonstrated in Table 6 

Overall, the results show the effectiveness of our noise 

reduction technique. 

Based on the thorough analysis in Tables 5 and 6, it is clear 

that our approach presents a highly effective noise reduction 

solution in this context. These results underscore its 

superiority over existing methods in some records and its 

practical potential in real-world scenarios where noise 

reduction is crucial. 

The consistent performance across diverse noise levels and 

frequencies affirms the reliability and credibility of our 

technique, positioning it as a promising avenue for further 

research and practical use in relevant fields. 
 

 

5. CONCLUSION 
 

This paper presents an innovative approach that integrates 
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Wavelet Transform with Genetic Algorithm to effectively 

reduce both PLI and AWGN noises from ECG signals. The 

primary goal of this methodology is to function as a pre-

processing technique for ECG data analysis and classification. 

The study emphasizes the efficacy of the GA in optimising 

noise reduction parameters based on WT for filtering ECG 

signals. 

Through extensive experimentation using the wavelet 

family (dB13), We employed GA to pinpoint optimal values 

for both the threshold value (Thr_opt) and decomposition 

levels (L_opt), leading to a significant enhancement in noise 

reduction for noisy ECG signals.  The proposed method 

exhibits outstanding performance in signal noise reduction, as 

evidenced by the obtained SNR and PRD metrics values 

compared to state-of-the-art methods. In our forthcoming 

studies, we aspire to broaden the applicability of this method 

to biomedical signals such as Electroencephalogram (EEG) 

and Phonocardiogram (PCG). Additionally, we plan to use 

modern optimisation algorithms to fine-tune all WT 

parameters and implement this method on an FPGA board to 

facilitate its integration into future medical applications. 

 

Table 5. The performance of PLI (at f = 50Hz) removal from diverse ECG signals with varying input SNR levels was evaluated 

using averaged values over 20 segments 

 

ECG 

Record 

SNRinp = -10 dB SNRinp = -5 dB SNRinp = 0 dB SNRinp = 5 dB 

SNRout(dB) 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-

WT 

[45] 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-

WT 

[45] 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-

WT 

[45] 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-

WT 

[45] 

100 m 13,762 3,758 13,666 11,366 14,051 7,284 17,899 11,869 14,227 11,683 21,583 11,547 15,371 16,045 23,931 11,458 

103 m 12,312 3,770 13,984 13,804 12,542 7,300 18,472 15,313 12,892 11,707 22,815 16,294 14,392 15,314 26,680 14,873 

105 m 17,954 3,772 14,054 19,238 19,777 7,302 18,625 21,846 20,558 11,711 23,116 24,422 20,848 13,795 27,219 24,887 

109 m 21,767 3,773 14,095 20,012 24,012 7,305 18,590 23,420 25,059 7,420 23,023 25,503 25,447 5,251 27,205 26,972 

116 m 16,868 3,775 14,122 15,267 17,468 7,307 18,547 17,759 17,669 11,718 22,719 18,515 17,893 11,099 26,458 19,558 

123 m 18,042 3,769 14,056 13,270 18,859 7,114 18,635 15,344 19,147 10,867 23,092 16,156 19,349 15,131 27,054 13,747 

201 m 17,201 3,770 13,789 16,956 17,856 7,299 18,268 19,434 18,086 11,706 22,497 20,428 18,238 16,200 26,299 21,258 

221 m 12,597 3,770 13,971 16,442 16,052 7,301 18,463 18,355 16,193 11,711 22,798 19,619 16,647 15,311 26,670 20,072 

231 m 10,221 3,767 13,946 11,604 10,364 7,295 18,409 13,221 11,142 11,405 22,619 13,154 12,705 11,336 26,044 12,883 

AVG 15,636 3,769 13,965 15,329 16,776 7,279 18,434 17,396 17,219 11,103 22,696 18,404 17,877 13,276 26,396 18,412 

 

Table 6. The performance of PLI (at f = 60 Hz) removal from diverse ECG signals with varying input SNR levels was evaluated 

using averaged values over 20 segments 

 

ECG 

Record 

SNRinp = -10 dB SNRinp = -5 dB SNRinp = 0 dB SNRinp = 5 dB  

SNRout(dB) 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-

WT 

[45] 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-

WT 

[45] 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-

WT 

[45] 

GA-

WT 

EVD 

[9] 

MRLS 

[44] 

EMD-WT 

[45] 

100 m 14,714 3,754 11,310 13,932 18,761 7,251 15,866 14,924 22,628 11,582 20,184 16,220 25,295 15,785 23,297 17,781 

103 m 14,215 3,761 11,321 16,383 19,359 7,304 15,992 19,819 22,987 11,727 20,633 20,540 26,657 14,968 24,965 22,316 

105 m 18,542 3,761 11,432 21,702 20,058 7,276 16,179 24,234 23,227 11,650 20,962 25,481 26,979 13,664 25,516 27,017 

109 m 22,413 3,766 11,429 22,358 24,337 7,292 16,209 25,485 25,183 8,450 21,043 27,256 27,462 5,243 25,719 29,033 

116 m 17,067 3,766 11,482 18,295 19,629 7,294 16,302 20,732 24,258 11,697 21,234 21,918 27,971 10,628 26,047 22,841 

123 m 18,308 3,771 11,372 16,818 19,54 7,117 16,110 18,570 24,629 10,870 20,961 20,582 28,647 15,137 25,793 23,208 

201 m 17,419 3,764 11,369 19,663 18,978 7,285 16,012 21,069 23,196 11,663 20,607 23,495 26,359 15,777 24,683 23,735 

221 m 15,751 3,765 11,347 19,177 18,837 7,280 15,991 20,644 22,827 11,644 20,518 22,693 25,643 11,733 25,77 21,382 

231 m 14,578 3,772 11,419 14,741 18,449 7,304 16,174 17,290 21,925 11,421 21,023 19,209 23,397 15,785 23,297 17,781 

AVG 17,001 3,764 11,387 18,119 19,772 7,267 16,093 20,307 23,429 11,189 20,796 21,933 26,490 13,191 25,010 22,788 
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