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The medical field is one of the various evolving areas of wireless sensor network (WSN) 

applications. WSN is a self-creating entity that requires no pre-infrastructure support for 

data exchange, and this special characteristic of WSN is used for monitoring vital 

parameters of patients in hospitals. However, the latency and packet loss issues in WSN 

are critical to the monitoring of sensitive vital parameters. To develop reliable data 

exchange for WSN, a low-risk reliable routing (LRRR) approach is proposed. The LRRR 

method proposes an updated reward metric in reinforcement learning for optimal 

clustering and head selection in the WSN interface. In addition to the existing interface 

unit in WSN, a decision unit for measuring the packet forwarding factor is proposed. The 

proposed monitoring factor improves the existing reward metric with reference to the 

packet forwarding conditions in the network. An updated reward factor improves the 

reliability of packet exchange by monitoring the energy and forwarding condition of a 

node in the network. Performance of WSN communication using the LRRR method in 

vital parameter monitoring observed an improvement in network throughput of 30% and 

network life time by 13 msec. A decrease in the end-to-end (E2E) delay is observed for 5 

sec. compared to existing cluster-based routing approaches in WSN. 
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1. INTRODUCTION

Large-area patient monitoring to track vital parameters has 

become an increasingly important task in contemporary 

medical applications. The dual challenge of ensuring both the 

sensitivity of collected data and the accuracy of its 

transmission complicates the management and exchange of 

sensor data in practical healthcare scenarios. With the growing 

need for swift and precise data exchanges, wireless sensor 

networks (WSN) have emerged as a superior solution for data 

transfer, providing a broader and more reliable interface 

compared to traditional communication technologies. Their 

widespread adoption in healthcare monitoring systems is 

driven by their ability to offer robust wireless monitoring and 

dynamically adaptable networks. However, the 

implementation of WSN in sensitive applications like 

healthcare monitoring is not without its challenges. 

The field of wireless healthcare monitoring has seen 

significant growth due to advancements in medical diagnostics 

and wireless communications. WSN, equipped with advanced 

sensors, facilitate real-time, remote monitoring of patients. 

The extensive distribution of patients and the consequent 

monitoring demands pose a challenge, often requiring 

substantial manpower and potentially leading to increased 

mortality rates in critical cases. To address this, recent 

developments in pervasive healthcare systems have introduced 

fusion models capable of monitoring various vital signs across 

different patients within a hospital setting. 

An information system (IS) for patient vital sign monitoring 

using wireless communication was introduced by Wang et al. 

[1], featuring a data fusion model for processing multiple 

sensor readings in remote monitoring scenarios. However, 

with increased patient interactions, the system's data overhead 

also escalates. To counter this, Sriram et al. [2] developed a 

selective intelligence approach named ‘Health Care Context 

Aware Computing’ (HCCAC), which aims to minimize 

overhead by prioritizing vital parameters based on a ranking 

factor. Nonetheless, this approach does not account for 

deviations in monitoring parameters, which can impact the 

accuracy of alarm systems. Other initiatives, such as 

intelligent emergency management services and self-

adaptable automation services within healthcare monitoring 

systems (HCMS) [3, 4], have been developed to wirelessly 

monitor patient vitals, yet they often overlook the critical 

aspect of routing reliability. 

A variety of routing strategies have been devised to improve 

the efficiency of data exchange within WSN, with nodes 

serving as the principal devices collecting and communicating 

sensory data [5, 6]. Despite their critical role, power 

constraints of remote devices pose a substantial challenge in 

Instrumentation Mesure Métrologie 
Vol. 22, No. 6, December, 2023, pp. 265-275 

Journal homepage: http://iieta.org/journals/i2m 

265

https://orcid.org/0009-0000-1396-8211
https://orcid.org/0000-0002-0279-2115
https://crossmark.crossref.org/dialog/?doi=10.18280/i2m.220605&domain=pdf


 

WSN [7]. Among the various techniques, clustering-based 

routing [8-10] has gained prominence because of its potential 

for energy conservation and efficient resource management. 

Nodes within a WSN form small clusters to facilitate 

communication, with a designated cluster head orchestrating 

the exchange of information. Selecting the optimal cluster 

head is, however, a complex task in WSN. 

The Low-energy adaptive clustering hierarchy (LEACH) 

[11] protocol is a prevalent cluster-based communication 

method in WSN that employs a probabilistic approach for 

cluster head selection through energy polling. The cluster head 

is chosen randomly, favoring nodes with higher energy. Upon 

selection, the head node signals an update to its neighbors, and 

all nodes within the cluster coordinate data exchanges through 

this head node [12]. Selecting the node with the most energy 

as the cluster head can extend the network's lifespan by 

protecting lower-energy nodes from power depletion. Still, the 

random nature of head node selection can lead to suboptimal 

traffic conditions, resulting in delays and increased power 

consumption within the WSN. Energy-efficient cluster head 

selection methods in WSN, which make decisions based on the 

residual energy of nodes, can lead to increased network delays 

due to dynamic changes in power levels caused by varying 

traffic flows. Such effects have been explored through various 

models and algorithms [13-17]. These methods perform head 

selection based on the residual energy of nodes in the network. 

Varying traffic flow with such methods results in a dynamic 

change in power level, which results in a higher delay in the 

network. 

Optimization of cluster head selection in WSN has been 

addressed through threshold-based methods that consider 

residual energy and cluster count, yet they face challenges 

with power optimization [18]. Simplified sensing approaches 

have been proposed to reduce computation overhead during 

data exchange, but they also encounter power-related 

constraints [19]. Techniques have been introduced to manage 

data packet communication with consideration for interference, 

which, while improving performance, do not fully address 

power optimization issues [20]. The ILEACH algorithm 

represents an advancement in this area by establishing a 

threshold that relates to total network energy consumption; 

however, it does not fully take into account traffic flow 

conditions, node placement diversity, or randomness in 

resource use, all of which can significantly affect WSN 

communication performance [21]. 

Intelligent methods for optimizing WSN routing have been 

presented, leveraging learning approaches to address dynamic 

conditions in networks. These methods include the particle 

swarm optimization (PSO) for cluster head selection in 

uniformly distributed nodes [22], an energy-efficient TDMA 

based PSO algorithm is proposed in [23] in which clusters are 

formed during the setup phase and data is transmitted during 

the steady phase, the Wolf optimizer method for cluster head 

selection and routing [24], and a fuzzy-based system with a 

modified K-mean approach for optimal cluster head selection 

[25]. Additionally, a firefly algorithm has been introduced to 

improve cluster formation in networks with heterogeneous 

node distribution [26]. Furthermore, a heuristic machine 

learning method using reinforcement learning has been 

proposed, utilizing a Q-learning approach to compute a 

monitoring factor for cluster head selection, which has been 

shown to improve network throughput, node lifetime, and 

reduce latency [27]. 

While the aforementioned intelligent methods enhance the 

performance of wireless sensor networks (WSN), the critical 

aspect of data exchange reliability remains unaddressed. 

While the selection of heads and routes based on residual 

energy and traffic conditions improves network throughput, 

the reliability of the head node in data exchanges must be 

closely examined to meet the increasing demands of WSN data 

transfer. In the context of healthcare monitoring systems, 

where vital parameters are highly sensitive, the reliability of 

data exchange is paramount. Consequently, the operational 

characteristics of a node play a pivotal role in the selection of 

cluster heads and routing paths within a WSN. It's important 

to note that nodes with higher residual energy can still fail 

during data exchanges, whether due to intentional disruptions 

or network errors. 

Acknowledging these reliability limitations, this paper 

proposes a low-risk reliable routing (LRRR) method in WSN. 

This method selects cluster heads based on reliability and risk 

assessments within the network. Building on the recent 

advances of the Q-learning approach in WSN head selection 

[27], the reward factor is refined with a newly proposed data 

exchange metric, enhancing the reliability of nodes during data 

transfers and optimizing the performance of node registration 

and cluster head selection within the network. 

To articulate the proposed approach, this paper is structured 

into five sections. Section 2 introduces the learning-based 

approach for cluster head selection in WSN. Section 3 

delineates the proposed methodology for ensuring reliable 

head selection and routing in WSN. Section 4 provides an 

analysis of the proposed approach, and Section 5 offers a 

concise conclusion of the work presented. 

 

 

2. LEARNING METHOD FOR HEAD SELECTION 

AND ROUTING IN WSN 

 

2.1 Wireless sensor network 

 

In recent years, wireless sensor networks have gained a lot 

of usage in practical applications. The self-deploying and 

communication properties of WSN offered the advantage of 

data exchange at remote locations. WSN is very suitable for 

usage where pre-infrastructure installation is a difficult task. 

Evolved WSN has developed interfaces for both indoor and 

outdoor usage [28]. Captured data from the sensor unit of 

WSN is processed for exchange over a wireless medium. The 

nodes are formed with an integrated model of the codec’s and 

sensor unit. Encoded data is exchanged over the wireless 

medium in cooperation with intermediate nodes, which 

forward communicating packets to the destination. The self-

creating nature of WSN has the advantage of remote usage 

with no pre-infrastructure dependency; however, the paths 

used in data exchange are highly dynamic in nature, which 

minimizes the reliability of this network in critical application 

usage. The constraint on the battery source and randomly 

varying traffic conditions limit WSN usage in various real-

time applications. Reliable routing is a prime requirement in 

WSN due to its sensitive data processing from sensor nodes. 

Communication in WSN is performed using a cluster-based 

approach, where clusters are formed based on node coverage 

range. A head node is chosen as a centralized link node for 

data exchange based on maximum coverage and energy level. 

All member nodes communicate via the selected head node. 

Optimal clustering and head selection are needed in WSN for 

varying node characteristics such as data sensitivity and gain 
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factor in the cluster. Efficient cluster heads are to be selected 

in WSN for higher reliability for data exchange, governing 

traffic conditions, and energy dissipation. Reliable routing 

under varying link conditions for low latency and higher 

accuracy is needed in the current WSN. The existing 

approaches to cluster formation, head selection, and routing 

were developed based on communication range and energy 

constraints. To optimize head selection and routing in WSN, 

machine learning approaches were introduced in the recent 

past. Heuristic learning approaches were developed for head 

selection. In recent years, a reinforcement learning approach 

for head selection and routing in WSN has been presented by 

Wang et al. [22]. Limiting constraints such as, latency, energy, 

and node density were used in the reinforcement approach to 

optimize routing in WSN. Figure 1 illustrates the approach for 

data exchange in a wireless sensor network using cluster-based 

communication with member and head nodes interfaced. The 

formation of optimal clusters and head selection are the two 

critical needs for reliable and efficient communication in WSN. 

 

 
 

Figure 1. Communication scenario in WSN 

 

2.2 Challenges 

 

In the current WSN, data is exchanged using cluster-based 

communication. As WSN are remotely deployed, 

communication is made using small subzones called ‘clusters’. 

In existing cluster-based communication, clusters are formed 

using a range constraint (where device power and the protocol 

used define the maximum coverage range). Nodes that fall 

within the range of multiple clusters have the probability of 

moving into any cluster; however, a random placement results 

in higher interference and power dissipation. All nodes in a 

cluster communicate using a centralized interface node called 

the head node. Head nodes are selected based on the maximum 

power and coverage of a node. As the head node is 

continuously engaged in data exchange, the possibility of node 

draining is higher, as is the maximum interference at this node, 

resulting in faster power dissipation. Rapid power dissipation 

results in faster failure of the network. The challenge of head 

node selection and optimal routing in WSN is a major concern 

that is required to be addressed. 

 

2.3 Reinforcement learning approach for head selection 

 

To overcome the issue of power dissipation and to extend 

the network life time, an approach to head selection and node 

placement in a cluster is outlined in the study of Mahmood et 

al. [27]. In monitoring of data flow through a head node, each 

head node updates the communication status to a centralized 

monitoring unit in a periodic manner, as depicted in Figure 2. 

The centralized monitoring unit observes the residual 

energy level of each head node and controls the head selection 

process based on the residual energy at each node. The most 

popular head selection algorithm is the LEACH algorithm [11], 

which selects the head node based on maximum energy level. 

LEACH attained a 15% improvement of network lifetime in 

WSN. However, LEACH is observed to have less performance 

in head selection due to following factors: 

(1) Random cluster head selection; 

(2) Unmonitored cluster formation; 

(3) High power dissipation; 

(4) Highly volatile under topology variation. 

 

 
 

Figure 2. Monitoring of sensor data in a wide area 

 

To overcome the issue with LEACH, a machine learning 

approach using reinforcement learning was introduced in the 

study of Mahmood et al. [27]. Reinforcement learning is a 

significant subfield of machine learning that concentrates on 

action learning to varying environment for expected outcome. 

Q-Learning approach [28] is an optimal method used in 

reinforcement learning that is based on the decision process 

from Markovian approach with no prior knowledge. Q-

Learning algorithm determines ideal route under dynamic 

network conditions. The Q-learning approach perform 

operation on action ‘a’, and compute a Q-metric (Qt) [27] 

which correlates a reward value (Rt) for an action (at) at 

iteration t, given as: 

 

𝑄𝑡(𝑎𝑡) = (1 − 𝛼)𝑄𝑡(𝑎𝑡)
+ 𝛼[𝑅𝑎

𝑡 (𝑎𝑡 + 1) + 𝛾𝑚𝑎𝑥𝑄𝑡(𝑎𝑡)] 
(1) 

 

where, α represents the rate of learning and γ the discount 

factor, 𝑅𝑎
𝑡  is the reward value for an action at. 

The reward value (𝑅𝑎
𝑡 ) is defined by the energy usage for a 

volume of data exchange (𝑑𝑡𝑘
𝑡 ), over all paths in the network 

at time‘t’, defined as: 

 

𝑅𝑎
𝑡 =

∑(min 𝐸(𝑛)+∑𝐸(𝑛))

∑𝑛(𝑃𝑡ℎ)
− 𝑡  (2) 

 

where, E(n) is the residual energy at a node after data exchange, 

which is defined as: 

 

𝐸(𝑛) = 𝐸𝑘
𝑡 − 𝑑𝑡𝑘

𝑡 × 𝐸𝑐𝑜𝑠𝑡
𝑡  (3) 

 

where, 𝐸𝑘
𝑡  is the available energy at time t for kth node, 𝑑𝑡𝑘

𝑡  is 

the volume of data in the buffer, 𝐸𝑐𝑜𝑠𝑡
𝑡  is the energy cost for a 

unit data, t is the time slot. 

The path with the highest reward value, defined by the 

residual energy, is chosen as the optimal path for data 

exchange. The path selected for communication performs data 
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exchange via cluster heads. Selection of a cluster head is 

limited by a threshold value (Thn), which is dynamically 

computed based on the probability of cluster head selection of 

a node, defined by: 

 

𝑇ℎ𝑛 =
𝑃𝑟𝑜𝑏(𝑝)

1−𝑃𝑟𝑜𝑏×(𝑟𝑚𝑜𝑑×(
1

𝑃𝑟𝑜𝑏
))

  (4) 

 

where, Prob(p) is the probability of cluster heads at rth iteration. 

All member nodes in a cluster with a reward factor above 

the computed threshold are declared heads. Registered 

member nodes in the cluster exchange data via selected head 

nodes. The selection of a head node is developed based on 

residual energy; however, the reliability of data exchange for 

the selected head node is not observed. Reliability of data 

exchange in WSN is a critical need, as the data communicated 

is sensitive in nature. Loss of information or delay in data 

exchange results in non-accurate decisions. Hence, to 

introduce the reliability factor in WSN head selection, routing, 

and cluster formation, an improved learning approach 

updating existing reward function is proposed. The proposed 

approach of low-risk reliable routing for WSN is interfaced for 

vital monitoring in medical application, as presented in the 

following section. 

 

 

3. LOW-RISK RELIABLE ROUTING (LRRR) FOR 

VITAL DATA MONITORING 

 

For cluster-based communication in WSN, cluster heads are 

the main interlinks for data exchange. In many cases, head 

node fails to forward packets due to large traffic condition or 

power constraints. To avoid failure of packet loss, multi-head 

communication is adopted. Multi-head communication offers 

a higher guarantee of forwarding packet delivery in WSN. A 

two-head communication based on Q-leaning is outlined in the 

study of Mahmood et al. [27]. In this approach, among the 

probable head nodes, the node with the maximum reward is 

selected as the primal cluster head and the next as a secondary 

head. During data exchange, secondary heads are used in 

forwarding data when primal head fails in forwarding packets. 

The outlined approach dynamically selects head nodes based 

on node residual energy. The decisions are made using a 

varying threshold value computed based on active network 

conditions. The dynamic approach results in the selection of 

heads and communicating paths more efficiently, improving 

data delivery, network throughput, network life time, and 

decrease in latency metric. The selection of a head node for 

data exchange is defined by a reward factor measured based 

on action in the network. However, the varying condition of 

WSN during data exchange has an impact on multiple factors 

that effect the data exchange performance of WSN, listed as 

follows: 

(1) Rate of power dissipation; 

(2) Traffic flowing through the head nodes; 

(3) Interference observed at the head node; 

(4) Cluster density. 

Random variation of these factors constraints the 

communication performance, effecting the accuracy of data 

exchange in WSN. For selecting head nodes and paths for 

communication, these factors need a simultaneous monitoring 

to improve the reliability of data exchange through selected 

head nodes. To improve the efficiency of data exchange, a 

low-risk, reliable approach for head selection and cluster 

formation is proposed. The approach defines a monitoring 

parameter for the existing reward metric to improve the 

reliability of the selected head node. A controlling and 

decision unit is interfaced with the existing monitoring unit to 

monitor the reliability factor of each node used in the selection 

of head node. Figure 3 illustrates the proposed approach to 

reliable monitoring in WSN communication. 

The decision unit reads the status of packet forwarding 

using a sensing signal from each node, which is generated on 

request for an updated value of the forwarding parameter 

measured at the node. The decision unit generates a control 

signal for reading the status of forwarding parameter from 

each node. The signal flow for the proposed approach in WSN 

is illustrated in Figure 3. The proposed LRRR approach 

defines two parameters of forwarding and blockage of packet 

as φ and, ρ respectively. During communication, the head node 

updates these two monitoring factors and shares them with the 

decision unit to select the optimal path for member nodes. 

 

 
 

Figure 3. WSN interface for reliability measure in WSN 

 

The updation of the two factors is given as: 

 

𝜑𝑡 = (𝜑 + 𝜑′) + 𝛿 (5) 

 

𝜌𝑡 = (𝜌 + 𝜌′) + (1 − 𝛿) (6) 

 

where, δ is the updation factor which is given value 1 on 

forwarding and 0 on blocking.  

The monitoring factor (M) for a path is defined as: 

 

𝑀 =
𝜑𝑡

𝜌𝑡
  (7) 

 

The monitoring factor (M) is applied to the reward function, 

which define the updated reward value for an action ‘a’ as: 

 

𝑅𝑎
𝑡_𝑢𝑝𝑑𝑎𝑡𝑒

= (
∑(min 𝐸(𝑛)+∑𝐸(𝑛))

∑𝑛(𝑃𝑡ℎ)
− 𝑡) × 𝑀  (8) 

 

Substituting M define the updated reward value as: 

 

𝑅𝑎
𝑡_𝑢𝑝𝑑𝑎𝑡𝑒

= (
∑(min 𝐸(𝑛)+∑𝐸(𝑛))

∑𝑛(𝑃𝑡ℎ)
− 𝑡) ×

(𝜑+𝜑′)+𝛿

(𝜌+𝜌′)+(1−𝛿)
  (9) 

 

Change in forwarding condition update δ, φ which effects 

the reward factor and the path selected for communication. 

With the proposed approach, the path selected for 

communication is energy efficient and reliable for data 

exchange. The reward factor is defined with respect to residual 

energy and packet forward factor. This provides a higher path 

existence probability and a longer life time for the network. 

Path selection at a node is developed with the prior knowledge 

of head forwarding conditions. The overhead of path re-
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requests due to packet failure is hence prevented. This offered 

a large reduction in power dissipation at head node and 

improves the overall network performance. The 

communication is performed among different sub-clusters via 

the selected head node. Random clustering and node 

registration into cluster results in an improper loading into the 

network. To minimize random loading into the network, a risk 

factor is introduced, define as: 

 

𝑅𝑖𝑠𝑘(𝑁𝑟) = (𝑃𝑟𝑜𝑏(∑𝐸(𝑛) + 𝐸(𝑛𝑟)) − (𝑁𝑐) × 𝐷)  (10) 

 

where, E(n)+E(nr) defines the aggregated energy due to a 

registering node E(nr) and the current energy level E(n) in the 

network. (Nc)×D indicates the volume of data increase due to 

Nr nodes in the network, and the total node (Nc) is defined by: 

 

𝑁𝑐 = (𝑁 + 𝑁𝑟)  (11) 

 

The proposed risk factor is measured by comparing total 

energy gain in a cluster with the volume of data overhead due 

to additional Nr nodes in the network. The computed risk 

factor is compared to a limiting value Lc, and a node with risk 

value below limiting value is registered into the cluster. Nodes 

with a risk factor above limiting value Lc are discarded for 

registering into the current cluster and processed for other 

cluster selection. 

The limiting value Lc for a node registration in a cluster is 

defined by: 

 

𝐿𝑐 =
𝑃𝑟𝑜𝑏(𝑝)

1−𝑃𝑟𝑜𝑏×(𝑟𝑚𝑜𝑑×(
1

𝑃𝑟𝑜𝑏
))
×

𝐸𝑛𝑟×𝑁𝑐

𝐸𝑖𝑛𝑖×𝑁𝑐
  (12) 

 

where, Enr and Eini are the overall network energy and initial 

energy respectively. 

Optimal clustering and reliable head selection offer high 

performance operation in WSN, which increases its 

application scope. To validate the proposed work, the outlined 

method is applied to the vital monitoring of patient in a large 

distributed network. The reliable routing increases network 

performance in terms of network throughput and minimal 

delay for data exchange in the network. A representation of 

vital monitoring in WSN using proposed approach is 

illustrated in Figure 4. 

 

 

 
 

Figure 4. Vital parameter monitoring using adaptive routing 

for WSN in medical data interface 

 

The proposed approach interfaces multiple sensors for 

sensing patient vitals and exchanges the processed data via 

selected head node. Interfacing of vital parameter is performed 

using patient records, which are buffered as text file and 

encoded for transmission over wireless channel. The flow 

diagram of the proposed approach for vital monitoring is 

shown in Figure 5. 

The proposed work monitors and communicates vital data 

such as temperature, heart rate and oxygen level through the 

interfacing sensor nodes. Reliable head selection and node 

with a lower risk factor contribute to faster and more accurate 

data exchange, which is much needed in medical applications. 

Flowchart for the proposed approach is shown in Figure 6. 

 

 
 

Figure 5. Flow diagram of vital monitoring using WSN 

interface 

 

 
 

Figure 6. Flow chart for developed LRRR method 

 

Communication of the patient’s vital parameters via a 

selected path using an updated reward factor guarantees a 

reliable path with higher residual energy in data exchange. The 

dual monitoring factors improve network throughput and 

minimal loss of information in vital data exchange over WSN. 

The proposed work monitors and communicates vital data 
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such as method finds its application in many real time 

applications such as wide area hospitals, military aids in 

remote location and battle fields, remote telemedicine 

applications etc. Wherein, existing method optimizes head 

selection and data exchange using residual energy defining 

reward factor, proposed method forwarding characteristic of 

node adds to the node reliability. Higher reliability of node 

observes minimum blockage and less power dissipation 

compared to existing approach. Higher reliability leads to 

faster data flow increasing network throughput and longer 

lifetime compared to existing methods. To the observed 

advantage there exist limitations which can be addressed in 

future. The outlined method integrates the observing metrics 

of residual energy and node characteristic with an assumption 

of ideal channelling conditions. To improve presented method 

under varying channel condition, outlined method can be 

extended with interference monitoring condition as an 

additional metric for further reliability improvement in future 

work. Observations of the proposed work for data packet 

exchange in WSN are presented in following section. 

 

 

4. RESULT OBSERVATIONS 

 

The evaluation of the proposed approach is developed for a 

randomly distributed network with network parameters listed 

in Table 1. The simulated network is randomly distributed, 

with nodes placed at random locations in the network area. 

Powers assigned to the nodes are randomly allocated to have a 

nonlinear distribution of power levels in the network. The 

network is simulated for 200 × 200 m2 network area, with the 

communication range of each node set to 45m. A simulation 

of the proposed approach is performed for varying number of 

nodes in the network and varying payload size for data 

exchange. The simulation is observed for network throughput, 

network lifetime, delay and number of alive nodes in the 

network for varying analyzing parameters. 

 

Table 1. Network Parameters for simulation 

 
Network Parameter Values 

Node Layout Random 

Route Discovery LRRR 

MAC Interface IEEE 802.11 

Communication Range 45m 

Network Area 200 × 200 m2 

Node Counts 10-100 

 

Figure 7 shows the simulated network for a randomly 

distributed node in a 200×200 m2 network area. Each node in 

the network is allotted with a distinct node ID, bandwidth, and 

power level. Nodes with a range of 45m in distance are 

declared as direct link nodes. All link nodes exchange their 

registered link nodes to form possible paths for 

communication as shown in Figure 8. The proposed risk factor 

is computed to form a sub cluster as shown in Figure 9 below. 

Based on the power level and reward factor, a shared head 

node is selected and all linked nodes are registered to the head 

node for data exchange, selecting a suitable path as shown in 

Figure 9. 

To observe the accuracy of vital parameter exchange over 

the simulated network, five vital parameters, namely 

temperature, diastolic, systolic, pulse rate, and SpO2, are 

observed. Vital parameters are generated using the Matlab 

interface, where a random, varying signal is generated with a 

range of vital limits. Observations for the vital signals are 

shown in Figures 10-14. The network is interfaced with vital 

parameters using external text files. Variations in patient vitals 

are observed for a period of 30 seconds, as illustrated in the 

below figures. 

 

 
 

Figure 7. Layout network for communication 

 

 
 

Figure 8. Possible within range network links (R=45m) 

 

 
 

Figure 9. Path selected for commutation 

 

 
 

Figure 10. Signal for temperature variation 
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Figure 11. Signal for diastolic pressure variation 

 
 

Figure 12. Signal for systolic pressure variation 

 

 
 

Figure 13. Signal for pulse rate variation 

 

 
 

Figure 14. Signal for SpO2 variation  

 

Sensed data is exchanged over the network using an 

interfacing head and gateway node to the destination. The 

volume of packets exchanged and time taken are measured for 

the computation of network parameter. Network performance 

measured with varying node counts and packet size is shown 

in Figures 15-19. An observation of network throughput for 

varying node density is shown in Figure 15. The network 

throughput of the simulated network is defined by the volume 

of data exchange for an observing time period. The proposed 

LRRR approach attains a network throughput of 14800 kbps 

at 100th node, whereas the throughput of 11200 kbps, 8200 

kbps and 5200 kbps are observed for LEACH-EFT, TL-

LEACH and LEACH methods, respectively. Reliable head 

node offers a high probability of data exchange with minimal 

data blockage, resulting in a higher number of data packet 

exchange over the network in an observing time period. With 

an increase in node density, the network forms clusters more 

optimally by proposed risk monitoring, resulting in lesser 

packet blockage in the network. A faster data flow in the 

network results in an increase in the throughput using LRRR 

approach as observed in Figure 15. 

 
 

Figure 15. Network throughput with varying node counts 

 

Figure 16 presents the number of alive nodes with varying 

node counts in the network. As energy dissipation is observed 

with every packet exchange, the nodes with lower energy 

levels drain faster and are eliminate from the network, 

resulting in faster node elimination. The node alive count 

defines the total number of nodes in the network for a given 

observation time. The alive node count is observed to be 89 

for the proposed LRRR approach at 100th node, whereas it is 

observed to be 78, 65, and 57 for the existing LEACH-EFT, 

TL-LEACH, and LEACH methods, respectively. The 

proposed LRRR approach defines routes using risk and 

reliability measures which reduce the packet drop probability, 

hence minimizing the retransmission rate. Decrease in 

retransmission rate preserves energy levels at each node, 

resulting in more alive nodes in the network. 

 

 
 

Figure 16. Alive node counts for varying node count 

 

Figure 17 presents the observed network life time for 

varying node counts in the network. The network lifetime for 
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the proposed LRRR approach is observed to be 100 msec 

whereas for the LEACH, TL-LEACH, and LEACH-EFT 

methods, it is observed as 33, 78, and 87 msec respectively. 

Monitoring of risk and reliability factors in cluster formation 

and head selection provides a less blockage path. Less 

blockage results in power saving, which improves the lifetime 

of the network. 

 
 

Figure 17. Network lifetime with varying node count 

 

The delay metric is measured as an End-to-End 

communication time duration observed for data exchange in 

the network. The delay parameter at 100th node count for the 

developed LRRR method has been decreased to 4.9 sec, 11.9 

sec and, 17.7 sec when compared to the existing LEACH-EFT, 

TL-LEACH, and LEACH respectively. The network with 

selected head node offers a faster data exchange due to its 

selection based on the forwarding factor. This monitoring 

results in lower packet blockage and decreases End-to-End 

delays in the network. A comparison of the delay parameter 

for the proposed LRRR method compared to the existing 

LEACH, TL-LEACH, and LEACH-EFT methods is shown in 

Figure 18. Table 2 lists the performance values at 100th node. 

 

 
 

Figure 18. E2E Delay for varying node counts 

 

Table 2. Varying node count performance at 100th node 

 
Methods/ 

Parameters 
LEACH 

TL-

LEACH 

LEACH

-EFT 
LRRR 

Alive nodes 57 65 78 89 

Network lifetime 33 78 87 100 

E2E delay 19.9 14.1 7.1 2.2 

 

The packet delivery ratio (PDR), defined as a ratio of the 

volume of data received at destination over the volume of data 

being transmitted from the source, is presented in Figure 19. 

The observation of packet delivery ratio for varying node 

counts in the network is illustrated. With the rise in the number 

of nodes in the network, PDR for the network is observed to 

increase. The availability of additional nodes increases the 

routing probability and node availability, which results in an 

increase in higher data exchange rates. However, conventional 

LEACH, TL- LEACH, and LEACH-EFT methods perform 

data exchange over a less reliable path, as no measure is taken 

measures the reliability of the path before selection. The 

proposed method selects the path with the highest reliability 

factor using data exchange characteristics in the network. This 

minimizes the blockage factor in the network generated due to 

retransmission of packets. The proposed method selects the 

routing of data packets having a higher forwarding probability, 

hence improving the packet delivery ratio in the network. The 

simulated graph (Figure 19) shows that, at 100th node, the PDR 

values for LEACH, TL-LEACH, and LEACH-EFT are 

observed to be 87, 87.8, and 90.5 respectively. The proposed 

method is observed to increase PDR by 5.4%, 4.6%, and 1.9% 

as compared to the existing LEACH, TL-LEACH, and 

LEACH-EFT approach respectively. 

 

 
 

Figure 19. PDR with varying number of nodes 

 

The performance of the WSN for varying packet count is 

evaluated as shown in Figures 20-22. Setting a node count of 

100 in the network, and the volume of packet counts for 

exchange is evaluated. Different packet sizes in 

communication have variations in the monitoring parameters, 

which affect the accuracy of cluster formation and optimal 

head selection. The observation of number of alive nodes, 

network lifetime, and delay is observed with varying number 

of exchange packets in the network. 

 

 
 

Figure 20. Alive nodes for varying exchange packet counts 
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Figure 21. Network lifetime for varying packet count 

 

 
 

Figure 22. E2E Delay for varying packet count 

 

The volume of packet exchange has an impact on the traffic 

flow and resource allocation. Whereas existing approaches 

focus on energy-based head selection and data exchange, 

reliability of packet forwarding is not observed. Head nodes 

with higher energy levels could be blocked due to other factors 

in the network such as interference and traffic congestion. The 

proposed selection of head is governed by power and blockage 

level, which optimally select a path with higher reliability. 

Faster data exchange minimizes the blockage probability, 

which reduces power dissipation at each node in the network. 

Lower power dissipation increases the number of node alive 

counts, and network life time. A comparison of node life count 

and network lifetime is shown in Figures 20 and 21 

respectively. 

The E2E delay parameter is measured as the time taken 

from encoding sensed data to delivering it to the destination. 

The E2E delay is observed to be reduced by the LRRR method 

compared to the LEACH, TL-LEACH and LEACH-EFT 

methods. 

Observation of simulated networks for varying packet 

exchanging counts with LRRR, illustrates an increase in alive 

node count by 34, an increase in network lifetime by 71.3 msec, 

and the delay is observed to be minimized by 8 sec, as 

compared to LEACH, at 1000th packet exchange. Also, there 

is an increase in alive node count by 24, increase in network 

lifetime by 33.2 msec, and the delay is observed to be 

minimized by 4.6 sec, as compared to TL-LEACH. The 

simulated results also show an increase in alive node count by 

11, an increase in network lifetime by 21.1 msec, and the delay 

is observed to be minimized by 0.4 sec, as compared to 

LEACH-EFT. The performance metrics are tabled in Table 3 

below: 

Table 3. Varying packet count performance at 1000th level 

 
Methods/ 

Parameters 
LEACH 

TL-

LEACH 

LEACH

-EFT 
LRRR 

Alive nodes 9 19 32 43 

Network lifetime 60.1 98.1 110.3 131.4 

E2E delay 11.8 8.4 4.2 3.8 

 

Observations illustrate the significance of the integration of 

node forwarding characteristics as compared to the existing 

optimal data communication. The reward factor of Q-Learning 

updated with the proposed node characteristic results in an 

increase in node reliability in terms of data exchange. The 

methodology is seen to increase reliability, and network 

performance indicators such as network throughput, node 

lifetime, and packet delivery are also seen increased. The 

reliability factor increased the selection accuracy of the route 

for data exchange, which resulted in an increase in network 

parameters. In comparison to existing Q-Learning, where the 

objective was to conserve energy, higher energy dissipation is 

observed due to packet blockage, dropping, and retransmission 

processes. The reliability factor increased the probability of 

data exchange in the network, which relatively decreased the 

observed limiting factors. With observed performance and 

increases in reliability, the outlined method is observed to be 

more suitable for real-time applications under remote and 

critical usages. 

 

 

5. CONCLUSIONS 

 

This work proposes a method for cluster head selection and 

optimal cluster formation in a wireless sensor network, taking 

reliability factors into consideration. The formation of clusters 

and head selection is developed based on a modified 

reinforcement learning method to improve energy efficiency 

and network performance. A probabilistic prediction model 

using a learning approach to define a dynamic threshold for 

head selection is proposed. The proposed reliability factor, 

defined by the packet forwarding characteristic, improved the 

data exchange rate at the head node, which is a critical need 

for vital monitoring in medical applications. The simulated 

network is developed for monitoring vital parameters `in 

randomly deployed sensing nodes in the network and 

exchanging data using the LRRR approach. Network 

parameters defining network throughput, life time, and alive 

node count are observed to improve with the proposed LRRR 

approach with minimized end-to-end delay in the network. 

The packet delivery ratio is observed to improve for the 

proposed method by selecting a reliable path with an increase 

in node count and the number of packets exchanging in the 

network. The method outlined, considering reliability, 

improves network throughput and node life, which are critical 

parts of a real-time application. Applications such as health 

care monitoring demand a higher data exchange rate with 

minimal loss. The outline method offers the objective of 

reliability in data exchange, which extends life and hence 

makes it suitable for low-resource applications. The presented 

method can be further extended to improve reliability under 

varying channel conditions and different service interfaces. 

Channel interference has a considerable impact on the 

reliability measure, which could be added as a consideration 

parameter in future work. 
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NOMENCLATURE 

 

Qt Q-metric 

at action 

R reward value thermal 

E residual energy 

M monitoring factor 

Nr registering node 

Nc total node 

D volume of data 

L limiting value 

 

 

 

 

Greek symbols 

 

α learning rate 

γ discount factor 

φ forwarding factor 

δ updation factor 

ρ blockage factor 

 

Subscripts 

 

n number of nodes  

t time (Sec) 

nr overall network nodes 

ini initial value 
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