
 

 

 

 
 

 

1. INTRODUCTION 

 

Concentrated solar systems are a solution to obtain thermal 

or electric energy using the solar source and, therefore, they 

allow to reduce the air pollution [1]. A linear plant with 

Fresnel Reflectors is made up of some rows of flat mirrors 

that reflect direct solar radiation on a fixed receiver. The 

latter is placed at a few meters from the ground parallel to the 

rows of mirrors. It consists of an absorber tube, inside which 

the heat transfer fluid flows. It transports the absorbed energy 

in order to be used for the production of thermal energy, 

electric energy or in cogeneration, replacing plants which use 

non-renewable sources [2]. The plant, in addition, can be 

provided with a thermal storage tank, necessary to supply the 

moments of little or no solar radiation. The working fluid can 

be diathermic oil, a mixture of molten salts or water for the 

direct production of steam [3]. Above the absorber tube, 

usually, a secondary reflector or a hot chamber is used to 

retain solar radiation [4]. The primary reflectors are provided 

with one degree of freedom: the rotation around the axis 

parallel to the tube receiver. The use of only plane mirrors 

reduces costs with respect to the production and use of more 

complex geometries. In addition, using more mirrors means it 

approaches the case of a parabolic reflector. 

This work provides a method to determine the optimal 

spacing of the reflectors in order to avoid shading 

phenomena. Later, the mathematical law useful to know the 

position that each reflector must assume in every hour of the 

day is obtained. 

2. CHOICE OF THE DISTANCE BETWEEN 

PRIMARY REFLECTORS 

Linear Fresnel reflectors have some advantages compared 

to a parabolic trough power plant. In addition to reduced 

installation costs, a feature that distinguishes them is the 

better use of the land. In fact, a small gap between the mirrors 

is sufficient to minimize shading.  

The main energy losses due to the arrangement of the 

primary reflectors are analyzed. An important cause of error 

is the shading that a primary reflector casts on the reflector in 

front or behind, according to the time of day. In fact, in this 

case a small part of a primary reflector is unable to capture 

rays from the Sun because shaded by another reflector. This 

leads to a waste of material because the mirror part in the 

shade does not send any reflection on the absorber tube.  

In the case in which the shading phenomenon is not 

present, another malfunction that should be avoided is due to 

the blocking phenomenon. In some moments of the day some 

primary reflectors may reflect solar radiation on the reflector 

in front or behind. The geometrical losses described are 

summarized in Figure 1. 
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ABSTRACT 

 
In the present work, the law of motion of reflectors for a concentrating solar Linear Fresnel plant is 

geometrically analyzed. Firstly, a method for optimally distributing the primary reflectors on the ground is 

proposed. Furthermore, the mathematical procedure used to identify the law of motion that the mirrors must 

follow to reflect solar radiation on the absorber tube is presented. To make better use of the surface area 

occupied by the plant it is necessary to distance the rows of mirrors adequately so that the effects of shading 

and blocking between the same can be reduced. Avoiding these phenomena allows the initial costs of the plant 

to be reduced since the reflective material is not used in excess, thus allowing exploitation of the entire 

reflective surface available. In the work, using spherical trigonometry concepts, the motion law equation of 

the mirrors is detected. It allows the angle that they must assume in every moment of the day to be established 

and it has an entirely general valence: it can be applied to each plant according to its constructional 

characteristics and to each type of orientation. Finally, a comparison is carried out in which the main tracking 

differences between the plants oriented North-South and East-West are analyzed. 
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Figure 1. Cosine effect, shading and blocking. 

 

The problems mentioned above could be solved by 

increasing the gap between two rows of primary reflectors, 

with an increase in the area occupied for the whole plant. 

Losses due to the cosine effect are inevitable, because the 

surface of each mirror lies on a different plane from the one 

perpendicular to solar rays otherwise it would not be possible 

to reflect solar radiation on the absorption system.  

As regards the effects of shading and blocking, instead, it 

is possible to optimize the amount of material employed by 

spacing the mirror rows in a suitable manner. In particular, 

the greater the distance between mirrors the lower the effects 

of shading and blocking, resulting, however, in an increase in 

the total surface occupied by the implant (the comparison is 

made with the same mirror surface). The optimum spacing 

derives from economic aspects; in fact, with the same 

available area for the installation of the entire system, in 

relation to the arrangement of rows, it happens that:  

• spacing them slightly, all the radiation incident on the 

area occupied by the plant is exploited, but a large part 

of the reflecting surfaces may be in shadow and 

therefore unused; 

• spacing them more, a part of the solar radiation passes 

through the gap present between the reflectors without 

producing useful effects; however, the initial costs of 

the system are reduced because less reflective material 

is used. 

Therefore, the highest producibility is achieved with zero 

spacing between the reflectors, however, with larger gaps it is 

possible to reduce initial investment costs at the expense of a 

slight reduction in producibility. 

 

 
 

Figure 2. Blocking effect between two adjacent reflectors. 

 

It would be desirable that in the middle of the day, when 

solar radiation is maximum, all sun rays incident in the area 

occupied by the plant could be reflected on the absorber tube. 

This is not possible or it would be, at the limit, if the width of 

the reflectors were infinitely small. Because of the blocking 

effects between adjacent rows, in the case where the 

reflectors had no distance between them, some rays would 

impact the rear of the previous mirror as shown in Figure 2. It 

is therefore advantageous to separate them in such a way that 

at noon this phenomenon will not occur for any row. Because 

of this arrangement, as mentioned before, a part of the solar 

radiation penetrates inside the gap, however, it does not 

produce useful effects as there would be when reflected on 

another reflector. 

In Figure 2 there are two lines of mirrors: the first is placed 

at a distance d from the receiver tube and the second at a 

distance d + z. The mirrors have width L and the tube is 

placed at a height h from the plane on which the reflectors are 

fixed. Radiation incident at point B does not reach the tube 

because it is intercepted by the previous row. 

The aim is to determine the distance z, between two rows 

of mirrors, necessary in order to avoid blocking phenomena.  

At point O, the angle formed between the incident and 

reflected rays, colored in yellow in Figure 2, is the arctangent 

of d/h; similarly, at the point O’, the same angle can be 

evaluated through the arctangent of [(d+z)/h]. To evaluate 

the inclination that the two reflectors take, the law of 

reflection is used, whereby the angle between the incident ray 

and that normal to the mirror surface must be congruent to 

the angle between the normal and the reflected ray. So the 

normal directions to the two mirrors are determined by the 

angles: 
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Therefore, the coordinates of the points T, A and B are: 
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Using the figure, it is possible to note that the limit 

condition, so that there is no effect of blocking, is that these 3 

points are aligned with each other, then there must be the 

following relationship: 
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Eq(7) can be used to obtain the optimal distribution of the 

rows of mirrors in order to not use surplus material, to be able 

to reduce the cost and the weight of the structure. Therefore, 

two reflectors must be spaced by z(d,L,h). The equation is 
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solved by using Matlab software and the results are presented 

below.  

The graph in Figure 3 shows the trend of z as a function of 

the distance from the center of the system for different values 

of the height h of the receiver tube. 

 

 
 

Figure 3. Distance z between two rows as a function of 

distance from the receiver tube, for different heights h 

 

In Figure 3 the gap present between the rows increases 

with the distance from the tube: in fact, the greatest shading 

and blocking occur for the most external rows. Moreover, for 

the further pipe heights, the reflectors can be installed closer 

to each other. By way of example, for a row placed at 4 

meters away from the receiver tube, which is positioned 4 

meters high, it is (following the blue curve): 

 

m675.0=z ; 

 

In percentage terms, the vacuum present is: 

 

%35=35.0≈
L

L-z
.  

 

With the same procedure, it is possible to detect from the 

graph the position of the next reflector and so on for all rows.  

With the increase of plant height h, mirrors can be placed 

closer and the occupied land is fully exploited; in contrast, 

the too high absorber requires a very precise solar tracking 

system and high tolerances on the construction of the 

reflective panels. Figure 4 shows the arrangement of the 

mirrors in the case of a tube height of 4.5 m and 9 m.  

 

 
 

Figure 4. Position of the mirrors in relation to the tube height 

 

To exploit the entire surface, it is possible to adopt the 

solution presented in Figure 5: Arranging two plants in 

parallel in such a way as to overlap the external reflectors by 

inserting the mirrors of a plant in correspondence to the voids 

of the other.  

This solution can be applied if there is a sufficient distance 

between two mirrors of the first module to insert a row of 

mirrors of the other module. In particular, the ratio 
𝑧−𝐿

𝐿
 must 

reach the value of 1 for some rows. 

 

 
 

Figure 5. Parallel arrangement of two Linear Fresnel 

Collectors with intersection of the reflection systems 

3. MATHEMATICAL DETECTION OF THE LAW OF 

THE MOTION OF REFLECTORS 

Each row of mirrors must be inclined relative to the ground 

in such a way that the reflected beam is always incident on 

the receiver tube. Therefore, first of all, it is necessary to 

know the apparent motion of the sun in places of interest. The 

position of the Sun in the sky is determined using the solar 

altitude ‘α’ and azimuth ‘a’ calculated with the formulas 

available in the literature [5]. 

3.1 Determination of the inclinations of the reflectors 

Spherical trigonometry is a branch of spherical geometry 

that deals with the relationship between sides and angles of 

spherical polygons, in particular spherical triangles. 

In order to solve a geometrical problem on a sphere, the 

figures should be divided into elementary structures whose 

relationships are known. The elementary figures identified 

are spherical triangles. 

 

 
 

Figure 6. Spherical triangle 

 
With reference to Figure 6, indicating with r̂,q̂,p̂ the interior 

angles and with p, q, r the sides of generic spherical triangle, 

these equations are valid: 

 

r̂cosqsinpsin+qcospcos=rcos                                     (8) 
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r̂sin

rsin
=

q̂sin

qsin
=

p̂sin

psin
                                                            (9) 

 

For a linear Fresnel plant, the law of motion is first 

obtained for the reflector below the receiver tube. Later, the 

law will be modified to extend its validity to other ones.  

In Figure 7 the three versors characteristic of the reflection 

are presented [6]. They, having unitary modulus, can be 

inscribed within a sphere with unit radius: 

- versor n̂  is normal to the mirror surface; it belongs to the x-

z plan since the mirror can only rotate around the y axis. The 

objective is to determine the angle that it forms with the 

horizontal plan; 

- versor tn̂  indicates the direction of the reflected beam; its 

component along x is nothing because the mirror considered 

is the one under the receiver tube; 

- versor sn̂  indicates the direction from which sun rays 

come; it is identified with the solar altitude and azimuth 
corresponding to the day and time considered. 

 

 
 

Figure 7. Versors of reflection within the sphere 

 

The laws of reflection provide two links between the unit 

vectors: 

• the three versors are in the same plan. It means that 

they must be aligned on a great circle of the sphere; 

• the great circle formed between n̂  and tn̂ and one 

formed between n̂  e sn̂  are congruent. 

In Figure 8 there is a top view representation of the sphere. 

On this surface, the points S, N, T are identified. They are 

given by the intersection respectively with the unit vector of 

the solar rays, with the unit vector normal to the surface of 

the reflector, and with the unit vector of the reflected beam. 

 

 
 

Figure 8. Top view representation of the sphere 

Point S is uniquely determined by the angles α and a (in 

this case it refers to a general location of the Sun). For the 

first law of reflection, as already said, the points S, N and T 

must be in the same great circle. This affirmation is taken into 

account, in Figure 8, by imposing the equality of the vertex 

angles 𝛿  in the point N. The second law of reflection is 

considered by imposing the equality between the arcs of great 

circle 𝛾 formed between N and T and between N and S. In 

order to solve the problem some arches are traced to generate 

spherical triangles. In particular, point A is identified, 

belonging to the vertical East-West plane and with an angular 

altitude to the horizontal direction East equal to α. The arc of 

great circle that connects S with A is indicated with 𝑏̂ and it is 

calculated using Eq(8) applied to the spherical triangle AOS: 
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Applying the Eq(9) to the triangle NOT: 
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Applying the Eq(9) also to the triangle ASN: 
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Still applying the law of sines in the spherical triangle 

AOS: 

 

b̂sin
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acoscos=b̂sinsin αθ                                                        (17) 

 

By combining the equations (13), (15) and (17), the 

expression of k̂ is obtained: 

 

acoscos=k̂sin α                                                               (18) 

 

The position of point T is uniquely determined since it is a 

function only of arc k̂ . The problem is reduced to detect the 

amplitude of arc x̂ which identifies the position of point N, 

which is the normal to the surface of the reflector. In order to 

obtain the value of x̂ , the expressions of cos γ̂  are written 

applying the law of cosines to the spherical triangles NOT 

and ASN: 

x̂cosk̂cos=ˆcosγ                                                              (19) 
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θααγ cos)-x̂-°90sin(b̂sin+)-x̂-°90cos(b̂cos=ˆcos      (20) 

 

Equating these two expressions the following equation is 

obtained: 

 

θαα cos)-x̂-°90sin(b̂sin+)-x̂-°90cos(b̂cos=x̂cosk̂cos
 
(21) 

 

Still applying Eq(8) to the triangle AOS, θcos can be 

calculated: 
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Combining then Eq(24) and Eq(21): 
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Using the formulas of addition of the sine and cosine and 

replacing them in Eq(25): 
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By simplifying and dividing everything by x̂cos (which is 

null only when x̂  = 90°. This condition never occurs during 

normal operation of the reflector): 
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At this point it is possible to derive the expression of the 

tangent of x̂ : 
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Using Eq(11), the equation becomes: 
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Finally, using Eq(18) for k̂: 
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The inclination of the normal with respect to the x axis is 

indicated with β and is represented in Figure 9. 

 

 
 

Figure 9. Unit vector normal to the surface of the primary 

reflector 

 

Therefore, as regards the primary reflector below the 

receiver tube, β is: 

 

asincos

sin-acoscos-1
arctan-°90=

22

α
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Figure 10. Generic reflector at a distance d from the tube 

 

 
 

Figure 11. Representation of the versors in the sphere for the 

row under the tube (S, N, T) and for a generic row (S,N’,T’) 

 

The equation obtained provides the slope of the reflector 
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using, exclusively, solar altitude and azimuth. It is necessary, 

however, to seek an equation which is valid also for the other 

rows of mirrors. In particular, indicating with h the height of 

the tube, the equation will be generalized to a generic 

reflector placed at a distance d from it (Figure 10). 

With reference to Figure 11 it is possible to generalize 

Eq(31) to other cases. In particular, for the panel directly 

below the tube, the point T indicating the reflected beam is 

located on arc t; for a generic panel disposed at a distance d 

from the tube, point T’ belongs to arc t’. Arc t’ is obtained 

through a rotation of φ of the arc t around the axis of rotation 

of the mirrors. The amount of rotation φ is equal to arctangent 

of d/h. In other words, arc t’ depicts, in a polar representation, 

the tube receiver viewed from the generic primary reflector. 

Therefore, as already said, point T’ must necessarily be on 

this arc, while point N’ must belong to the East-West arc and 

must be such that arc S-N’ and arc N’-T’ are equal to each 

other (shown in Figure 11 with 'γ ). The generic panel must 

have the same inclination as the one below the tube adding 

the angle N-N’. Triangles STT’ and SNN’ share the angle in 

point S and the two arches ST and ST’ are twice the length of 

arcs SN and SN’. The two triangles are linked by a 

geometrical similarity. But a clarification should be made: 

since arc TT’ is not an arc of a great circle, then triangle RST’ 

is not definable as a spherical triangle. The angle subtended 

by arc TT’, in fact, does not have its vertex in the center of 

the sphere, but in a point on the North-South axis. For this 

reason, it is possible to define the concept of similarity, not 

definable by spherical triangles. In fact, arc TT’, which is 

given by the intersection of the sphere with a plane parallel to 

the x-z plane, is such that also the other internal angles of 

triangle STT’ are congruent with the interior angles of 

triangle SNN’. Therefore, the similarity between the two 

triangles allows one to write: 

 

γ

γ

ˆ2

ˆ
=

'TT

'NN
                                                                          (32) 

 

h

d
arctan

2

1
=

2

1
='TT

2

1
='NN φ                                         (33) 

 

Therefore, for a generic mirror, the relationship (31) is 

written as follows: 
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It appears evident that all the mirrors rotate with the same 

angles. The rotation, in fact, depends exclusively on solar 

parameters with the addition of a fixed term dependent only 

on the row of mirrors considered.  

3.2 Analysis of results 

Eq(34) is implemented in MatLab software and has been 

resolved, so the trends of the inclinations are obtained.  

Figures 12 and 13 show the inclinations of the primary 

reflectors during the days 21 June and 21 December, in the 

event that the plant is oriented North-South. 

It is possible to extend the validity of the equation even in 

the case in which the orientation is East-West. For this 

purpose, a mathematical artifice is used. It consists in 

modifying the value of the azimuth solar of 90°. In this way, 

instead of rotating the orientation of the plant, with relative 

changes to be made to the equation, the solar trajectory is 

rotated fictitiously, changing only the value of azimuth. In 

Figures 14 and 15 the inclinations of the mirrors are shown 

for the two days mentioned above in the case of East-West 

orientation. 

In Figures 16 and 17 the inclinations of mirror β under the 

tube are shown for different days and for different types of 

plant orientation. 

 

 
 

Figure 12. Inclination of reflectors on June 21. h = 5 m.  

 Latitude 40 °N. Orientation North-South 

 

 
 

Figure 13. Inclination of reflectors on December 21. h = 5 m.  

 Latitude 40 °N. Orientation North-South 

 

 
 

Figure 14. Inclination of reflectors on June 21. h = 5 m.  

 Latitude 40 °N. Orientation East-West 
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Figure 15. Inclination of reflectors on December 21. h = 5 m.   

Latitude 40 °N. Orientation East-West 

 

 
 

Figure 16. Inclination of a reflector for different days. h =5m 

 Latitude 40 °N. Orientation North-South 

 

 
 

Figure 17. Inclination of a reflector for different days. h =5m 

Latitude 40 °N. Orientation East-West 

 

When the solar altitude is low and the beam derives from 

the same direction as the implant, the rays reflected by 

mirrors do not completely illuminate the receiver tube (Figure 

18). 

 
 

Figure 18. Problem of reflection for an East-West plant 

 
The segment of tube k in Figure 18, already introduced 

with Figure 7, represents the not radiated length of tube. The 

value of k can be obtained with reference to arc k̂  of Figure 

8: 

 

22 h+dk̂tan=k                                                             (35) 

 

This length is determined primarily by: 

-  sunpaths and, therefore, the latitude of the place, which 

is the reason why the use of Fresnel plants and their 

orientation is recommended for particular geographical areas; 

-  d and h parameters: the greater the distance between 

reflectors and absorber and the higher the value of k; in this 

sense, it is necessary to install the tube not too high. 

The optimal height h is the result of a geometrical 

compromise: the excessive height causes the loss of solar 

rays since k is high; the too low h generates shading and 

blocking and, thus, the panels must be adequately spaced, 

causing the loss of surface area occupied by the mirrors. In 

Figures 19 and 20 the trends of k for different days are 

shown. The main differences between the two types of 

orientation are: 

- in the summer period: in the case of North-South 

orientation k values are maintained relatively low during the 

whole day; in the case of East-West orientation it reaches 

higher values, resulting zero at noon, when the insolation is 

maximum; 

- in the winter period: in the case of North-South 

orientation segment k is always high and, therefore, a part of 

the pipe is never heated; in the East-West case, on the other 

hand, k is always low and the system is best exploited. 

 

 
 

Figure 19. K length for different days. h = 5 m  

Orientation North-South 

 

With reference to December 21 at noon, two plants with 

North-South orientation (Figure 21) and East-West (Figure 
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22) are shown. As previously mentioned the implants with 

North-South orientation are not able to irradiate the absorber 

tube completely in the winter period (Figure 21). A system 

with East-West orientation, instead, succeeds in directing the 

solar rays very well, especially at noon. 

 

 
 

Figure 20. K length for different days. h = 5 m  

Orientation East-West 

 

 
 

Figure 21. Orientation of the mirrors on December 21  

at noon in a North-South plant  

 

 
 

Figure 22. Orientation of the mirrors on December 21 

 at noon in an East-West plant 

 

It is important to reiterate that the East-West solution is 

convenient at certain times of the year, while at other times it 

is less efficient than the North-South arrangement. The 

choice of the optimal orientation is influenced by the trends 

of k in the course of the year, which are functions of the 

geometrical characteristics of the plant (height of the tube, 

width of the reflectors) and the latitude of the location. 

4. CONCLUSIONS 

In the present work the operating characteristics of a linear 

Fresnel concentrator were analyzed. The main purpose is to 

identify mathematically the inclinations that the mirrors must 

assume in every moment of the day. The equation which 

defines the law of motion of the mirrors was determined. In 

accordance with this formula, it appears that the inclination of 

the mirrors is determined by: 

• a term variable with the time, according only to the 

position of the Sun and, therefore, equal for all the 

reflectors;  

• a term independent of time, characteristic of the 

position of the considered row of reflector. 

It is demonstrated, therefore, that the inclinations which 

must assume the spotlight always maintain the same phase 

angle between themselves, at every moment of the day. 

Consequently, they must all rotate with the same angular 

speed and, therefore, can be handled by a single motor. 

The proposed formula also allows the assessment instant 

by instant of the length of the tube which is not irradiated by 

the reflected rays, in relation to the orientation of the plant 

and the other geometric data. 
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NOMENCLATURE 

a solar azimuth, degrees 

b̂ , k̂ , x̂  Construction angles, degrees 

d distance between tube and reflector, m 

h height of the tube, m 

k length of tube not irradiated, m 

L primary reflector width, m 

n̂  versor normal to primary reflector 

sn̂  sun’s rays versor 

tn̂  reflected beam versor 

p, q, r sides of a generic spherical triangle, degrees 

p


, q̂ , r̂  interior angles of a generic spherical 

triangle, degrees 

x abscissa, m 

y ordinate, m 

z distance between two adjacent mirrors, m 

 

Greeg Symbols 

 

α solar altitude, degrees 

β angle of inclination of reflector, degrees 

γ̂ , δ, θ construction angles, degrees 

ξ angle between normal of mirror and vertical 

axis, degrees 

ξ ' angle between normal of adjacent mirror and 

vertical axis, degrees 

φ angle between the longitudinal vertical plan 

and the plan linking the mirror line and the 

tube, degrees 

 

Subscripts 

 

A right end of reflector 

B left end of reflector 

T tube 
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