
Enhancing Anomaly-Based Intrusion Detection Systems: A Hybrid Approach Integrating

Feature Selection and Bayesian Hyperparameter Optimization

Naoual Berbiche* , Jamila El Alami

Laboratory of Analysis Systems, Processing Information and Industrial Management, The Higher School of Technology of

Sale, Mohammed V University, Rabat 10080, Morocco

Corresponding Author Email: nberbiche@hotmail.com

https://doi.org/10.18280/isi.280506 ABSTRACT

Received: 25 September 2023

Revised: 15 October 2023

Accepted: 19 October 2023

Available online: 31 October 2023

In the dynamically evolving landscape of cybersecurity, safeguarding IT infrastructures has

emerged as an imperative to thwart the escalation of cyber-attacks. Anomaly-based

Intrusion Detection Systems (IDS) play a pivotal role in identifying aberrant behaviours

that elude conventional detection mechanisms. Nonetheless, these systems are not without

their shortcomings, manifesting as elevated false alarm rates and a diminished efficacy in

detecting sophisticated attacks. In response to these challenges, a hybrid approach, entailing

Machine Learning (ML) techniques, was employed to augment the performance of

anomaly-based IDS in terms of detection accuracy, False Positive (FP) Rate, and detection

time. The approach encompassed a two-fold optimization strategy: initial feature selection

predicated on feature importance derived from the XGBoost classifier, followed by

Bayesian optimization (BO) for hyperparameter tuning. The optimization was conducted

with respect to two objective functions, namely the ROC-AUC score and the Average

Precision score, each serving to identify the optimal hyperparameters for their respective

maximization. Classifiers, including Extreme Gradient Boosting (XGBoost), Random

Forest (RF), and Stochastic Gradient Descent (SGD), were subjected to training under

configurations encompassing both the hyperparameters resultant from BO and the default

hyperparameters, the latter serving as reference models. Evaluation, conducted through a

multifaceted metric analysis, substantiated the superiority of the optimized models over

their reference counterparts, with the optimized XGBoost models demonstrating the most

commendable performance. This paradigm offers a promising avenue for enhancing

detection precision and mitigating false alarms, thereby fortifying the security of computer

systems.

Keywords:

Anomaly-Based Intrusion Detection System

(IDS), feature selection, feature importance,

Hyperparameter Optimization (HPO),

Bayesian Optimization (BO), Machine

Learning (ML), Extreme Gradient Boosting

(XGBoost), Stochastic Gradient Descent

(SGD)

1. INTRODUCTION

The unprecedented growth of Internet usage in

contemporary society has significantly permeated various

domains, encompassing communication, financial

transactions, and remote employment, among others. Despite

its immense potential, the Internet concurrently presents

substantial risks to the security of both communications and

data. In the wake of escalating advanced cyber-attacks, a

constant vigilance in information security has been

necessitated globally, culminating in a formidable challenge.

IDS, developed as pivotal IT security tools, are employed to

monitor network traffic, identifying any suspicious or

malicious activity, and subsequently either alerting system

administrators or initiating preventive actions. Implemented as

either hardware or software solutions, these systems are

integral to safeguarding networks and IT systems against

potential threats and attacks. In practical terms, IDS are

classified into two categories: Network IDS (NIDS) and Host

IDS (HIDS) [1, 2]. HIDS are concerned with the security of

individual hosts, whereas NIDS analyze network traffic,

searching for suspicious activities.

IDS can be categorized into three distinct groups, each

defined by its respective detection methodology: signature-

based IDS, anomaly-based IDS, and hybrid IDS [3, 4].

Operational methods are unique to each type, and their

applicability extends across various network levels. Signature-

based IDS have been developed to identify intrusions by

juxtaposing network traffic with a predefined database of

signatures, each associated with known attacks. Alerts are

triggered in instances of activity conformance to any database

signature. While these systems demonstrate efficacy in the

detection of attacks with pre-established signatures, they are

substantially limited in their capacity to address novel or zero-

day attacks, as well as diverse and sophisticated attacks.

Challenges are also present in the management of FP and

encrypted traffic. Contrastingly, anomaly-based IDS, also

referred to as behavior-based IDS, are engaged in the

monitoring of network and user activity patterns, seeking

anomalies. Profiles of standard behavior are established, with

deviations of significance prompting alert generation [3, 4].

The initial learning phase, essential for comprehending typical

network and user behavior, necessitates considerable time and

resource investment. The principal strength of anomaly-based

detection methods lies in their ability to detect attack incidents

that have not been previously identified [5]. However, this

approach is not without its drawbacks; a general trend of

higher FP rates is observed in comparison to signature-based

methods, and false negatives (FN) are also produced. The

adaptability of anomaly-based detection systems to constantly

Ingénierie des Systèmes d’Information
Vol. 28, No. 5, October, 2023, pp. 1177-1195

Journal homepage: http://iieta.org/journals/isi

1177

https://orcid.org/0000-0001-6051-7915
https://orcid.org/0000-0003-4658-4550
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280506&domain=pdf

evolving network environments, which are inherently

complex, is limited. This complexity impedes the creation of

comprehensive and accurate models capable of accounting for

all potential traffic variations, resulting in detection gaps.

Hybrid IDS, on the other hand, amalgamate the strengths of

both signature-based and anomaly-based systems, striving to

mitigate the individual limitations of each IDS type and

enhance overall threat detection efficacy. The performance of

NIDS is gauged through multiple criteria, including detection

rate, FP rate, response time, scalability, network impact, and

the ease of configuration and maintenance [6]. It is imperative

that the design and implementation of any IDS are undertaken

with these effectiveness criteria in mind. Recent years have

witnessed a shift in intrusion detection research towards ML-

based IDS, now recognized as the field's most efficacious

systems. This recognition is attributed to the systems' ability

to learn and enhance performance based on historical data

analysis.

Effective learning within ML contexts necessitates the

utilization of extensive datasets, potentially encompassing a

vast feature space and requiring substantial processing

durations. Challenges are encountered in the form of

superfluous information, contributing to dimensional

complexity and potentially detrimentally impacting system

performance. Consequently, the implementation of feature

engineering processes is imperative to diminish the prevalence

of irrelevant features, ensuring consideration is afforded solely

to those pertinent to training and testing phases. In the

conducted study, feature importance measures, ascertained

through the XGBoost algorithm, were employed for feature

selection, culminating in the elimination of superfluous

features, thereby mitigating complexity and data size.

Conversely, ML algorithms are configured via a myriad of

hyperparameters, dictating model architecture. These

hyperparameters, required to be predefined prior to model

training, cannot be extrapolated directly from training data [7].

To tailor a ML model to diverse problems, adjustments to its

hyperparameters are essential. The selection of an optimal

configuration for ML models holds significant implications

for model performance, specifically concerning complexity,

behavior, and processing speed [8].

The definition of hyperparameters constitutes a critical

component in the construction of proficient ML models.

Individual algorithms in ML each necessitate distinct

procedures for hyperparameter configuration. Manual tuning

is rendered inefficient, attributed to the extensive number of

hyperparameters, the complexity of models, the laborious

nature of model evaluations, and the non-linear interactions

amongst hyperparameters [7]. Hence, the imperative for

automation in hyperparameter adjustment is evident.

Techniques designated for the automated adjustment of

hyperparameters are encompassed under the term

“hyperparameter optimization (HPO)”. The primary

advantages of this optimization encompass the diminution of

human labor in the tuning process, enhancement in the

performance of ML models, and the facilitation of

reproducibility in both models and search processes.

Subsequent to the HPO process, the anticipation is the

attainment of an optimal ML model architecture [7]. In the

research at hand, BO was employed as the technique for HPO.

Within the experimental procedures undertaken, data

cleansing and scaling were initially performed, followed by

the application of the XGBoost algorithm to the

CSE_CICIDS2018-DDOS dataset. The purpose of this

application was to assess feature importance and to select

features of paramount relevance. Subsequent to this reduction

in dataset size, ML algorithms known for their high

performance-specifically XGBoost, RF, and SGD-were

employed. This procedure was executed twice, utilizing the

"Roc_auc_score" and "Average_precision (AP)_score"

objective functions to ascertain the optimal hyperparameters

that would maximize the outcomes of these functions. These

metrics are frequently utilized in the evaluation of model

performance. The area under the ROC curve (ROC-AUC)

serves as an invaluable metric for the evaluation of a model's

proficiency in distinguishing between positive and negative

instances. In the context of an unbalanced dataset, AP proves

crucial for assessing a model's precision with respect to

positive classes. Upon completion of BO, the optimal values

achieved by each metric were obtained, along with the

corresponding hyperparameters. Each of the aforementioned

ML algorithms was subsequently trained with both the

hyperparameters resultant from the BO and the default

hyperparameters inherent to each algorithm. In total, three

models were trained for each algorithm category. The

inclusion of default hyperparameters served as a baseline,

facilitating the evaluation of performance enhancements

attributable to the hyperparameters derived from BO. A three-

tiered performance evaluation was subsequently conducted.

The first tier entailed a comprehensive evaluation of each

model, utilizing metrics such as Accuracy, Balanced Accuracy

(BA), MCC (Matthews Correlation Coefficient), and

macro_F1_score. The second tier focused on the evaluation of

individual class performance, employing metrics including

Precision, Recall, F1-score, FP rate, and the

Precision_recall_curve with Average_precision_score. The

final tier encompassed an assessment of the runtime achieved

by each model, with the aim of identifying the most expedient

IDS.

The structure of the remainder of the manuscript is

delineated as follows: A review of pertinent literature is

elucidated in Section 2. IDS classifiers and the HPO technique

employed in this study are detailed in Section 3. Section 4

provides an overview of the CSE-CICIDS2018 and CSE-

CICIDS2018 DDOS attacks datasets. The methodology

adopted in this research is expounded upon in Section 5.

Section 6 presents the evaluation metrics utilized for gauging

the efficacy of the classifiers under scrutiny, along with an

exposition of the implementation of the proposed approach,

the results garnered, and a critical analysis of the approach's

effectiveness. The manuscript culminates in Section 7,

offering a conclusion and delineating avenues for future

research endeavors.

2. RELATED WORK

In light of the escalating threats compromising the security

of information systems, substantial efforts and creativity have

been channeled by researchers toward ensuring optimal

protection. A plethora of studies addressing intrusion detection

and prevention have been conducted, yielding numerous

innovative solutions aimed at enhancing efficiency. For the

scope of this research, a comprehensive review was

undertaken of existing literature in the realm of cyber-attack

mitigation, with a particular emphasis on IDS. Attention was

duly given to models pertinent to this manuscript, whilst also

considering methodologies proposed by other scholars across

1178

various domains, with the intention of deriving insights and

facilitating subsequent comparative analyses.

The preliminary Investigations primarily centered on

literature related to feature selection, HPO, and the evaluation

of learning classifiers. Numerous studies were scrutinized,

culminating in the selection of works deemed most pertinent

to the current research endeavors.

In the study of Kasongo and Sun [2], a filter-based feature

reduction technique was employed, utilizing the XGBoost

algorithm, followed by the implementation of diverse ML

algorithms including Support Vector Machine (SVM), k-

Nearest-Neighbour (kNN), Logistic Regression (LR),

Artificial Neural Network (ANN), and Decision Tree (DT).

The UNSW-NB15 intrusion detection dataset served as the

basis for model training and testing. The authors reported an

enhancement in the test accuracy of the Decision Tree model,

from 88.13% to 90.85%, under a binary classification scheme.

Furthermore, the reported overall accuracies for the DT, ANN,

LR, KNN, and SVM models were 90.85%, 84.39%, 77.64%,

84.46%, and 60.89% respectively for binary classification, and

67.57%, 77.51%, 65.29%, 72.30%, and 53.95% respectively

for multiclass classification.

A hybrid approach to network Intrusion detection was

implemented in the study conducted in the study of Talukder

et al. [9], wherein SMOTE was employed for data balancing,

and XGBoost was utilized for the selection of pertinent

features. Various ML and deep learning (DL) algorithms,

inclusive of RF, DT, KNN, Multi-Layer Perceptron (MLP),

Convolutional Neural Network (CNN), and ANN, were

scrutinized to identify the optimal model. Subsequent

evaluation on KDDCUP99 and CIC-MalMem-2022 datasets

yielded accuracy rates of 99.99% and 100%, respectively.

In the research presented by Bhati et al. [10], a scheme

elucidating the integration of XGBoost with ensemble-based

IDS) was proposed. This model was applied for the reduction

of features, employing the KDDCup99 dataset for training and

testing of both Adaboost and XGBoost. An accuracy of

99.95% was achieved, with the study highlighting the superior

performance of the XGBoost model, attributed to its

foundation on tree boosting ML algorithms which effectively

navigate the “bias-variance” trade-off.

Li et al. [11] introduced a methodology aimed at

augmenting the capabilities of Deep Neural Networks (DNNs)

through the pre-processing selection of viable features for

networking data. This method combined feature correlation

(CR) with a DNN classifier, culminating in an IDS model

designed to fortify network security. The application of the

KDDCUP99 dataset in this study led to the observation that

the judicious selection of features significantly enhances IDS

performance. This was quantitatively substantiated by the

following metrics: 99.4% accuracy, 99.7% precision, 97.9%

recall, and a F1 score of 98.8.

In the study presented in the study of Wu et al. [12], a

hyperparameter tuning algorithm, grounded in BO, was

introduced and assessed through a series of experiments

utilizing established datasets such as the MNIST database and

the CIFAR-10 Dataset. Through this approach, the

optimization of hyperparameters for diverse ML models,

including RFs, various ANN (encompassing CNN and

recurrent neural networks), and deep forest algorithms, was

facilitated. The findings of the study indicated that the

application of a Gaussian process-based BO algorithm can

yield high accuracy even with a limited number of samples,

simultaneously achieving a substantial reduction in runtime

when contrasted with manual search methodologies.

Zhang et al. [13] entailed an exploration of BO, specifically

employing the Hyperopt library, applied across a spectrum of

ML algorithms such as Bernoulli Naïve Bayes, logistic linear

regression, AdaBoost, DT, RF, SVM, and DNN. This

exploration was conducted with the aid of six datasets,

facilitating a comparative analysis of the various ML

algorithms in conjunction with ECFP6 fingerprints. A

comprehensive set of evaluation metrics, including precision,

recall, F1 score, accuracy, Cohen’s kappa, Matthews

correlation, and AUC, were employed. The results posited by

the authors suggest that, based on a normalized score approach,

models optimized via Hyperopt either surpassed or exhibited

comparability to 33 out of 36 models across different datasets.

The investigation by Cho et al. [14] was centered on four

cardinal strategies intended to enhance BO, specifically:

diversification, early termination, parallelization, and cost

function transformation. The focus was primarily on

applications involving DNN, necessitating the optimization of

a substantial number of hyperparameters. To facilitate swift

empirical evaluation, six reference datasets, encompassing

pre-evaluated performance across a spectrum of

hyperparameter configurations, were generated. Additionally,

six reference DNN – MNIST-LeNet1, MNIST-LeNet2, PTB-

LSTM, CIFAR-10-CNN, CIFAR-10-ResNet, and CIFAR-

100-CNN – were constructed using prevalent deep learning

datasets and widely adopted DNN architectures. The Deep-BO

algorithm, crafted by the authors, demonstrated robust and

superior performance across all benchmark tests, particularly

excelling in tasks deemed challenging and significantly

benefiting from the deployment of multiple processors.

In the research articulated by Arifin et al. [15], grid search

(GS) was employed as a technique for HPO, aiming to enhance

the predictions pertaining to student academic performance.

Various algorithms, including Generalized Linear Models

(GLM), DL, DT, Support Vector Regression (SVR), RF, and

Gradient Boosting Regression Trees (GBRT) were subjected

to assessment through a regression model. The algorithm

manifesting the minimal error in predictions was subsequently

selected for hyperparameter tuning. A five-fold cross-

validation was utilized for validation purposes, with the GBRT

algorithm being identified as yielding the most favorable

results.

In the study presented in the study of Hagar and Gawali [16],

a novel approach was developed, leveraging CNN in

conjunction with Long Short-Term Memory networks

(LSTM). The CSE-CICIDS2018 dataset served as the

foundation for both training and testing phases. Techniques of

oversampling and undersampling were implemented to derive

a semi-balanced dataset, enhancing the efficacy of network

attack detection. The results indicated that the CNN model

outperformed the RNN-LSTM models in terms of accuracy,

achieving 98.31%, albeit with the LSTM model demonstrating

superior performance in terms of lower loss, despite

necessitating a longer training duration.

In the study of Kshirsagar and Kumar [17], a feature

reduction algorithm was proposed, integrating filter-based

feature reduction techniques such as Information Gain Ratio

(IGR), Correlation (CR), and ReliefF (ReF). This approach

entailed generating subsets of features for each classifier based

on average weight, followed by the application of a Subset

Combination Strategy (SCS). Consequently, the number of

features in the CICIDS 2017 Dos dataset and the KDDCup99

datasets were reduced from 77 to 24 and from 41 to 12,

1179

respectively. With the application of the rule-based classifier

Projective Adaptive Resonance Theory (PART), an accuracy

rate of 99.96% was achieved in 133.66 seconds for the CIC-

IDS2017 dataset, while for the KDDCUP99 dataset, an

accuracy rate of 99.32% was achieved in 11.22 seconds.

In the study of Indrasiri et al. [18], an innovative model was

introduced, integrating the Extra Boosting Forest (EBF) with

a stacked ensemble approach, amalgamating tree-based

models such as the Extra Tree Classifier, Gradient Boosting

Classifier, and RF. The datasets employed, UNSW-NB15 and

IoTID20, encompass IoT-based and local network traffic data

respectively, and were amalgamated to augment the capability

of the proposed model in accurately detecting malicious traffic

within both local and IoT networks. Dimensionality reduction

was performed on each dataset using Principal Component

Analysis (PCA), truncating the feature set to 30. The outcomes

revealed that the EBF model markedly outperformed its

counterparts, achieving maximum accuracy scores of 0.985

and 0.984 for the multilabel classification of four classes in the

UNSW-NB15 and IoTID20 datasets, respectively.

In the study of Waskle et al. [19], a solution was proposed

wherein PCA was utilized for the purpose of dataset

dimensionality reduction, and the RF classification algorithm

was applied for data analysis. The method demonstrated

superior performance compared to other techniques such as

SVM, Naïve Bayes, and DT, particularly in terms of accuracy,

which was recorded at 96.78%. Additionally, the performance

time and error rate were noted to be 3.24 minutes and 0.21%

respectively, with the KDDCUP99 dataset serving as the basis

for these evaluations.

A review of extant literatures, particularly in the domain of

IDS, reveals a predominant reliance on the KDDCUP99

dataset, a resource dating back to the late 1990s. Given the

significant evolution in attack techniques since that time, the

current research has opted for the more contemporaneous

CSE-CICIDS2018 dataset, aiming to provide a more authentic

evaluation of IDS. The XGBoost Classifier was selected for

feature selection, owing to its demonstrated high accuracy in

previous applications. For the optimization of

hyperparameters, BO was preferred over grid search, as the

former has been shown to yield robust and high-performing

models in various studies. The focus of this work encompasses

a spectrum of ML and DL algorithms, each characterized by

its unique strengths and limitations.

3. BACKGROUND

In this section, the classifiers selected for training and

evaluation are elucidated, inclusive of the SGD classifier,

underpinned by SGD; the XGBoost, a boosting model; and the

RF, an ensemble model. Additionally, the BO, employed for

HPO, is described.

3.1 SGD

SGD is elucidated as an iterative optimization methodology,

applicable to unconstrained optimization problems [20]. Its

utility extends to identifying optimal parameter configurations

for ML algorithms and optimizing objective functions with

requisite smoothing properties [21]. Recognized for its

simplicity and efficacy, SGD is particularly well-suited for

fitting linear classifiers and regressors under convex loss

functions [20]. Distinguished from classical Gradient Descent

by its parameter update mechanism, SGD performs updates

more frequently and on a smaller scale, typically a single

example or a mini-batch randomly selected from the dataset.

This characteristic often facilitates more rapid convergence,

particularly in instances involving large datasets.

In studies [20-22], the mathematical formulation of SGD is

presented as follows:

Let (x1, y1), … , (xn, yn) be the dataset composed of training

examples xi and target labels yi with 𝑥𝑖 ∈ 𝐑𝑚 , 𝑦𝑖 ∈ ℛ . The

objective is to learn the linear score function 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏,

with model parameters 𝑤 ∈ 𝐑𝑚 and intercept 𝑏 ∈ 𝐑. To find

the model parameters, we need to minimize the regularized

learning error provided by:

()()
1

1
(,) , ()

n

i i

i

E w b L y f x R w
n


=

= + (1)

where, 𝐿 is a loss function that measures model adjustment

and 𝑅 a regularization term that penalizes model complexity;

𝛼 > 0 is a non-negative hyperparameter that controls the

intensity of regularization.

The algorithm iterates over the training examples and, for

each example, updates the model parameters according to the

following update rule:

(),()
T

i iL w x b yR w
w w

w w
 
  +
  − +

   

 (2)

where, 𝜂 is the learning rate that controls the step size of

updates in parameter space. The intercept 𝑏 is updated in the

same way, but without regularization.

While the SGD may exhibit expedited convergence, it is

important to acknowledge that the stochasticity introduced

through the random selection of examples can potentially

compromise the stability of the algorithm, rendering it less

consistent than its classical Gradient Descent counterpart.

Nonetheless, it is imperative to highlight that a plethora of

techniques and variations have been meticulously developed

and refined to address and ameliorate these challenges.

Consequently, SGD has firmly established itself as an

indispensable instrument in the contemporary ML toolkit.

3.2 Xgboost

XGBoost has been recognized as a potent methodology,

extensively employed across various domains for regression

and classification tasks. The algorithm has garnered

significant attention in recent years, attributed to its

exceptional predictive accuracy and outstanding efficiency, as

documented in the study of Gupta et al. [23]. A substantial

enhancement over the traditional GBDT algorithm is

manifested in XGBoost, with notable improvements observed

in computational speed, generalization performance, and

scalability [24].

In the realm of ensemble learning algorithms, XGBoost

distinguishes itself by amalgamating multiple DTs, with the

aim of optimizing the regularized loss function to augment

predictive performance. The boosting technique employed by

XGBoost entails the sequential training of numerous DTs. At

each iterative stage, a new tree is incorporated with the specific

objective of rectifying the residual errors manifested in the

preceding trees. The predictions emanating from individual

1180

trees are assigned weights proportional to their performance,

culminating in the formulation of the final prediction.

Suppose a training dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where xi represents

the features of example i and yi is the corresponding true class

label.

The main objective of XGBoost is to build a model

F(x) that predicts the yi labels by minimizing a regularized loss

function L(yi, F(xi)). The optimization objective of XGBoost

can be expressed as follows:

()() ()i i

1 1

L() L y ,F x
n T

j

i j

f
= =

= +   (3)

where L(yi, F(xi)) is the loss function that measures the

discrepancy between the prediction F(xi) and the true label yi.

Commonly used convex loss functions include the logarithmic

loss function, square loss function, and exponential loss

function. 𝑇 is the total number of trees in the

ensemble.𝑓𝑗(𝑥)represents the j-th tree. Ω(𝑓𝑗)is a regularization

term that penalizes the complexity of the trees to prevent

overfitting. It is defined as:

() 2

1

1

2

L

j j jk

k

f T w 
=

 = +  (4)

where 𝛾 and  are regularization hyperparameters. that control

the strength of regularization, 𝑇𝑗 is the total number of leaves

in the tree, 𝐿 is the number of nodes in tree 𝑓𝑗 and 𝑤𝑗𝑘 is the

weight value of node 𝑘 in tree 𝑓𝑗 . The first term 𝛾 𝑇𝑗 in the

regularization function penalizes the complexity of the tree

based on the total number of leaves. The larger 𝑇𝑗 is the higher

this penalty. The second term
1

2
∑ 𝑤𝑗𝑘

2𝐿
𝑘=1 of the XGBoost

objective function, λ controls how much the model is

penalized for having larger leaf weights. When λ is higher, the

algorithm encourages smaller leaf weights, which in turn leads

to simpler trees. This regularization helps prevent overfitting

by avoiding excessively complex trees that may capture noise

in the training data. λ and ω are usually given empirically [25].

The update of predictions F(x) is performed by adding the

predictions of individual trees weighted by learning

coefficients  with the aim to minimize the loss function:

1

1

() () ()
J

t t j

j

F x F x f x−

=

= +  (5)

The learning coefficients control the step size of the

update and are another important hyperparameter. XGBoost

also employs a boosting technique, where each tree is built to

correct the residual errors of the previous model. This allows

XGBoost to adapt to the remaining errors as trees are

constructed.

3.3 RF

Categorized under the umbrella of supervised classification

algorithms, the RF method stands out as a formidable

approach in ML, as substantiated by Bernard et al. [26]. This

method, employing the bagging technique, operates by

generating predictions based on subsets drawn from the

original dataset. During the training phase, numerous DTs are

constructed, each based on a distinct set of observations. The

predictions emanating from all individual trees are then

aggregated, culminating in the final prediction [27]. The

majority ranking principle underpins the final output, serving

as a mechanism to mitigate the risk of overfitting [28]. Owing

to its reliance on a collective of results to render a final

decision, the RF method is classified as an Ensemble

technique.

A pivotal strategy in RF involves the reduction of

correlation amongst trees, a move that contributes to a

decrease in the model's variance, thereby fostering diversity

between trees. The overarching goal is to establish a set of

training trees characterized by the highest possible level of

independence. Each tree is crafted using a randomly selected

subset of the training data, and the division of the tree’s nodes

is guided by random subsets of features [29]. This process

yields a variety of trees, each unique in its predictions and

potential errors, owing to their training on diverse data

samples. The model, through the forced introduction of

diversity, is thereby safeguarded against overfitting. By either

averaging the predictions or adopting a majority vote strategy

(in classification scenarios), the ensemble of trees collectively

results in a reduction of the overall variance. The errors of one

tree are effectively counterbalanced by the accurate

predictions of others [30]. However, it is noteworthy that when

predictions across trees exhibit high correlation, the utility of

averaging or voting diminishes, as the trees tend to replicate

similar errors. The RF method, by promoting diversity and

minimizing correlation, enhances the stability of predictions,

leading to a reduction in variance and an improved capacity to

generalize to unknown data. This fortification of predictive

performance and delivery of reliable results underscores the

widespread adoption of RF in ML for both classification and

regression tasks.

The application of RF spans both classification and

regression scenarios. In classification tasks, the method

derives a class vote from each individual tree, proceeding to

classify based on the majority vote. Conversely, in regression

tasks, the predictions for a target point x from each tree are

simply averaged. For optimal performance in classification

tasks, it is recommended to set the default value of m (the

number of variables randomly sampled as candidates at each

split) to (√𝑝) , and the minimum node size to one. For

regression tasks, a default value of m set to 𝑝/3 , and a

minimum node size of five is suggested. It is imperative to

note, however, that these parameter values are problem-

dependent and should be treated as tuning parameters,

necessitating careful optimization [29].

The Pseudocode of RF for Regression or Classification is

defined as follow [29] :

1. For each tree in the forest (b=1 to B):

(a) Draw a bootstrap sample 𝑍∗𝑜𝑓 𝑠𝑖𝑧𝑒 𝑁 from the

training data.

(b) Grow a RF tree 𝑇𝑏 to the bootstrapped data, by

recursively repeating the following steps for each

terminal node of the tree, until the minimum node

size 𝑛𝑚𝑖𝑛 is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {𝑇𝑏}1
𝐵

To make a prediction at a new point x:

For Regression, the predicted value is calculated as follows:

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1

1181

For classification: Let 𝐶̂𝑏(𝑥) be the class prediction of the

b-th RF tree, the predicted value is calculated as follows:

𝐶̂𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝐶̂𝑏(𝑥)}

1

𝐵
.

The utility of the RF algorithm extends beyond its

predictive capacities; it also serves as an instrumental tool for

feature selection, enabling the identification of feature

importance [28]. Within the RF framework, the measure of a

feature’s significance is derived from the improvement in the

split-criterion at each division in every tree. This measure is

then cumulatively aggregated across all trees in the forest,

yielding a separate importance value for each variable [29].

Feature importance is computed based on the reduction in

node impurity, weighted by the likelihood of reaching the

respective node. This probability is determined by the ratio of

samples reaching the node to the total number of samples. A

higher value of this metric signifies greater feature importance

[27].

In the process of bagging, a portion of the data is

deliberately excluded from the training phase for each tree,

resulting in what is termed as out-of-bag (oob) data. For any

given observation i within the training dataset, the error is

calculated by aggregating the predictions from all trees that

were not trained with this particular observation. The oob error

is subsequently computed as the cumulative sum of these

individual errors across the entire training dataset. This error

serves as an approximate indicator of the forest's

generalization error, relying exclusively on predictions

derived from aggregations of trees within the forest, as

opposed to predictions from the forest itself [31].

3.4 BO

The objective of HPO, also referred to as tuning within the

domain of ML, encompasses the identification and selection

of an optimal set of hyperparameters for a specified ML

algorithm. This optimal set is determined based on its ability

to yield the highest performance, as evaluated on a validation

dataset. The representation of HPO in scholarly literatures [32-

34] is encapsulated in the following equation:

* argmin (),x f x x X=  (6)

where, f(x) represents an objective score to be minimized and

that will be evaluated on the validation set; x* is the set of

hyperparameters that produces the lowest value of the score,

and x can take any value in the X domain.

The challenge inherent in HPO arises from the

computational intensity and time-consuming nature of

evaluating the objective function to ascertain the performance

score. This complexity is exacerbated when a multitude of

hyperparameters and intricate models are involved, rendering

manual execution of the process unfeasible. Techniques such

as GS and random search, which establish a hyperparameter

grid and automate the cycle of training, predicting, and

evaluating, are employed. However, these methods are

deemed relatively inefficient, as they do not base the selection

of subsequent hyperparameters on the insights gleaned from

previous results, as evidenced in the study of Koehrsen [32].

BO, on the other hand, seeks to identify the minimum of a

function f(x) within a bounded set X, presumed to be a subset

of ℝ𝐷 . This approach involves constructing a probabilistic

model of f(x), leveraging this model to make informed

decisions about the next evaluation point in X, while

accounting for the inherent uncertainty. The principal

advantage of BO lies in its ability to utilize all available

information from prior evaluations of f(x), culminating in a

process capable of locating the minimum of challenging non-

convex functions with a limited number of evaluations [34].

In contrast to methods such as random search or GS, BO

methodologies uniquely maintain a record of previous results

from evaluations, utilizing these results to inform a

probabilistic model that correlates hyperparameters with their

corresponding likelihoods of achieving a particular score on

the objective function. Through this approach, a surrogate

function is formulated [20], encapsulating the relationship

between hyperparameters and performance metrics, as derived

from prior evaluations. The surrogate function, inherently

probabilistic, serves to quantify the uncertainty entwined with

this hyperparameter-performance relationship. Commonly, a

Gaussian Process model is employed to estimate this function,

thereby providing a probabilistic distribution across potential

values of the objective function. Concurrently, an acquisition

function operates to navigate the search space, selecting

subsequent values for evaluation. This function takes into

consideration both the uncertainty inherent in the surrogate

model and the balance between exploration and exploitation.

The dual objectives of this acquisition function are to probe

uncharted regions of the function, where uncertainty prevails,

and to optimize regions where the function is deemed

potentially optimal. By synthesizing the surrogate and

acquisition functions, BO iteratively refines its search,

balancing exploration and exploitation to converge upon the

global optimum of the objective function. This process is

achieved while concurrently minimizing the number of

evaluations required of the actual function, thereby optimizing

computational efficiency.

This process is described in the study of Koehrsen et al. [32,

35] as follows:

(1) Build a substitution probability model of the objective

function

(2) Find the best-performing hyperparameters on the

substitution function.

(3) Apply these hyperparameters to the actual objective

function.

(4) Update the substitution model with the new results.

Repeat steps 2 to 4 until the maximum number of iterations

or time has been reached.

This iterative cycle, encompassing steps two to four, is

repeated until a predefined maximum number of iterations or

time limit is reached. During each iteration, the surrogate

probability model is continually refined with new data

obtained from evaluations of the objective function. This

process of updating, based on the actual value of the objective

function, leads to an adjustment in the model's parameters,

consequently improving its predictive accuracy and

diminishing uncertainty in areas that have been explored. As

more data is assimilated, the selection of hyperparameters

becomes increasingly precise.

In the context of this study, the Scikit-Optimize Python

library from Scikit-learn was employed, offering a suite of

optimization methods grounded in Gaussian processes.

Specifically, the “gp_minimize” function was utilized, a

central component of Scikit-Optimize that facilitates efficient

BO. This function leverages Gaussian processes and

probabilistic models to navigate the search space for optimal

parameters systematically. Within a Gaussian process, the

values of the objective function are presumed to conform to a

1182

multivariate Gaussian distribution. The covariance of these

function values is determined by a Gaussian Process kernel

applied to the parameters. Following this, the acquisition

function, predicated on the Gaussian prior, is employed to

intelligently select the subsequent parameters for evaluation.

This process is notably more expedient than direct evaluations

of the objective function [36].

4. CSE-CIC-IDS2018 DATASET EXPLORATION

The CSE-CIC-IDS2018 dataset, a collaborative endeavor

between the Communications Security Establishment (CSE)

and the Canadian Cybersecurity Institute (CIC), has been

implemented on the Amazon Web Services AWS computing

platform [37]. The primary aim of this project has been to

devise a systematic methodology for the generation of a

diverse and comprehensive reference dataset, serving the

domain of anomaly-based IDS. This dataset is designed to

reflect the traffic compositions and intrusions prevalent in

real-world networks, thereby furnishing researchers with a

robust tool for testing, evaluation, and necessary modifications

prior to deployment.

The foundational basis of this approach resides in the

construction of user profiles, encompassing abstract

representations of events and behaviors manifesting within the

network domain. The amalgamation of these profiles has

resulted in the generation of a diverse array of datasets, each

characterized by a unique set of attributes, encapsulating a

segment of the evaluation domain. Organization of the dataset

has been meticulously conducted on a daily basis, spanning a

capturing period of 10 days, commencing on Wednesday,

February 14, 2018, and concluding on Friday, March 2, 2018.

The resultant dataset encompasses seven distinct attack

scenarios, namely Brute-force, Heartbleed, Botnet, DoS,

DDoS, Web attacks, and Infiltration from within the network.

Comprehensive data within this dataset includes network

traffic captures and system logs on a per-machine basis,

augmented by 80 features extracted from the captured traffic

utilizing CICFlowMeter-V3. The dataset encompasses an

array of network-related data, including but not limited to,

source and destination IP addresses, network protocols, and

TCP flags. Additionally, network flow characteristics such as

the duration of a flow and the total size of data exchanged are

also encapsulated within the dataset. A notable inclusion is the

labeling of data, indicating the nature of the activity as either

normal or specifying the type of attack.

Upon analysis of the CSE-CIC-IDS2018 dataset, as

retrieved from Kaggle, it has been observed to comprise

16,233,002 examples, each described by 80 features.

Noteworthy is the absence of certain features (Flow ID, Src IP,

Src Port, Dst IP) in all recording files, with the exception of

the file recorded on February 20, 2018. Furthermore, it has

been discerned that all features in the files recorded on

February 16, 28, 2018, and March 02, 2018, are categorical in

nature. Contrastingly, the dataset for the remaining capture

files predominantly consists of numeric features, with a

minority of categorical features. A distribution of classes

within the CSE-CIC-IDS2018 dataset is presented in Table 1.

Instances of labeling errors have been identified,

exemplified by the 59 instances in the dataset erroneously

labeled as “Label”. It is recommended that such

inconsistencies be addressed during the data cleansing phase

of data pre-processing, where deletion of inconsistent rows is

commonly employed. Furthermore, attention should be

directed towards the elimination of redundant data and the

rectification of any missing values, ensuring the integrity and

cleanliness of the dataset.

The focus of the present study is directed towards the DDOS

attacks dataset from CSE-CIC-IDS2018, corresponding to the

data recorded on the fourth and fifth days of the traffic and

network behavior capture period. This subset of the dataset

comprises 8,997,323 instances, each described by 80 features.

These features encompass various data types, including 45 of

float64 type, 33 of int64 type, and 2 of object type. The

distribution of class labels within this specific dataset is

delineated in Table 2.

Table 1. The instances distribution of the CSE-CICIDS 2018

dataset

Class Label
Number of Samples in

CSE-CIC-IDS2018

Benign 13484708

DDOS attack-HOIC 686012

DDoS attacks-LOIC-HTTP 576191

DoS attacks-Hulk 461912

Bot 286191

FTP-BruteForce 193360

SSH-Bruteforce 187589

Infilteration 161934

DoS attacks-SlowHTTPTest 139890

DoS attacks-GoldenEye 41508

DoS attacks-Slowloris 10990

DDOS attack-LOIC-UDP 1730

Brute Force -Web 611

Brute Force -XSS 230

SQL Injection 87

Label 59

Total 16,233,002

Table 2. Class label distribution of the CSE-CIC-IDS2018

DDOS attack dataset

Labels of Classes
Count of

Instances

Representativeness of

Instances as a

Percentage

Benign 7733390 85.95%

DDOS attack-HOIC 686012 7.62%

DDoS attacks-LOIC-HTTP 576191 6.40%

DDOS attack-LOIC-UDP 1730 0.02%

Total 8,997,323 100.00%

The dataset under investigation is acknowledged for its

significant imbalance, characterized by a predominant

"Benign" class, representing 85.95% of the examples, and a

notably minuscule "DDOS attack-LOIC-UDP" class,

constituting a mere 0.02%. Classes such as "DDOS attack-

HOIC" and "DDoS attacks-LOIC-HTTP" are also observed to

have substantially lower representation in comparison to the

majority class. In response to this imbalance, performance

metrics that are adept at handling skewed datasets have been

employed. These include the area under the Receiver

Operating Characteristic (ROC) curve, the average precision

derived from the precision-recall curve with the parameter

“average” set to “macro” for both curves, BA, the macro_F1-

score, and the MCC. Each of these metrics has been carefully

selected for their capacity to provide a more nuanced and

balanced evaluation of the model’s performance, taking into

consideration the inherent imbalance of the dataset.

1183

5. THE PROPOSED APPROACH

Figure 1 delineates the architectural framework propounded

in the present research endeavor. This framework

encompasses four sequential stages, meticulously designed to

ensure the integrity and effectiveness of the investigative

process. In the first stage, dataset preprocessing is conducted,

an integral component of which comprises the data cleansing

phase. This is followed by normalization and scaling

procedures, label encoding, and the meticulous selection of

pertinent features. The dataset subsequently undergoes

partitioning in the second stage, resulting in distinct subsets

designated for training, validation, and testing purposes. The

third stage is characterized by the implementation of BO, a

sophisticated approach employed to refine and optimize the

model’s hyperparameters. The culminating stage encompasses

model training, utilizing the hyperparameters derived from the

preceding BO. Model validation and evaluation are

subsequently conducted, utilizing the test data and a

comprehensive suite of performance metrics.

Figure 1. The architecture of the proposed approach

5.1 Dataset preprocessing

Upon the amalgamation of csv files constituting the

CICIDS2018 DDOS attack dataset, the dataset was subjected

to a pre-processing phase, a pivotal step in the preparation of

data for application of ML and DL algorithms. This phase

holds paramount importance, as it facilitates efficient learning

from the available data, culminating in precise classifications.

Inconsistencies within columns of the dataset were

addressed through deletion, ensuring the elimination of

potential biases or adverse effects stemming from data of

suboptimal quality. Values that were missing or infinite were

managed with precision, the option was used to handle infinite

values as nan "pd.set_option('mode.use_inf_as_na', True)",

and then all rows containing nan (null value) were removed

from our dataset.

Moreover, the dataset presented challenges due to disparate

units of measurement and varying value ranges across

different features. To counteract these challenges and ensure

comparability across features, normalization and scaling were

employed. The StandardScaler transformation from Scikit-

learn was utilized, transforming the data such that each feature

possessed a mean of zero and a variance of one [9]. The

formula for this transformation, applied to each feature x, is

expressed as:

(())

()
St

x mean x
x

std x

−
= (7)

where 𝑥𝑆𝑡 is the standardized value of feature x, mean(x) is the

mean of the feature and std(x) is the standard deviation of the

feature.

Regarding the treatment of categorical features, notably

class labels, a transformation into numerical format is requisite

for their assimilation by ML algorithms. The pre-processing

phase commonly encompasses the deployment of encoding

techniques to aptly represent these features. In the context of

this study, classes from Scikit-learn, namely LabelEncoder

and OneHotEncoder, were employed. The former was utilized

for the XGBoost algorithm, while the latter served the RF and

SGD algorithms.

5.1.1 Features selection

The pivotal role of feature selection in the ML pipeline is

acknowledged, its primary aim being the discernment of the

most pertinent features for a specified problem, whilst

concurrently eliminating those deemed superfluous or

redundant. A judicious execution of feature selection not only

enhances the accuracy of model predictions but also mitigates

model complexity and expedites the training procedure. The

overarching goal of this process is the reduction of data

dimensionality, a reduction achieved without compromising,

and potentially even augmenting, the performance of the

model.

In this study, the "feature importance" methodology of

XGBoost was employed as the principal mechanism for

feature selection, guiding the inclusion or exclusion of features

in the training of models. This approach computes the

importance of each feature based on its contribution to the

amelioration of model error in the construction of DTs,

subsequently assigning an importance score to each feature.

1184

An XGBoost model was trained utilizing the CIC-IDS2018

DDOS attack dataset, and the resultant feature importance

scores were visualized and arranged in descending order.

Figure 2 delineates the salient features of the CIC-IDS2018

DDOS attack dataset as discerned by the deployed XGBoost

algorithm, presented in the form of a horizontal bar chart.

The selection of the most pertinent features was conducted

with a focus on retaining only those with an importance

surpassing a specified threshold k, while disregarding features

of lesser significance. To achieve this objective, an

experimental procedure was undertaken, entailing the

following steps:

Initially, the threshold was set to 𝑘1 > 0.0001, resulting in

29 features meeting the established criterion. Subsequently,

the threshold was adjusted to 𝑘2 > 0.001, yielding 20 features

in accordance with the stipulated requirement. Post the

removal of features deemed irrelevant based on each threshold,

the modified datasets were subjected to evaluation employing

the RF, XGBoost, and SGD algorithms. The performance of

each algorithm was assessed in terms of accuracy and the

macro-average F1-score.

Figure 2. Feature importance graph by XGBoost algorithm

The macro-average F1-score was selected as the evaluation

metric, acknowledging the imbalanced nature of the

CICIDS2018 DDOS attack dataset. Within the multi-class

context, this metric is computed by first determining the F1-

score for each individual class, followed by calculating the

average of these scores. This approach ensures a balanced

evaluation of model performance, attributing equal weight to

each class irrespective of their prevalence or disparity.

Upon analysis of the results, it was observed that both the

RF and XGBoost algorithms exhibited consistent performance

across the two threshold settings, achieving an accuracy of 1

and a macro-average F1-score of 0.98. In contrast, the SGD

algorithm demonstrated variation in performance between the

two thresholds. Specifically, the evaluation metrics associated

with threshold 𝑘1 > 0.0001were notably lower in comparison

to those recorded for threshold 𝑘2 > 0.001. These findings are

comprehensively presented in Table 3.

Based on aforementioned results, the decision was made to

retain features surpassing the threshold of k2>0.001, resulting

in a shortlist of the top 20 most pertinent features. These

selected features are meticulously detailed in Table 4, wherein

each entry delineates the sequential position of the feature

within the initial dataset, alongside its respective nomenclature,

data typology, and corresponding importance score.

Utilizing the XGBoost algorithm, a selection of features has

been meticulously identified, demonstrating substantial

relevance in augmenting the performance of the anomaly-

based intrusion detection model. This is achieved through the

discernment of atypical patterns and behaviors within network

traffic.

The feature 'Bwd Pkt Len Std' is particularly noteworthy, as

it encapsulates the variability in the size of backward direction

packets. This is crucial in the context of Denial of Service

(DDoS) attacks, which are known to precipitate pronounced

alterations in the distribution of packet sizes, thereby serving

as a potential hallmark of malicious activity.

1185

'TotLen Fwd Pkts' emerges as another significant feature,

providing utility in the identification of DDoS attacks

characterized by the transmission of substantial forward

packets aimed at overwhelming the target. Concurrently, 'Dst

Port', the feature denoting the destination port, plays a vital

role in pinpointing attacks meticulously crafted to compromise

specific services.

The feature 'Init Fwd Win Byt', representing the initiation

of sending windows, is deemed pertinent for the detection of

incipient attacks attempting to forge malicious connections

through the manipulation of sending windows. Furthermore,

'Flow IAT Min' quantifies the minimum inter-arrival time

between consecutive data flows, with DDoS attacks having the

potential to disrupt standard traffic patterns, manifesting in

anomalously low values.

'Fwd IAT Tot' offers insights into the temporal intervals

between forward packets, where abrupt variations may be

indicative of traffic anomalies. 'PSH Flag Cnt' and 'ACK Flag

Cnt' are instrumental in identifying urgent packet

transmissions and tracking the prevalence of ACK packets,

respectively, both of which are tactics frequently exploited in

amplified reflection attacks.

Additional features such as 'Flow Pkts/s', 'Tot Fwd Pkts',

'Flow Duration', 'Flow IAT Max', 'Fwd IAT Std', 'Bwd IAT

Min', 'Idle Mean', 'Idle Max', 'Fwd Pkt Len Mean', 'Fwd Act

Data Pkt', 'Fwd Pkt Len Std', and 'URG Flag Cnt' are

elaborated upon, underscoring their integral roles in the

holistic detection of network irregularities and potential

security breaches.

Table 3. Thresholds for selecting the most relevant features

Threshold Models Accuracy Macro Avg F1 Score

K1>0.0001 RF 1 0.98

K1>0.0001 XGBoost 1 0.98

K1>0.0001 SGD 0.88 0.55

K2>0.001 RF 1 0.98

K2>0.001 XGBoost 1 0.98

K2>0.001 SGD 0.95 0.83

Table 4. Features selected by the XGBoost method from the

CIC-IDS2018 DDOS attacks dataset

Feature

Number
Feature

Data

Type

Feature

Importance Score

16 Bwd Pkt Len Std float64 0.436436

7 TotLen Fwd Pkts float64 0.187275

1 Dst Port int64 0.157668

68 Init Fwd Win Byt int64 0.057977

22 Flow IAT Min float64 0.034996

23 Fwd IAT Tot float64 0.033091

49 PSH Flag Cnt int64 0.016368

50 ACK Flag Cnt int64 0.014257

18 Flow Pkts/s float64 0.012913

5 Tot Fwd Pkts int64 0.009571

4 Flow Duration int64 0.006550

21 Flow IAT Max float64 0.006274

25 Fwd IAT Std float64 0.004876

32 Bwd IAT Min float64 0.004392

76 Idle Mean float64 0.003806

11 Fwd Pkt Len Mean float64 0.003112

70 Fwd Act Data Pkt int64 0.002539

12 Fwd Pkt Len Std float64 0.001815

78 Idle Max float64 0.001683

51 URG Flag Cnt int64 0.001462

In essence, through vigilant monitoring of these pivotal

aspects of network traffic, the model is adeptly equipped to not

only identify but also counteract malicious activities, thereby

substantially fortifying the integrity of network security.

The next step is to divide the processed data set into a

training data set comprising 70% of the data, a validation data

set with 18% and a test data set with 12%.

5.2 BO

In the pursuit of advancing the capabilities of IDS,

particularly in relation to DDoS attacks, this research

endeavors to enhance the efficacy of three preeminent

algorithms extensively applied in the realm of ML: XGBoost,

RF, and SGD.

Acknowledging the prevalence of numerous

hyperparameters within ML algorithms, necessitating

meticulous tuning to attain optimal results, BO has been

employed in this study. This method facilitates the

identification of superior hyperparameter values, with the

objective of maximizing a designated performance metric.

Consequently, this approach endeavors to yield enhanced

model performance while concurrently economizing on time,

presenting a preferable alternative to exhaustive search

methodologies such as GS and random search.

Within the framework of this study, a specific search space

has been delineated for each algorithm, encapsulating a

spectrum of potential values for the hyperparameters subject

to optimization. The hyperparameters subjected to

examination encompass: for XGBoost, max_depth,

learning_rate, min_child_weight, gamma, reg_alpha,

reg_lambda, and n_estimators; for RF, n_estimators, criterion,

max_depth, and max_features; and for SGD, loss, alpha,

penalty, and max_iter. Table 5 elucidates the defined search

spaces and explicates the significance of each hyperparameter.

For the purpose of the objective function, two distinct

performance metrics were evaluated: average_precision_score

and Roc_auc_score, both employing the Average='macro'

parameter. The rationale behind optimizing these particular

metrics stems from their relevance in IDS, where it is

imperative to accurately identify attacks while minimizing the

rate of FP. This necessitates a balanced trade-off between

precision and recall, as well as between the rates of FP and FN.

The metric average_precision quantitatively assesses the

model’s precision, evaluating its capacity to accurately

classify positive instances (intrusions) among those predicted

as positive. Conversely, the metric Roc_auc_score serves as a

comprehensive indicator of the model’s overall performance.

The selection of these metrics is strategically aimed at

identifying the optimal hyperparameters for each algorithm

under investigation, with the objective of maximizing the

values of these objective functions.

The precision-recall curve is delineated, representing

precision P(r) as a function of recall r. The Average Precision

(AP) computes the mean value of P(r) over the interval r=0 to

r=1 [38]. Derived from the prediction scores, AP encapsulates

the precision-recall curve, presenting it as a weighted average

of the precisions computed at each respective threshold. The

increment in recall from the preceding threshold serves as the

weight in this calculation [39]:

()1AP n n n

n

R R P−= − (8)

where 𝑃𝑛 and 𝑅𝑛 are precision and recall at the n-th threshold.

1186

The metric average_precision_score has been selected, with

the specification "average='macro'" implemented for this

evaluation. Within a multi-class context, the AP is computed

as the arithmetic mean of the average precision scores

allocated to each distinct class [40]. It is important to highlight

that this approach does not account for any potential imbalance

in label distribution [39].

Consequently, the average_precision_score serves as a

metric that determines the weighted average of precisions

attained at various thresholds for each class individually, while

also considering the actual distribution of classes present

within the data. This metric comprehensively incorporates

both precision and recall for every individual class, thereby

offering a holistic insight into the model's performance

capabilities.

In relation to the second objective function scrutinized in

this research, the Roc_auc_score function, also recognized as

ROC (Receiver Operating Characteristic) AUC (Area Under

Curve) or AUROC (Area Under the Receiver Operating

Characteristic Curve), is employed to calculate the area

beneath the ROC curve, based on the prediction scores [41].

Table 5. Defined search space for the 3 algorithms studied

Models Defined Search Space

 space=[Categorical([3,5,6], name="max_depth"),

 Categorical([0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3], name="learning_rate"),

 Categorical([1,5,7,10], name="min_child_weight"),

XGBoost Categorical([0, 0.1, 0.2, 0.3, 0.5, 1], name= "gamma"),

 Categorical([0, 0.0001, 0.01, 0.1, 0.5, 1], name="reg_alpha"),

 Categorical([0, 0.0001, 0.01, 0.1, 0.5, 1], name="reg_lambda"),

 Categorical([50,80], name="n_estimators")]

 space=[Categorical([50,80,100,110], name="n_estimators"),

 Categorical(["gini", "entropy", "log_loss"], name="criterion"),

RF Categorical([3,5,6, None], name="max_depth"),

 Categorical(["sqrt", "log2", None], name="max_features")]

 space=[Categorical(["hinge", "log_loss", "modified_huber", "perceptron"], name="loss"),

SGD Categorical([0.0001, 0.001, 0.01, 0.1], name="alpha"),

 Categorical(['l2', 'l1', 'elasticnet', None], name= "penalty"),

 Categorical([1000,3000, 5000, 10000], name="max_iter")]

Table 6. BO result

Models Nb_Calls Best HyperParameters (AP)
Best

(AP)
Best HyperParameters (AUC)

Best

(AUC)

SGD 15
 {'loss': 'perceptron', 'alpha': 0.001, 'penalty': 'l2',

'max_iter': 10000}
0.8943

{'loss': 'perceptron', 'alpha': 0.0001, 'penalty':

'elasticnet', 'max_iter': 1000}
 0.9993

SGD 20
{'loss': 'perceptron', 'alpha': 0.0001, 'penalty': 'l2',

'max_iter': 10000}
0.8954

{'loss': 'perceptron', 'alpha': 0.001, 'penalty': 'l2',

'max_iter': 5000}
0.9994

SGD 30
 {'loss': 'hinge', 'alpha': 0.0001, 'penalty': 'l1',

'max_iter': 5000}
0.8908

{'loss': 'perceptron', 'alpha': 0.0001, 'penalty':

'l2', 'max_iter': 3000}
 0.9995

RF 15
{ n_estimators=100; criterion= entropy;

max_depth= None; max_features= None}
0.9948

{ n_estimators= 110; criterion= entropy;

max_depth= None; max_features= log2 }
1.0000

XGBoost 18

{ max_depth =3; learning_rate= 0,3;

min_child_weight = 5; gamma= 0; reg_alpha=

0,1; reg_lambda= 0,01; n_estimators= 80 }

0.9967

{max_depth=6; learning_rate= 0,2;

min_child_weight= 5; gamma= 0,2; reg_alpha=

0; reg_lambda= 0,1; n_estimators= 80 }

1.0000

Table 7. BO runtime

Model Nb_Calls Learning_Period(s) Predictive_Period (s) Total Learning and Predictive Period (s)

SGD_AP 30 2445.785 16.723 2462.507

SGD_AUC 30 1939.482 16.875 1956.356

RF_AP 15 29965.195 452.254 30417.449

RF_AUC 15 64317.759 417.664 64735.423

XGB_AP 18 41472.845 62.795 41535.640

XGB_AUC 18 43787.210 65.340 43852.550

The ROC curve itself is a graphical representation,

delineating the performance of a binary classification system

across all possible classification thresholds [42]. This curve

plots the True Positive Rate (TPR) against the False Positive

Rate (FPR), spanning various threshold values. The TPR is

represented along the Y-axis, while the FPR is plotted on the

X-axis. The optimal point on this curve would correspond to a

FPR of zero coupled with a TPR of one. The overarching

objective is to simultaneously maximize the TPR and

minimize the FPR. Generally, a larger AUC is indicative of

superior model performance [43].

ROC curves are predominantly utilized in the realm of

binary classification, facilitating the distinct definition of the

TPR and FPR. When venturing into the domain of multi-class

classification, a clear delineation of TPR or FPR necessitates

the binarization of the output, a process executable through

two predominant schemes: the Un-vs-Un scheme, which

engages in a pairwise comparison of each unique class

combination, and the Un-vs-Rest scheme, which entails

comparing each individual class against all remaining classes

[43].

In the context of this research endeavor, the multi-class

1187

One-vs-Rest (OvR) strategy, alternatively known as One-vs-

All, was employed. This strategy necessitates the computation

of an ROC curve for each class within the n_classes. In each

iteration, a specific class is designated as the positive class,

while the aggregate of other classes is treated as a singular

negative class [43].

To address and mitigate the issue of class imbalance and

ensure equitable treatment across all classes, the 'macro' option

was selected for the Average parameter of the Roc_auc_score

metric. This entails the computation of the arithmetic mean of

the metric independently for each class.

In the iterative optimization process, a maximum number of

iterations was established for each algorithm under study,

pertaining to both Roc_auc_score and

Average_precision_score objective functions. Upon

completion of this iterative loop, the optimal value and

corresponding hyperparameters, yielding the most proficient

performance, were ascertained for each objective function.

Specifically, the maximum iterations were set at 15 for the RF

algorithm, 18 for the XGBoost algorithm, and three distinct

values-15, 20, and 30-were evaluated for the SGD algorithm.

The subsequent section, Table 6, delineates the optimal

hyperparameters derived from each objective function for each

algorithm, while Table 7 enumerates the associated processing

times.

Subsequent to the BO, the algorithms under investigation -

RF, XGBoost, and SGD-were subjected to both the optimized

hyperparameters and their default settings. The rationale for

this dual approach was to establish a baseline for performance

comparison, particularly in the context of DDOS attack

detection systems.

The selection of classifiers-XGBoost, RF, and SGD

Classifiers - was predicated on their distinctive attributes,

which aligned with the research objectives pertaining to

precision, speed, robustness, and capacity to manage extensive

data sets. XGBoost, a boosting model, was chosen for its

prowess in delivering high accuracy, execution speed, and

resilience against overfitting, rendering it an exemplary choice

for anomaly-based intrusion detection. RF, an ensemble model,

is lauded for its precision, resistance to overfitting, and

aptitude for handling diverse data types, which are imperative

in intrusion detection scenarios. Lastly, the SGD classifier,

grounded in SGD, was selected for its efficiency in processing

large volumes of data and its expedited computational

capabilities, both of which are quintessential in IT security

contexts.

In scenarios involving imbalanced datasets, the evaluation

methodology for the performance of multi-class classification

models encompassed a twofold approach. Initially, a holistic

assessment was conducted using global metrics - Accuracy,

BA, MCC, and macro_F1_score - to provide a comprehensive

view of the algorithms' efficacy. Subsequently, a more

granular analysis was undertaken, examining individual class

performances based on Precision, Recall, F1-score, FPR, and

the Precision-Recall Curve, complemented by the AP Score.

The final facet of evaluation pertained to the execution times

of each model, ensuring a thorough appraisal of their

performance.

6. IMPLEMENTATION, RESULTS AND DISCUSSIONS

6.1 Hardware and environment setting

The experiments delineated in this manuscript were

executed on the Google Colab Pro+ platform, a derivative of

Google Research. This platform provides a hosted Jupyter

notebook service, obviating the necessity for configuration,

and is endowed with 54.8 gigabytes of high RAM for

computational tasks. The construction, training, evaluation,

and testing of the ML models were carried out within the

Scikit-Learn framework, an open-source Python library

renowned for its simplicity and efficacy, drawing upon the

capabilities of the NumPy, SciPy, and matplotlib libraries. For

the implementation of XGBoost, the xgboost Python module

was integrated into the Scikit-Learn framework, serving dual

functions as a data selection tool and ML algorithm.

Sequential model-based optimization, requisite for BO, was

facilitated through the employment of the scikit-optimize

module, an open-source tool built upon NumPy, SciPy, and

Scikit-Learn. The construction of the models was undertaken

using Jupyter Notebook, with Python as the programming

language of choice. Data cleaning and feature selection were

conducted utilizing the Pandas and NumPy frameworks, while

data visualization was achieved through Matplotlib and the

Seaborn framework. BO was conducted via Scikit-optimize,

and Scikit-learn was employed for comprehensive data

analysis.

6.2 Performance metrics

The evaluation of classification model performance within

this study hinges on the mathematical computation of various

metrics, each rooted in the distinct permutations of elements

within the confusion matrix: True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives

(FN). Herein, TP denote instances wherein the model

accurately identifies the positive class, whereas TN pertain to

cases of correct negative class prediction. Conversely, FP-

categorized as Type I errors-occur when the model

erroneously predicts the positive class in lieu of the negative

class. FN, or Type II errors, arise when the model inaccurately

predicts the negative class, despite the true classification being

positive.

Accuracy serves as a pivotal metric within this framework,

quantifying the overall precision of the classification model. It

is calculated as the proportion of accurately predicted

instances (encompassing both TPs and TNs) relative to the

aggregate number of instances present in the dataset.

TP TN

Accuracy
FP FN TP TN

+
=

+ + +
 (9)

BA is a metric judiciously employed in the context of

imbalanced datasets, accommodating for disparities in class

distribution. By computing the average recall, or TP rate,

across each individual class, BA offers a nuanced and more

precise portrayal of a model’s performance, particularly in

scenarios characterized by imbalanced classes.

()

2

Sensitivity Specificity
BA

+
= (10)

where,

 () ,
TP TN

Sensitivity Recall Specificity
TP FN TN FP

= =
+ +

MCC serves as a comprehensive metric for evaluating the

1188

performance of binary classification models, encapsulating all

four components of the confusion matrix: TPs, TNs, FPs, and

FNs. It effectively quantifies the correlation between the

observed and predicted classifications, with its values

spanning from -1, indicative of completely discordant

predictions, to +1, denoting flawless prediction accuracy. A

score of 0 from MCC implies that the model's predictions are

no better than random chance.

(* *)

()*()

()()

TP TN FP FN
MCC

TP FP TP FN

TN FP TN FN

−
=

 
 


+ +

+ +

(11)

Recall measures the model's ability to correctly identify all

positive instances (TPs) out of all actual positives. It is also

known as the TP rate or sensitivity.

TP
Recall

TP FN
=

+
 (12)

Precision measures the model's ability to correctly predict

positive instances (TPs) out of all instances predicted as

positive. It assesses the reliability of positive predictions.

TP

Precision
TP FP

=
+

 (13)

The F1-score is the harmonic mean of precision and recall.

It provides a single metric that balances both precision and

recall, making it useful for assessing overall classification

performance.

2*(*)
1

()

Precision Recall
f score

Precision Recall
− =

+
 (14)

The macro F1-score is the average F1-score calculated

separately for each class and then averaged. It measures the

balance between precision and recall across multiple classes in

a classification problem.

1

1

1

N

i

i

F score

MacroF score
N

=

−

− =


(15)

The FPR is the ratio of FP predictions to all actual negatives.

It measures the model's ability to correctly classify negative

instances.

FP
FPR

FP TN
=

+
 (16)

6.3 Implements, results and discussion

Subsequent to the completion of the data pre-processing

phase, the derived dataset was partitioned into distinct subsets,

with 70% allocated for training (training set), 18% for

validation (validation set), and 12% for testing (test set). The

application of BO yielded the results delineated in Table 6,

encompassing the outcomes for all three investigated

algorithms across the two objective functions:

Average_precision_score and Roc_auc_score.

Regarding the SGD model, the decision was made to adopt

the hyperparameters corresponding to the most elevated value

attained between AP and AUC. In this instance, a notable AP

of 0.8954 was achieved at the testing phase, corresponding to

a BO iteration count (nb_calls) of 20. In contrast, the AUC

value peaked at 0.995, associated with an nb_calls value of 30.

It is imperative to underscore that the nb_calls parameter

serves as the termination criterion for the iterative loop within

the BO process. A meticulous examination of the results for

the SGD model divulged a recurring presence of the

hyperparameter “loss='perceptron'”, featured in five out of the

six documented outcomes. Furthermore, the hyperparameters

"alpha=0.0001" and "penalty=l2" manifested in four out of the

six cases.

Turning attention to the RF and XGBoost algorithms, it was

observed that the BO computational duration for both

objective functions was considerably extensive, as elucidated

in Table 7. The Colab Pro+ platform, serving as the

computational environment for the experiments, enforces a

continuous execution limit of 24 hours, beyond which all

processing activities are curtailed. This operational constraint

necessitated the selection of specific iteration numbers for

these two models. Despite this limitation, both algorithms

demonstrated exemplary performance, achieving an AUC of 1

and exhibiting remarkably high PA values, with XGBoost

marginally outperforming RF in terms of the PA metric.

Following the application of BO, we proceeded to train,

validate, and test the three algorithms under study. The

aggregated results from the evaluation of the SGD, RF, and

XGB models, utilizing both the optimal hyperparameters

derived from BO and the default settings of the models, are

displayed in Table 8.

These results offer a comprehensive insight into the

performance of the three algorithms in identifying DDOS

attack intrusions within the CICIDS2018 dataset, showcasing

an overall commendable performance.

Focusing on Accuracy, a metric that reflects a model's

proficiency in accurately predicting the predominant class, we

arranged the results yielded by the various models in a

descending order based on this metric. This exercise resulted

in the following hierarchy: M8_XGB>M7_XGB>M4_RF>

M5_RF>M6_RF>M9_XGB>M1_SGD>M2_SGD>M3_SGD,

with corresponding accuracy values of 0.999969, 0.999963,

0.999959, 0.999956, 0.999944, 0.999924, 0.997851, 0.997850,

and 0.989745, respectively.

In the conducted study, three classifier models, namely

SGD, RF, and XGBoost (XGB), were scrutinized through the

lens of BO, with their performances meticulously evaluated

and ranked based on various metrics. Observations were made

regarding the superior performance exhibited by the XGBoost

classifier models M8_XGB and M7_XGB, both outcomes of

BO. These models demonstrated exceptional efficacy,

surpassing their counterparts in the RF and SGD classifier

domains. Notably, the default classifier values of RF and

XGBoost, as represented by models M6_RF and M9_XGB,

showcased commendable performance, outstripping all SGD

classifier models.

Focusing on BA, a critical metric for gauging a model's

discriminative capabilities across diverse classes whilst

accounting for potential class imbalances, the XGBoost

optimized models were identified as the front runners. The

ensuing ranking, delineated as M8_XGB>M7_XGB>

M9_XGB>M5_RF>M6_RF>M4_RF>M3_SGD>M1_SGD>

M2_SGD, with corresponding values 0.992210>0.990906>

0.989490>0.973656>0.969503>0.966789>0.871967>0.8664

1189

70>0.844379, highlighted the lower positioning of SGD

models. Intriguingly, the M3_SGD model, adhering to the

classifier's default hyperparameters, outperformed the

algorithm's optimized counterparts.

In terms of the MCC, a robust metric providing a holistic

assessment of model performance, particularly in scenarios

characterized by class imbalances, the optimized XGBoost

models once again asserted their dominance. They were

closely followed by the optimized models from the RF

ensemble. The rankings, as deduced, were as follows:

M8_XGB>M7_XGB>M4_RF>M5_RF>M6_RF>M9_XGB>

M1_SGD>M2_SGD>M3_SGD, with corresponding MCC

values of

0.999878>0.999853>0.999838>0.999827>0.999779>0.9996

98>0.991598>0.991594>0.959750. It was discerned that

models operating under default parameter settings (M9_XGB,

M6_RF, and M3_SGD) were outpaced by their optimized

counterparts across each algorithm.

Table 8. Result of the global evaluation of the SGD, RF and XGB algorithm

Algorithm Hyperparameter Basis Model Accuracy Balanced_Accuracy MCC Macro_F1_Score

SGD macro_ap

M1_Model= SGDClassifier

(loss='perceptron'; alpha=0,0001;

penalty=l2; max_iter=10000)

0.997851 0.866470 0.991598 0.879416

SGD macro_roc_auc

M2_Model= SGDClassifier

(loss='perceptron'; alpha=0,0001;

penalty=l2; max_iter=3000)

0.997850 0.844379 0.991594 0.861148

SGD default hyperparameters

M3_Model =SGDClassifier

(loss='hinge'; alpha=0,0001; penalty=l2;

max_iter=1000)

0.989745 0.871967 0.959750 0.880472

RF macro_ap

M4_Model= RandomForestClassifier

(n_estimators= 100; criterion= '

entropy';max_depth =None; max_features=

None)

0.999959 0.966789 0.999838 0.972300

RF macro_roc_auc

M5_Model= RandomForestClassifier

(n_estimators= 110; criterion= '

entropy';max_depth =None; max_features=

' log2 ')

0.999956 0.973656 0.999827 0.968834

RF default hyperparameters

M6_Model= RandomForestClassifier

(n_estimators= 100; criterion= '

gini';max_depth =None; max_features= '

sqrt ')

0.999944 0.969503 0.999779 0.965338

XGB macro_ap

M7_Model=XGBClassifier

(max_depth=3; learning_rate= 0,3;

min_child_weight= 5; gamma = 0;

reg_alpha= 0,1; reg_lambda = 0,01;

n_estimators = 80)

0.999963 0.990906 0.999853 0.976434

XGB macro_roc_auc

M8_Model=XGBClassifier(max_depth=6;

learning_rate= 0,2; min_child_weight= 5;

gamma = 0,2; reg_alpha= 0; reg_lambda =

0,1; n_estimators = 80)

0.999969 0.992210 0.999878 0.980428

XGB Default Hyperparameters

M9_Model=XGBClassifier(max_depth=3;

learning_rate= 0,1; min_child_weight= 1;

gamma = 0; reg_alpha= 0; reg_lambda = 1;

n_estimators = 100)

0.999924 0.989490 0.999698 0.971938

Table 9. Precision, recall and f1_score results for SGD, RF and XGB models for individual classes

Precision_test M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB

Benign 99.99% 99.99% 99.48% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

DDOS attack-HOIC 99.35% 99.38% 94.53% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

DDOS attack-LOIC-UDP 62.04% 58.47% 64.56% 91.28% 85.71% 84.57% 85.45% 87.91% 82.74%

DDoS attacks-LOIC-HTTP 97.67% 97.64% 97.85% 99.96% 99.97% 99.96% 99.99% 99.99% 99,98%

Recall_test M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB

Benign 99.77% 99.77% 99.34% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

DDOS attack-HOIC 99.95% 99.94% 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

DDOS attack-LOIC-UDP 46.96% 38.12% 56.35% 86.74% 89.50% 87.85% 96.41% 96.92% 95.90%

DDoS attacks-LOIC-HTTP 99.90% 99.91% 93.12% 99.98% 99.96% 99.96% 99.95% 99.96% 99.90%

f1_score_test M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB

Benign 99.88% 99.88% 99.41% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

DDOS attack-HOIC 99.65% 99.66% 97.18% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

DDOS attack-LOIC-UDP 53.46% 46.15% 60.18% 88.95% 87.57% 86.18% 90.60% 92.20% 88.84%

DDoS attacks-LOIC-HTTP 98.78% 98.76% 95.42% 99.97% 99.97% 99.96% 99.97% 99.98% 99.94%

The Macro F1-score, serving as a critical indicator of the

harmonic balance between precision and recall across various

classes, was meticulously examined for different models. The

ensuing analysis yielded a hierarchical ranking as follows:

M8_XGB>M7_XGB>M4_RF>M9_XGB>M5_RF>M6_RF>

M3_SGD>M1_SGD>M2_SGD, with corresponding values

1190

being 0.980428, 0.976434, 0.972300, 0.971938, 0.968834,

0.965338, 0.880472, 0.879416, and 0.861148, respectively.

Notably, the models affiliated with the SGD classifier were

positioned at the lower end of the spectrum.

In an exhaustive evaluation across all four metrics, the

XGBoost model M8_XGB, parameterized as XGBClassifier

(max_depth=6; learning_rate=0.2; min_child_weight=5;

gamma=0.2; reg_alpha=0; reg_lambda=0.1; n_estimators=80),

consistently emerged as the top performer. When delving into

a comparative analysis of the optimized models versus those

operating under default values for each algorithm, discerning

observations were made. Within the XGBoost realm, models

M8_XGB and M7_XGB exhibited superior performance

across all metrics in comparison to M9_XGB. In the context

of the RF ensemble, models M4_RF and M5_RF

outperformed M6_RF in a majority of metrics, with the

exception of BA where M4_RF lagged slightly behind M6_RF.

On the SGD front, models M1_SGD and M2_SGD

demonstrated prowess in Accuracy and MCC, surpassing

M3_SGD. However, they fell short in BA and Macro F1-score

when juxtaposed with M3_SGD.

Table 9 offers a granular view, encapsulating the precision,

recall, and F1-score metrics, as garnered by the models in

relation to the individual classes encompassed within the

CICIDS2018 DDOS attack dataset.

At this stage, it is observed that all models pertaining to the

RF and XGBoost algorithms exhibit impeccable performance,

achieving a 100% detection and prediction rate for the

"Benign" and "DDOS-attack-HOIC" classes. In contrast, the

SGD classifier models present a more nuanced performance

landscape.

Specifically, for the "Benign" class, the M3_SGD model is

outperformed by both M1_SGD and M2_SGD across all three

evaluation metrics. In the case of the "DDOS-attack-HOIC"

class, the M3_SGD model once again lags behind, particularly

in terms of accuracy and F1 score, rendering M1_SGD and

M2_SGD as more proficient for this specific class.

When attention is shifted to the "DDOS-attack-LOIC-UDP"

class, the F1 score reveals that the M8_XGB model excels

with a commendable score of 92.20%, while M2_SGD is

situated at the lower end of the spectrum with a score of

46.15%. In terms of the "DDOS-attack-LOIC-HTTP" class,

the M8_XGB model maintains its superior stance, achieving

an impressive score of 99.98%, whereas M3_XGB is

identified as the underperformer with a score of 95.42%.

These findings facilitate a comprehensive ranking of the RF

and XGBoost models based on their precision, recall, and F1

score metrics, from the highest to the lowest performing.

However, the classification of models within the SGD

algorithm remains ambiguous. It is, nonetheless, definitively

established that M1_SGD and M2_SGD outshine M3_SGD in

the "Benign," "DDOS-attack-HOIC," and "DDOS-attack-

LOIC-HTTP" classes. Conversely, M3_SGD demonstrates

superiority over M1_SGD and M2_SGD in the "DDOS-

attack-LOIC-UDP" class, culminating in the conclusion that

M1_SGD is the overall superior model within the SGD family.

Comparatively, models under the SGD algorithm are

observed to perform suboptimally relative to their XGBoost

and RF counterparts. Consequently, the performance

hierarchy from the most to least effective is established as

follows: M8_XGB > M7_XGB > M4_RF > M9_XGB >

M5_RF > M6_RF > SGD models.

To discern the relative performance of models within the

SGD algorithm, the precision-recall curve, illustrating the

trade-off between precision and recall across varying

classification thresholds, was employed alongside the average

precision metric for each class. The insights gleaned from the

analysis of the precision-recall curves for SGD models are

meticulously presented in Figure 3.

The graphical representations elucidated in these precision-

recall curves corroborate the earlier findings, underscoring the

inability of the three SGD models to accurately classify

instances of the "DDOS-attack-LOIC-UDP" class. This

observation is consistent with the previously delineated results

derived from the class-specific recall and precision metrics.

In particular, the precision-recall curve for the M3_SGD

model, when assessed in the context of the "DDOS-attack-

HOIC" class, fails to ascend to the apex of precision, a feat

achieved by its two counterparts. Additionally, the curve

pertinent to the "DDOS-attack-LOIC-HTTP" class for the

M3_SGD model reveals a decrement in precision concomitant

with an increment in recall, further solidifying the model's

position as the least efficacious among the SGD classifiers.

Conversely, the M1_SGD model distinguishes itself

through superior performance, evidenced by the higher AP

values across various classes when juxtaposed with the AP

values of the other two SGD models. Consequently, the

performance of these models can be hierarchically arranged as

follows: M1_SGD > M2_SGD > M3_SGD, solidifying

M1_SGD's standing as the most proficient model within the

SGD algorithmic framework.

An examination of the FPR outcomes presented in Table 10

elucidates the comparative performance of various models,

revealing discernible trends. The SGDClassifier models

exhibit a markedly higher FPR across all classes when

juxtaposed with their RF and XGBClassifier counterparts.

Specifically, the M3_SGD model manifests exceedingly

elevated FPR rates for both the Benign and DDOS-attack-

HOIC classes. Conversely, the models M6_RF, M5_RF,

M8_XGB, and M7_XGB are distinguished by their minimized

FPR rates.

Figure 3. Precision_recall curves for SGD models

1191

Table 10. The results of the FPR

 M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB

Benign 3,81E-04 4,01E-04 3,12E-02 1,31E-05 6,57E-06 6,57E-06 6,59E-06 6,59E-06 2,04E-04

DDOS attack-HOIC 5,46E-04 5,22E-04 4,82E-03 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,01E-06

DDOS attack-LOIC-

UDP
4,85E-05 4,57E-05 5,22E-05 1,40E-05 2,52E-05 2,70E-05 2,98E-05 2,42E-05 3,64E-05

DDoS attacks-LOIC-

HTTP
1,65E-03 1,67E-03 1,42E-03 2,69E-05 1,89E-05 2,99E-05 6,98E-06 5,98E-06 1,10E-05

Table 11. Runtimes undertaken by the SGD, RF and XGBoost algorithms

Model
Learning_Period

(Seconds)

Validation_Predictive_

Period (Seconds)

Test_Predictive_Period

(Seconds)

Total Execution

Time (Seconds)

M1_SGD= SGDClassifier(loss='perceptron';

alpha=0,0001; penalty=l2; max_iter=10000)
45.884 0.336 0.168 46.387

M2_SGD= SGDClassifier(loss='perceptron';

alpha=0,0001; penalty=l2; max_iter=3000)
47.989 0.389 0.176 48.554

M3_SGD =SGDClassifier(loss='hinge';

alpha=0,0001; penalty=l2; max_iter=1000)
44.423 0.250 0.172 44.845

M4_RF= RandomForestClassifier(n_estimators=

100; criterion= ' entropy';max_depth =None;

max_features= None)

4282.952 11.113 7.404 4301.468

M5_RF= RandomForestClassifier(n_estimators=

110; criterion= ' entropy';max_depth =None;

max_features= ' log2 ')

1641.709 14.140 9.280 1665.129

M6_RF= RandomForestClassifier(n_estimators=

100; criterion= ' gini';max_depth =None;

max_features= ' sqrt ')

1231.130 12.946 8.642 1252.718

M7_XGB=XGBClassifier(max_depth=3;

learning_rate= 0,3; min_child_weight= 5; gamma

= 0; reg_alpha= 0,1; reg_lambda = 0,01;

n_estimators = 80)

538.529 0.660 0.450 539.638

M8_XGB=XGBClassifier(max_depth=6;

learning_rate= 0,2; min_child_weight= 5; gamma

= 0,2; reg_alpha= 0; reg_lambda = 0,1;

n_estimators = 80)

541.611 0.808 0.542 542.962

M9_XGB=XGBClassifier(max_depth=3;

learning_rate= 0,1; min_child_weight= 1; gamma

= 0; reg_alpha= 0; reg_lambda = 1; n_estimators

= 100)

681.492 0.792 0.526 682.810

In the context of the DDOS-attack-HOIC class, it is

noteworthy that the models M6_RF, M5_RF, M8_XGB,

M7_XGB, and M4_RF achieved a perfect classification with

zero FPs. As for the "DDOS-attack-LOIC-UDP" class, a low

FPR was consistently maintained across all classifiers. With

respect to the "DDoS-attacks-LOIC-HTTP" class, the models

M8_XGB and M7_XGB outperformed their counterparts,

achieving the lowest FPR rates, followed by M9_XGB,

M5_RF, M4_RF, and M6_RF. In stark contrast, the SGD

models M3_SGD, M1_SGD, and M2_SGD exhibited

significantly higher FPR rates.

A consolidated ranking of the models based on their FPR

performance across all classes yields the following order, from

lowest to highest FPR: M8_XGB < M7_XGB < M5_RF <

M4_RF < M6_RF < M9_XGB < M1_SGD < M2_SGD <

M3_SGD.

These empirical results corroborate the theoretical

expectations associated with the deployed algorithms.

Subsequent analyses focusing on runtime for the processes

of learning, validation, and testing, as delineated in Table 11

and Figure 4, reveal that the RF models necessitate longer

execution times relative to the other classifiers. This is

particularly evident in the M4_RF model during the learning

phase, which required a substantial 4282.952s. In stark

contrast, the SGD models epitomized efficiency, with the

M3_SGD model necessitating a mere 48.554s, the highest

within its category. On average, the runtime of RF models was

approximately 52 times greater than that of the SGD models.

XGBoost models also exhibited longer runtimes than SGD

models, albeit to a lesser extent, averaging around 13 times

longer.

Figure 4. Execution times achieved by different models

XGBoost emerges as the most proficient model in

minimizing FPs, attributed to its capacity for loss function

optimization through regularization and gradient enhancement

techniques. This optimization facilitates enhanced class

1192

discrimination and a consequent reduction in classification

errors. While RF also demonstrates effectiveness, its

performance is somewhat constrained by the inherent

variability associated with aggregating a multitude of trees.

SGDClassifier, despite its computational efficiency, is more

susceptible to noisy data, which can culminate in a higher

incidence of FPs due to its reliance on a stochastic

optimization process, susceptible to data variability.

6.3.1 Discussions

In this study, the efficacy of anomaly-based NIDS has been

evaluated with a focus on enhancing the detection of malicious

activities within computer networks, predominantly pertaining

to DDOS attacks. Emphasis has been placed on ensuring the

accurate identification of real intrusions, the precise prediction

of positive instances, the minimization of erroneous alerts for

benign activities, and the expedited detection of intrusions by

NIDS.

Experiments were conducted across three distinct families

of ML algorithms: XGBoost, RF, and SGD. BO was employed

with the dual objectives of identifying the optimal

hyperparameters for these algorithmic families to enhance

NIDS effectiveness against DDOS attacks, and determining

the most proficient model from the nine under consideration.

Table 12 provides a comprehensive ranking of the models,

arranged in ascending order based on performance metrics,

ranging from the most to least proficient.

The results elucidate that the optimized M8_XGB model,

configured with the hyperparameters (max_depth=6;

learning_rate=0.2; min_child_weight=5; gamma=0.2;

reg_alpha=0; reg_lambda=0.1; n_estimators=80),

demonstrated superior performance, nearing a value of 1

across all classes. This model was observed to outperform its

counterparts significantly.

Table 12. Performance ranking of XGB, RF and SGD models with respect to evaluation metrics

Metrics M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB

Accuracy 7 8 9 3 4 5 2 1 6

Balanced_accuracy 8 9 7 6 4 5 2 1 3

MCC 7 8 9 3 4 5 2 1 6

Macri_f1_score 8 9 7 3 5 6 2 1 4

Precision, Recall, f1_score

and PR_curve_AP
7 8 9 3 5 6 2 1 4

FPR 7 8 9 4 3 5 2 1 6

Final ranking 7 8 9 3 4 6 2 1 5

In terms of performance evaluation metrics, a hierarchy of

model proficiency was established. The optimized XGBoost

models, M8_XGB and M7_XGB, were identified as the front-

runners, followed closely by the optimized RF models M4_RF

and M5_RF. Subsequent positions were occupied by the

models employing default parameters: M9_XGB and M6_RF.

The optimized models M1_SGD and M2_SGD were

positioned next, with the M3_SGD model concluding the

ranking.

This evaluation has facilitated the verification of the

superior performance of models utilizing hyperparameters

derived from BO, in comparison to their default parameter

counterparts, within their respective algorithmic families.

In terms of the temporal efficiency of the intrusion detection

processes (encompassing learning, validation, and testing

phases), it has been observed that the SGD models boast the

shortest execution times, with durations not exceeding 50

seconds. Conversely, the RF models require substantially

more time, with average execution times exceeding 40 minutes.

Through the evaluative processes undertaken in this study, the

SGDClassifier has emerged as the most rapid model, albeit

with diminished efficacy in identifying the DDOS attack-

LOIC-UDP class in comparison to the XGBoost and RF

models. XGBoost, on the other hand, has demonstrated

exceptional performance across all categories. It is noteworthy

that both XGBoost and RF achieve near-perfect performance

across all classes, albeit at the expense of significantly

extended execution times. A critical observation is that the

performance advantage of XGBoost over RF is not as

pronounced as the disparity in execution times between the

SGDClassifier and the other two models. Consequently, a

balanced decision between performance and execution time

necessitates careful consideration, contingent upon the

specific priorities of the application in question. Should

optimum performance be of paramount importance, with

execution time being a secondary consideration, XGBoost

unequivocally stands out as the preferable choice. Conversely,

if rapid response times are imperative, and a slight

compromise in performance, particularly in detecting the

DDOS attack-LOIC-UDP class, is acceptable, the

SGDClassifier emerges as the optimal solution. In real-time

scenarios where promptness is of the essence, the

SGDClassifier provides an immediate and efficient response.

Consequently, a hybrid strategic approach, meticulously

balancing performance and response time, may be warranted,

contingent upon the contextual requirements. In such a

scenario, the SGDClassifier could serve as the preliminary line

of defense, ensuring swift initial responses, followed by more

comprehensive analyses conducted by slower models such as

XGBoost or RF when time permits.

In the context of this study, where precision in intrusion

detection is prioritized without compromising on detection

times, the XGBoost M8_XGB model stands out, delivering

outstanding performance and maintaining a low FP rate.

Moreover, with an execution time of 9 minutes, this model

demonstrates efficiency, especially considering the substantial

size (8,997,323 instances) and the imbalanced nature of the

dataset.

7. CONCLUSIONS

In the presented research endeavor, the amalgamation of the

XGBoost algorithm for the selection of pivotal features and

BO for hyperparameter tuning has been employed, with the

ultimate objective of augmenting the efficacy of ML

classifiers such as XGBoost, RF, and SGD. The intention

behind this hybrid approach is to instantiate an IDS that is both

precise and expedient.

The CSE-CICIDS2018 DDOS attacks dataset has been

1193

utilized as the evaluation benchmark for these methodologies.

The process of feature selection culminated in the

identification of 20 salient features, while BO, guided by the

"Roc_auc_score" and "Average_precision_score" objective

functions, facilitated the determination of the most optimal

hyperparameters for the algorithms in question, in accordance

with these metrics.

This study aimed to assess whether the aforementioned

algorithms, when endowed with optimized hyperparameters,

could surpass the performance benchmarks set by reference

models, defined herein as models operating under the

algorithms’ default hyperparameters. The evaluation metrics

encompassed a comprehensive suite, including Accuracy, BA,

MCC, macro_F1_score, Precision, Recall, F1-score, FPR,

Precision-Recall Curve with AP Score, and the execution

times of each model. The results unequivocally indicated that

the optimized models outperformed the reference models

across all algorithm types. Furthermore, the optimized

XGBoost models consistently emerged as the top performers

in the comparative analysis of all models.

In terms of computational efficiency, the SGD algorithms

were found to be the most rapid. The experimental findings

underscored the benefits of employing a reduced feature

vector, particularly in terms of diminished model complexity

and enhanced accuracy and F1 score. Moreover, the

application of BO was found to contribute substantially to

performance enhancement.

It is acknowledged that the scope of BO in this study was

confined to two objective functions. Future research endeavors

could potentially explore additional metrics to ascertain the

optimal hyperparameter configuration for this specific dataset.

Although evaluation metrics that accorded equal importance

to all classes in the dataset were employed, the issue of class

imbalance was not addressed. Future investigations could

incorporate oversampling and downsampling techniques to

mitigate class imbalance and assess the performance of the

proposed approach on a balanced dataset. Oversampling, by

increasing the prevalence of minority class examples, can

enhance the model's ability to detect these instances, thereby

reducing class bias and bolstering generalization. Conversely,

undersampling, by diminishing the majority class size, can

facilitate a more focused model approach to the minority class,

thereby balancing precision and recall.

Further research avenues could also explore additional

feature selection methodologies and extend the range of

algorithms under consideration to include a broader spectrum

of machine and deep learning approaches.

REFERENCES

[1] Maseer, Z.K., Yusof, R., Bahaman, N., Mostafa, S.A.,

Foozy, C.F.M. (2021). Benchmarking of machine

learning for anomaly based intrusion detection systems

in the CICIDS2017 dataset. IEEE Access, 9: 22351-

22370. https://doi.org/10.1109/ACCESS.2021.3056614

[2] Kasongo, S.M., Sun, Y. (2020). Performance analysis of

intrusion detection systems using a feature selection

method on the UNSW-NB15 dataset. Journal of Big Data,

7: 1-20. https://doi.org/10.1186/s40537-020-00379-6

[3] Torabi, M., Udzir, N.I., Abdullah, M.T., Yaakob, R.

(2021). A review on feature selection and ensemble

techniques for intrusion detection system. International

Journal of Advanced Computer Science and Applications,

12(5): 236317529.

https://doi.org/10.14569/IJACSA.2021.0120566

[4] Agbedanu, P.R., Musabe, R., Rwigema, J., Gatare, I.

(2022). Using incremental ensemble learning techniques

to design portable intrusion detection for

computationally constraint systems. International

Journal of Advanced Computer Science and Applications,

13. https://doi.org/10.14569/IJACSA.2022.0131104

[5] Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah,

J., Ahmad, F. (2021). Network intrusion detection system:

A systematic study of machine learning and deep

learning approaches. Transactions on Emerging

Telecommunications Technologies, 32(1): e4150.

https://doi.org/10.1002/ett.4150

[6] Diamond Connect-La détection d'intrusion: une

approche globale- https://connect.ed-

diamond.com/MISC/misc-072/la-detection-d-intrusion-

une-approche-globale, accessed on Jul. 20, 2023.

[7] Yang, L., Shami, A. (2020). On hyperparameter

optimization of machine learning algorithms: Theory and

practice. Neurocomputing, 415: 295-316.

https://doi.org/10.1016/j.neucom.2020.07.061

[8] Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J.,

Coors, S., Lindauer, M. (2023). Hyperparameter

optimization: Foundations, algorithms, best practices,

and open challenges. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 13(2): e1484.

https://doi.org/10.1002/widm.1484

[9] Talukder, M.A., Hasan, K.F., Islam, M.M., Uddin, M.A.,

Akhter, A., Yousuf, M.A., Moni, M.A. (2023). A

dependable hybrid machine learning model for network

intrusion detection. Journal of Information Security and

Applications, 72: 103405.

https://doi.org/10.1016/j.jisa.2022.103405

[10] Bhati, B.S., Chugh, G., Al-Turjman, F., Bhati, N.S.

(2021). An improved ensemble based intrusion detection

technique using XGBoost. Transactions on Emerging

Telecommunications Technologies, 32(6): e4076.

https://doi.org/10.1002/ett.4076

[11] Li, L.H., Ahmad, R., Tsai, W.C., Sharma, A.K. (2021).

A feature selection based DNN for intrusion detection

system. In 2021 15th International Conference on

Ubiquitous Information Management and

Communication (IMCOM), Seoul, Korea (South), pp. 1-

8. https://doi.org/10.1109/IMCOM51814.2021.9377405

[12] Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H.,

Deng, S.H. (2019). Hyperparameter optimization for

machine learning models based on Bayesian

optimization. Journal of Electronic Science and

Technology, 17(1): 26-40.

https://doi.org/10.11989/JEST.1674-862X.80904120

[13] Zhang, J., Wang, Q., Shen, W. (2022). Hyper-parameter

optimization of multiple machine learning algorithms for

molecular property prediction using hyperopt library.

Chinese Journal of Chemical Engineering, 52: 115-125.

https://doi.org/10.1016/j.cjche.2022.04.004

[14] Cho, H., Kim, Y., Lee, E., Choi, D., Lee, Y., Rhee, W.

(2020). Basic enhancement strategies when using

Bayesian optimization for hyperparameter tuning of deep

neural networks. IEEE Access, 8: 52588-52608.

https://doi.org/10.1109/ACCESS.2020.2981072

[15] Arifin, M., Widowati, W., Farikhin, F. (2023).

Optimization of hyperparameters in machine learning for

enhancing predictions of student academic performance.

1194

Ingénierie des Systèmes d'Information, 28(3): 575-582.

https://doi.org/10.18280/isi.280305

[16] Hagar, A.A., Gawali, B.W. (2022). Deep learning for

improving attack detection system using CSE-CICIDS-

2018. NeuroQuantology, 20(7): 3064-6074.

https://doi.org/10.14704/nq.2022.20.7.NQ33385

[17] Kshirsagar, D., Kumar, S. (2021). An efficient feature

reduction method for the detection of DoS attack. ICT

Express, 7(3): 371-375.

https://doi.org/10.1016/j.icte.2020.12.006

[18] Indrasiri, P.L., Lee, E., Rupapara, V., Rustam, F., Ashraf,

I. (2022). Malicious traffic detection in IOT and local

networks using stacked ensemble classifier. Computers,

Materials and Continua, 71(1): 489-515.

https://doi.org/10.32604/cmc.2022.019636

[19] Waskle, S., Parashar, L., Singh, U. (2020). Intrusion

detection system using PCA with random forest

approach. In 2020 International Conference on

Electronics and Sustainable Communication Systems

(ICESC), Coimbatore, India, pp. 803-808.

https://doi.org/10.1109/ICESC48915.2020.9155656

[20] Stochastic Gradient Descent-scikit-learn 1.3.0

documentation. https://scikit-

learn.org/stable/modules/sgd.html. accessed on April 15,

2023.

[21] Barani, F., Savadi, A., Yazdi, H.S. (2021). Convergence

behavior of diffusion stochastic gradient descent

algorithm. Signal Processing, 183: 108014.

https://doi.org/10.1016/j.sigpro.2021.108014

[22] Sharma, A. (2018). Guided stochastic gradient descent

algorithm for inconsistent datasets. Applied Soft

Computing, 73: 1068-1080.

https://doi.org/10.1016/j.asoc.2018.09.038

[23] Gupta, S., Goel, L., Singh, A., Agarwal, A.K., Singh,

R.K. (2022). TOXGB: Teamwork Optimization based

XGBoost model for early identification of post-traumatic

stress disorder. Cognitive Neurodynamics, 16(4): 833-

846. https://doi.org/10.1007/s11571-021-09771-1

[24] Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., Peng, J.

(2018). XGBoost classifier for DDoS attack detection

and analysis in SDN-based cloud. In 2018 IEEE

international conference on big data and smart

computing (BigComp), Shanghai, China, pp. 251-256.

https://doi.org/10.1109/BigComp.2018.00044

[25] Qin, C., Zhang, Y., Bao, F., Zhang, C., Liu, P., Liu, P.

(2021). XGBoost optimized by adaptive particle swarm

optimization for credit scoring. Mathematical Problems

in Engineering, 2021: Article ID 6655510.

https://doi.org/10.1155/2021/6655510

[26] Bernard, S., Heutte, L., Adam, S. (2009). On the

selection of decision trees in random forests. In 2009

International Joint Conference on Neural Networks,

Atlanta, GA, USA, pp. 302-307.

https://doi.org/10.1109/IJCNN.2009.5178693

[27] Random Forests.

https://www.math.mcgill.ca/yyang/resources/doc/rando

mforest.pdf, accessed on August 10, 2023.

[28] Saini, A. (2021). An Introduction to Random Forest

Algorithm for beginners. https://www. analyticsvidhya.

com/blog/2021/10/an-introductionto-random-forest-

algorithm-for-beginners/, accessed on April 28, 2022.

[29] Ronaghan, S. (2018). The mathematics of decision trees,

random forest and feature importance in scikit-learn and

spark. https://towardsdatascience.com/the-mathematics-

of-decision-trees-random-forest-and-feature-

importance-in-scikit-learn-and-spark-f2861df67e3,

accessed on August 10, 2023.

[30] Zhang, J., Zulkernine, M., Haque, A. (2008). Random-

forests-based network intrusion detection systems. IEEE

Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 38(5): 649-659.

https://doi.org/10.1109/TSMCC.2008.923876

[31] Yannig Goude. Methodes d’ensemble et forets aleatoires.

https://www.imo.universite-paris-

saclay.fr/~yannig.goude/Materials/ProjetMLF/rf_beame

r.pdf, accessed on August 12, 2023.

[32] Koehrsen, W. (2018). A conceptual explanation of

Bayesian hyperparameter optimization for machine

learning. https://towardsdatascience.com/a-conceptual-

explanation-of-bayesian-model-based-hyperparameter-

optimization-for-machine-learning-b8172278050f,

accessed on August 12, 2023.

[33] Dewancker, I., McCourt, M., Clark, S. (2016). Bayesian

optimization for machine learning: A practical

guidebook. arXiv preprint arXiv:1612.04858.

https://doi.org/10.48550/arXiv.1612.04858

[34] Snoek, J., Larochelle, H., Adams, R.P. (2012). Practical

bayesian optimization of machine learning algorithms.

Advances in Neural Information Processing Systems, 25.

https://doi.org/10.48550/arXiv.1206.2944

[35] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B. (2011).

Algorithms for hyper-parameter optimization. Advances

in Neural Information Processing Systems, 24.

[36] Frazier, P.I. (2018). A tutorial on Bayesian optimization.

arXiv preprint arXiv:1807.02811.

https://doi.org/10.48550/arXiv.1807.02811

[37] A Realistic Cyber Defense Dataset (CSE-CIC-IDS2018).

http://www.unb.ca/cic/datasets/ids-2018.html, accessed

in December, 2022.

[38] Information retrieval.

https://en.wikipedia.org/w/index.php?title=Information_

retrieval&oldid=793358396#Average_precision,

accessed on August 9, 2023.

[39] sklearn.metrics.average_precision_score. https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.aver

age_precision_score.html, accessed on August 9, 2023.

[40] Evaluate automated machine learning experiment results

published at January 08, 2023.

https://learn.microsoft.com/en-us/azure/machine-

learning/how-to-understand-automated-

ml?view=azureml-api-2#classification-metrics, accessed

on August 9, 2023.

[41] sklearn.metrics.roc_auc_score https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.roc_

auc_score.html, accessed on August 12, 2023.

[42] Classification: courbe ROC et AUC,

https://developers.google.com/machine-learning/crash-

course/classification/roc-and-auc?hl=fr, accessed on

September 5, 2023.

[43] Metrics and scoring: quantifying the quality of

predictions, 3.3. Metrics and scoring: quantifying the

quality of predictions-scikit-learn 1.3.0 documentation,

accessed on August 12, 2023.

1195

