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The Harris Hawks Optimizer (HHO) is a bio-inspired metaheuristic acknowledged for its 

effectiveness in addressing mono-objective optimization problems. However, its 

application has been limited to these specific challenges. To overcome this constraint and 

to navigate complex multi-objective optimization challenges, a Guided Multi-Objective 

variant of HHO, termed as Guided Multi-Objective Harris Hawks Optimization 

(GMOHHO), is introduced in this study. In the developed GMOHHO algorithm, an archival 

mechanism is integrated. This mechanism is specifically designed to store non-dominated 

solutions and to enhance their retrievability during the search process. Moreover, a robust 

multi-leader selection procedure is implemented, facilitating the steering of the primary set 

of solutions towards potential areas within the search space. Further, the Bi-Goal Evolution 

(BIGE) framework is utilized. This framework aids in the transformation of a search space 

with multitudinous objectives into a bi-objective one, thereby augmenting environmental 

selection. This integration ensures a balanced compromise between the convergence and 

diversity of solutions. The performance of the proposed GMOHHO algorithm was 

appraised across a series of test functions. The results consistently displayed its supremacy 

over the conventional HHO approach as well as other cutting-edge multi-objective 

optimization techniques. With its noteworthy capability to address a broad range of multi-

objective optimization problems, the GMOHHO algorithm delivers high-quality solutions 

within acceptable computational timeframes. This study, therefore, paves the way for a 

promising approach to multi-objective optimization, potentially expanding the application 

sphere of the HHO algorithm. 
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1. INTRODUCTION

Optimization problems pervade a multitude of application 

domains, including but not limited to, industrial engineering, 

image processing, and economics. The common thread among 

these challenges is their multi-objective nature, a reflection of 

the real-world scenarios they emerge from, which necessitate 

the consideration of multiple criteria simultaneously. 

Consequently, the resolution of such issues falls within the 

realm of multi-objective optimization (MOPs) [1-3]. The 

innate conflicting characteristics of MOPs render them 

considerably more complex than their single-objective 

optimization counterparts (SOPs). 

In the realm of SOPs, the principal objective is to pinpoint 

a single optimal solution, often termed the global optimum. 

However, MOPs necessitate a departure from this approach. 

The focus, in this context, is on achieving convergence within 

a set of diverse solutions, known as the Pareto set (PS) [4, 5]. 

This poses a unique challenge in MOPs, as it involves the 

delicate balancing of multiple objectives to attain a 

satisfactory resolution. 

The introduction of the rapid and elitist multi-objective 

genetic algorithm, known as NSGA-II, by Deb et al. [6] in 

2002, marked a significant advancement in this field. The 

algorithm, built upon the principle of Pareto dominance, 

represents a pioneering approach to these challenges. NSGA-

II, an enhanced iteration of NSGA [7], employs a layered 

system predicated on dominance relationships between 

individuals. Within each layer, a virtual fitness value is 

assigned. The integration of such sophisticated strategies 

underscores the ongoing evolution of optimization algorithms 

in response to multi-objective optimization challenges. 
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In their seminal work, Deb and colleagues introduced 

NSGA-III as an evolutionary method for many-objective 

optimization [8]. This approach harnesses a non-dominated 

sorting strategy predicated on reference points, enabling the 

efficient handling of a broad spectrum of many-objective 

problems. Concurrently, SPEAII, a renowned multi-objective 

algorithm, was proposed [9]. This method employs a 

truncation strategy for updating the fixed archive size, and 

introduces an innovative fitness assignment approach that 

relies on density estimation to foster diversity. 

Epsilon-MOEA, another notable method, was also 

introduced [10]. This approach leverages the epsilon-

dominance relation to not only enhance the diversity of 

solutions, but also to achieve superior convergence and 

reduced computational cost. The success of this algorithm has 

stimulated further research, leading to the proposition of other 

evolutionary methods for addressing MOPs, such as MOEA/D 

[11]. This method decomposes MOP into sub-problems, each 

constructed using a weighted sum as input data. The distances 

between the aggregation weight vectors determine the 

neighbourhood relations between them. The solutions for 

individual sub-problems within MOEA/D are primarily 

derived from their neighbors, facilitating an efficient and 

effective optimization process. 

In the past decade, significant advancements have been 

made in multi-objective optimization, particularly in the realm 

of Swarm Intelligence (SI), which has emerged as one of the 

most developed methods. MOPSO stands as a notable example 

[12], serving as the foundation for a multitude of other SI 

techniques addressing MOPs. MOPSO comprises two main 

components: the archive and the grid. The archive is 

responsible for managing non-dominated solutions obtained 

previously, while the grid function determines the suitability 

of a new non-dominated solution for inclusion in the archive. 

NSPSO [13] and MOGWO [14] represent algorithms inspired 

by the MOPSO approach, adopting some of its principles in 

their design. Following this, the authors of MOGWO 

introduced the MOALO [15], which incorporates a reference 

operator to store Pareto solutions and employs a roulette 

selection technique to ensure the preservation of a diverse 

solution set. 

Subsequently, the CSO algorithm was extended to handle 

MOPs through the integration of two strategies [16]. The first 

involves an archiving mechanism to preserve optimal chicken 

solutions, while the second combines crowding computation 

and epsilon dominance to uphold diversity. Similarly, the 

whale optimization algorithm was adapted for MOPs by 

incorporating ranking and updating techniques that rely on the 

crowding distance metric of the NSGAII algorithm [17]. This 

approach guides the population towards diverse and well-

distributed solutions. Accompanying these methods, there 

have been other noteworthy proposals such as MOFA [18], 

MSSA [19], MOHSA [20], MOWCA [21], MOMFO [22], 

MOAOA [23], and MOMRFO [24, 25], among others. These 

algorithms collectively contribute to the expanding toolkit 

available for multi-objective optimization. 

In a recent development, A. Heidari et al. introduced the 

novel Swarm Intelligence (SI) algorithm, Harris Hawks 

Optimization (HHO) [26]. This algorithm, with its unique 

features and distinct advantages, emerges as an appealing 

choice to address the challenges incumbent in multi-objective 

optimization. The HHO algorithm has been demonstrated to 

possess a remarkable capability in resolving single-objective 

optimization problems, exhibiting a high efficiency in 

identifying optimal solutions. Furthermore, its adeptness in 

managing a variety of constraints, including both equality and 

inequality constraints, amplifies its relevance in tackling real-

world problems. 

HHO also showcases impressive exploration and 

exploitation capabilities, enabling it to efficiently survey and 

traverse complex search spaces. The collaborative behavior of 

hawks, which forms the inspiration for HHO, imparts an 

inherent advantage in terms of information sharing and 

collective decision-making, thus facilitating effective 

exploitation of the search landscape. These specific strengths 

and the potential of HHO make it an attractive focus for further 

study, as it holds the promise of offering novel insights and 

solutions in the landscape of multi-objective optimization. 

Within the existing body of literature, three notable methods 

have been proposed that aim to extend the conventional HHO 

algorithm specifically for addressing MOPs. The first of these 

incorporates an archive to sustain non-dominated solutions 

and employs the roulette wheel technique as a selection 

strategy [27]. However, it is noteworthy that the qualitative 

outcomes of this version are validated using only the IGD 

metric, with no consideration for diversity. The second 

investigation merges strategies of Epsilon-Dominance and 

crowding computation to tackle MOPs, and incorporates an 

external limited-size repository into the HHO algorithm to 

uphold the concept of elitism [28]. In the final study, a 

combination of strengthened dominance and a population 

archive is utilized to preserve the set of optimal solutions 

throughout the optimization process [29]. These innovative 

approaches collectively contribute to the ongoing evolution of 

the HHO algorithm for multi-objective optimization. 

This study introduces GMOHHO, a novel enhancement of 

the Harris Hawks Optimization (HHO) algorithm that 

incorporates Bi-Goal Evolution (BIGE) [30] and employs a 

multi-leader selection strategy to effectively address multi-

objective optimization problems (MOPs). The significant 

contributions of this research are as follows: 

• Adjustments are made to the movements of the hawk 

solutions during the generation of the offspring population 

to ensure a comprehensive exploration of the search space. 

• An archival process is integrated, designed to preserve and 

retrieve optimal solutions, while concurrently directing the 

primary population towards achieving the optimal Pareto 

set. 

• A multi-leaders selection strategy is utilized in the 

proposed algorithm, which facilitates the efficient 

direction of individuals towards the Pareto solution set. 

• An initial filter that employs the Non-Dominated Sorting 

(NDS) technique is implemented to identify solutions with 

high levels of both convergence and diversity. 

• In circumstances where the newly generated population is 

incomplete, a secondary filter that utilizes an NDS-based 

Bi-Goals Optimization strategy is applied. This technique 

converts the many-objective spaces of unselected solutions 

into a Bi-objective space, defined by proximity and 

diversity. The algorithm subsequently selects the most 

optimal solutions based on their capacity to achieve high 

levels of convergence and diversity within this bi-objective 

space. 

• In the event that the new population still requires 

completion, the final filter is reapplied. This involves the 

random selection of additional individuals to supplement 

the population and ensure its completeness. 

The structure of this paper is as follows: Section 2 presents 
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an overview of the foundational concepts and key definitions 

pertinent to this study, in addition to a brief explanation of the 

HHO method. The proposed multi-objective version 

(GMOHHO) is delineated in Section 3. Section 4 is dedicated 

to the analysis and interpretation of the experimental results. 

Finally, Section 6 concludes the paper, summarizing the work 

and offering suggestions for future investigations. 

 

 

2. FUNDAMENTAL CONCEPTS   

 

2.1 Multi-Objective Optimization problem (MOP) 

 

MOP involves optimizing problems using multiple 

objective functions [31]. This may be expressed as a 

minimization problem, as shown in the equation Eq. (1). 

 
: ( ),

( ) 0, 1,2...,

( ) 0, 1,2...,

, 1,2...,

m

i

c

j j j

Min F x

g x i I

W x c C

T x F j n

  =


= =
   =  

(1) 

 

The variable x represents a solution consisting of n decision 

variables, denoted by x1, x2, …, xn subject to both inequality 

constraint "I " and equality constraints "C". "M" corresponds 

to the count of objective functions, while "Tj" and "Fj" 

represent the lower and upper bounds of the decision variable, 

respectively. 

Definition (Pareto Dominance) Given two solutions "a" 

and "b", "a" is said Pareto dominates "b" (represented as a<b) 

if:  

 

 1,2,..., : ( ) ( )m mm M f a f b  
 (2) 

 

 1,2,..., : ( ) ( )m mm M f a f b  
 (3) 

 

When no other feasible solution can dominate a particular 

solution, that solution is referred to as a non-dominated 

solution (Pareto solution). The collection of all non-

dominated solutions is termed the Pareto set (PS), defined as: 

 

 | ,PS a X X a bb=   
 

(4) 

 

By applying the objective vector to the PS, we obtain what 

is referred to as the PARETO FRONT (PF) representation. 

 

2.2 Non-dominated sorting method (NDS) 

 

 
 

Figure 1. Principle of Non-dominated sorting method [6] 

 

The NDS [6] method, is a commonly utilized technique for 

solving multi-objective optimization problems. It involves 

selecting non-dominated individuals within the population and 

creating a hierarchical structure, representing a set of optimal 

solutions. The method sorts the population into several non-

dominated layers, allowing for the identification of high-

quality solutions that are diverse and well-spread across the 

pareto front. The algorithm assigns rank to individuals, which 

are determined by their degree of non-domination. The 

individuals that are best and not dominated by any other 

solution are given the first rank. This mechanism is repeated 

until the complete population has been sorted, and individuals 

are assigned ranks based on their level of domination. NDS is 

an effective method for finding a set of high-quality solutions 

that are well-spread across the pareto front. The principle of 

NDS is demonstrated in Figure 1. 

 

2.3 Bi-Goal Evolution (BIGE) 

 

Li et al. [30] proposed an innovative mechanism called Bi-

Goal Evolution (BIGE). This mechanism is designed to 

formulate a selection strategy that is well-suited for extensive 

objective spaces. This approach converts a high-dimensional 

objective space into a bi-objective space, effectively 

considering the proximity and crowding degree of solutions 

within the population. The proximity calculation (Eprox) for a 

given individual s is computed by aggregating its individual 

objective values into a single comprehensive objective value, 

as shown in the Eq. (5): 

 

Pr

1

( )
k

i

ox

i

E E s
=

=
 

(5) 

 

Here, “k” represents the total count of objectives, and Ei(s) 

refers to the goal value of the individual "s" in the ith goal. 

Calculating the crowding degree (ECrow) of an solution (s1) 

within the pareto front set (F) involves the following 

estimation: 

 
1/2

2 ; 2 1

( 1) ( ( 1, 2))Crow

s F s s

E s shar s s
 

= 
 

(6) 

 

where, shar(s1, s2) means sharing function between two 

individuals s1 and s2, which is elucidated in Eq. (7): 
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otherwise
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− 







− 





 =



 

(7) 

 

In this context, Edist(s1, s2) is the euclidean distance 

between two solutions (s1, s2). The parameter "r" signifies the 

niche radius, computed using "N" and "K" which respectively 

denote the population size and the total count of objectives. 
 

1
k

r
N

=

 
(8) 

 

More importantly, in this mechanism of BIGE, using the 

sharing function mentioned above permits neighbouring 

solutions to be placed at a distance. And then, the new 
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parameters (EProx) and (ECrow) are estimated using Eq. (5) and 

Eq. (6), respectively. The principle of BIGE is depicted in 

Figure 2. 
 

 
 

Figure 2. The principle of BIGE strategy [30] 
 

2.4 Harris Hawks Optimization (HHO) 
 

HHO [26] is a newly introduced Algorithm that emulates 

the Harris hawk chasing behaviour. Below, the mathematical 

model of this method is presented. 

 

2.4.1 Exploration phase 

During this stage, the Hawks are diffused in random areas 

and use two alternative strategies to find prey: 
 

1 2

Pr 3 4

( ) | ( ) 2 ( ) |, 0.5
( 1)

( ( ) ( )) ( ( )), 0.5

rand rand

ey Av

L it r L it r L it q
L it

L it L it r T r F T q

− − 
+ = 

− − + − 

 
(9) 

 

where, L(it+1) denotes the Location of Hawks for the 

subsequent repetition, L(it) is the actual location of hawks, 

LPrey(it) is the actual location of the prey. r1, r2, r3, r4, and q are 

assigned randomly in (0, 1). F and T represent the upper and 

lower limits of positions, respectively, Lrand signifies an 

individual hawk selected at random from the population, and 

LAv represents the mean locations of the individuals which is 

determined by: 
 

1

1
( ) ( )

N

Av j

it

L it L it
N =

= 
 

(10) 

 

In this equation, N, Lj denote the total count of hawk 

individuals within the population, and the location of each 

hawk, respectively. 

 

2.4.2 Transition phase 

The HHO can exchange diversification and intensification 

stages in response to the fleeing energy of the rabbit (E), which 

is computed by: 

 

02* (1 )
it

E E
iT

= −
 

(11) 

 

where, E0 refers to the rabbit’s energy at the starting point, 

which is choosing randomly from an interval of -1 to 1. If the 

value of E exceeds 1, the HHO prioritizes the diversification 

strategy. Conversely, if E is less than or equal to 1, the  

intensification strategy is favored. iT is the maximum count of 

iterations. 

 
2.4.3 Exploitation phase 

Based on the prey’s fleeing energy (E) and their chance 

fleeing probability (r), the hawks employ four distinct pursuit 

ways. and switch between them as detailed below: 

• Soft Besiege strategy {|E|≥0.5, and r≥0.5} 

Hawks encircle the prey gently, causing it to become 

exhausted before launching a sudden attack, which is 

described as: 

 

Pr Pr( 1) ( ( ) ( )) | * ( ) ( )ey eyL it L it L it E F L it L it+ = − − −
 

(12) 

 

The magnitude of the rabbit’s random jumps during the 

escape process can be expressed by F=(1-r5)∗2, where r5 

represents a randomly generated value within the range of 0 to 

1. 

• Hard Besiege strategy {|E|<0.5, and r≥0.5} 

When the rabbit reaches a state of exhaustion and lacks the 

energy to flee, it may become vulnerable to surprise attacks by 

hawks without needing them to encircle its intended target. 

This scenario is described as follows: 

 

Pr Pr( 1) ( ) | ( ( ) ( ))ey eyL it L it E L it L it+ = − −
 

(13) 

 

• Soft besiege with progressive rapid dives {|E|≥0.5, and 

r<0.5}  

If the rabbit possesses sufficient energy to successfully flee, 

Hawks may employ a gentle encirclement strategy prior to 

launching a surprise attack. In such cases, the algorithm 

calculates the subsequent movement of the Hawks using the 

equation below: 

 

Pr Pr( ) | ( )* ( ) |ey eyY L it E L it F L it= − −
 (14) 

 

We presume that they will descend into a space of D 

dimensions, guided by the function of levy flight (LF) [32, 33], 

by adhering to the following formula: 

 

( )*Z Y LF D S= +
 (15) 

 

We note that D pertains to the dimensions involved in the 

optimization issue, while S represents a randomly sized vector 

of 1*D. Furthermore, the calculation of the LF will be 

computed as follows:  

 

(1/ )

*
( ) 0.01*

| |

u
LF l

v 


=

 
(16) 

 

u and v are selected at random from [0, 1], the value of β 

remains constant at 1.5, and σ is defined as below: 

 
1

( 1)

2

sin( / 2)* (1 )

2 * * ((1 ) / 2)





 


 
−

 
 + =

 
  +   

(17) 

 

Thus, the calculation model utilized for updating the Hawks’ 

positions is specified as follows: 

 

, ( ) ( ( ))
( 1)

, ( ) ( ( ))

if F F L it
L it

if F F L it

 

 


+ = 

  

(18) 

 

• Hard besiege with progressive rapid dives {|E|<0.5, and 

r<0.5}  

Hawks aim to minimize the gap between their mean 

locations and the fleeing rabbit. This which can be described 

as follows: 
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, ( ') ( ( ))
( 1)

, ( ') ( ( ))

if F F L it
L it

if F F L it

 

 


+ = 

  
(19) 

 

where, 
 

Pr Pr' ( ) | * ( ) ( ) |ey ey AvY L it E F L it L it= − −
 (20) 

 

' ' * ( )Z Y S LF D= +
 (21) 

 

LAv has been defined in Eq. (10). 

 

 

2. GUIDED MULTI-OBJECTIVE HARRIS HAWKS 

OPTIMIZATION (GMOHHO) 
 

This section describes the contribution and main features 

proposed for the GMOHHO algorithm to solve the MOPs. 

 

3.1 The initialization phase 

 

 Firstly, GMOHHO generates the initial population (P) of N 

Hawks within the defined search space, with each Hawk 

representing a potential solution to the MOP. Then, according 

to the M objectives, evaluating each solution from this 

population is necessary. Moreover, the archive (Ar) is 

initialized by selecting the non-dominated solutions from the 

initial population (P). From this archive, the leader solutions 

(the best solutions) are chosen as guides to direct the main 

population towards convergence with the true pareto front. 

 

3.2 The offspring phase 

 

Following the initialization step, the GMOHHO employs 

the exploration and exploitation strategies to investigate the 

MOP’s search space and prevent being trapped in a situation 

of stagnancy. Throughout iterations (it), each Harris Hawk 

upgrades its location using the initial energy (E0), the escaping 

energy (E), the parameter (q), and the rabbit’s fleeing chance 

(r) in the range [0,1]. When the energy level E is greater than 

1 in GMOHHO, the location of each Hawak Li is updated 

using 02 exploration strategies that depend on a random 

number q. If q is less than 0.5, then the hawk Li updates its 

position based on the prey solution, the mean location of the 

actual Hawks population, and a location prodecuced at random. 

Alternatively, the location of Hawk Li is updated by 

considering the location of a randomly chosen Hawk from the 

actual population P(it). This switching between the two 

exploration strategies allows the Hawk population to search 

the most potential regions of the search area. Conversely, 

when E is less than 1, GMOHHO focuses primarily on 

exploitation strategies to optimize the search process. It 

employs a decision-making mechanism based on the fleeing 

chance parameter (r) to determine the appropriate exploitation 

strategy for exploring the search space of the MOP, thereby 

improving its effectiveness in finding best solutions. 

As stated before, The GMOHHO algorithm employs the 

four exploitation strategies utilized in the standard HHO 

method but with an added layer of guidance provided by using 

multi-leaders solutions (rabbits) selected from the archive 

population. In contrast to the HHO method, which selects only 

one leader rabbit from the current population, the GMOHHO 

method benefits from a more diverse set of guidance to 

improve its performance. After updating step, the resulting 

positions are stored in the offspring population (Op). This 

population consists of N solutions and is considered a 

temporary population created from the actual population. 

After that, the GMOHHO updates the archive population by 

selecting the optimal solutions from the combined population 

of 2N individuals, comprising both the existing population (P) 

and the newly generated offspring population (Op). Therefore, 

a selection procedure (2) based on the Bi-Goal Evolution and 

NDS is employed on the collective population. This is done to 

reduce the population size effectively and identify only the N 

most optimal solutions for the upcoming generation. The 

subsequent subsection will provide a comprehensive 

description of the environmental selection strategy. 

 

3.3 The size adjustment phase 

 

The selection procedure is of paramount importance in 

ensuring the effectiveness of any evolutionary algorithm. In 

the case of our study, as previously mentioned, three strategies 

are utilized for selection purposes. Firstly, NDS is utilized to 

promote the convergence of solutions. Secondly, the Bi-Goal 

optimization technique is utilized to attain a harmonious 

equilibrium between convergence and diversity. Finally, 

random selection is used to ensure good diversity of solutions. 

These strategies are elaborated upon in detail through three 

main steps, as outlined below, and visualized in a flowchart 

(Figure 3). 

 

3.3.1 The first step 

In this step, a temporary merged population C(it)=P(it) 

∪Op(it) is created. As expected, the population size of C is 2N 

(Overflowing problem). Thereby, this merged set is divided 

into many layers (F1, F2, ...Fn). These layers are determined 

using Non-Dominated Sorting method, which categorizes 

individuals based on their level of dominance and assigns them 

to different layers accordingly. Next, the population for the 

subsequent generation, P(it+1), is formed by selecting 

individuals from the first layer F1, F2, and so on until the 

population size reaches or surpasses N. The solutions in the 

first layer (F1) are the most promising solutions, while those 

in the subsequent layers (F2, F3,.. etc.) are progressively less 

promising. Only the individuals from the most promising 

layers are added to the population for the next generation, 

ensuring the preservation and evolutionary refinement of the 

optimal solutions over time. In the event that the size of layer 

F1 falls below the target size of N, the remaining individuals 

needed to fulfill the population quota of N are selected from 

successive layers in order of their ranking. Specifically, 

individuals from layer F2 are chosen during the second round, 

followed by individuals from layer F3 and so forth. This 

process continues until the critical layer Fi is reached, which 

is defined as the layer at which |F1 ∪ F2 ∪...Fi-1|≤N and |F1 ∪F2 

∪... Fi |>N. The addition of individuals to the population is 

then halted. 
 

3.3.2 The second step 

We employ the Bi-Goal optimization strategy for each 

member of the last accepted Fi set (Critical layer) to estimate 

the two new objectives, proximity(EProx) and the Crowding 

degree(ECrow). To pick exactly N solutions, the individuals of 

layer Fi are partitioned into many layers (Fi1, Fi2..., Fik) 

according to non-dominance relation based on the two new 

goals EProx and ECrow. And then, to fill the population P(it + 1), 

we add (N-|P(it+1)|) solutions from successive layers (Fi1, 

Fi2,..., Fik) in order of their rating till the critical layer (Fik) will 

1139



 

be identified, where | Fi1∪Fi2∪...Fik-1|≤N and |Fi1∪Fi2 ∪...Fik 

|>N. 
 

3.3.3 The third step 

Finally, the remaining solutions (N- | P(it + 1) |) required to 

replenish the population P(it + 1) will be loaded randomly 

from the last accepted layer (Fin) set. Ultimately, these 

processes are iteratively executed until reaching the maximum 

allowed iteration, with the archive individuals being the 

optimal solutions obtained by the MOHHO algorithm. 

The three aforementioned phases are effectively 

demonstrated in the accompanying flowchart (refer to Figure 

4).

 

 
 

Figure 3. Flowchart of selection procedure 

 

 
 

Figure 4.  Flowchart of GMOHHO algorithm 
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3. NUMERICAL EXPERIMENTS AND DISCUTION 

 

This part evaluates the efficacy of the GMOHHO method in 

handling various MOPs. Firstly, an overview of the 

experimental setup is provided. Subsequently, the benchmark 

functions used and the parameters applied to the comparative 

methods in this study are described. Finally, the statistical 

findings of the evaluated algorithms are presented and 

analyzed. 

 

4.1 Experimental setup 

 

We evaluated and compared the GMOHHO algorithm with 

well-known algorithms from various perspectives using two 

performance indicators: the Inverted Generational Distance 

(IGD) [34] and the Hyper Volume (HV) [35]. GMOHHO were 

implemented using the MATLAB (R2016a) programming 

language on a 64-bit Windows 10 operating system. The 

experimental trials were executed using a computer that 

featured an Intel Core(TM) i5-7300HQ CPU and 8GB of 

RAM. To ensure reliable results and mitigate the impact of 

randomness, we performed 31 runs of each comparative 

method, with each run consisting of 1000 iterations. All test 

cases were conducted with a population size of 100. 

 

4.2 Test functions and compared algorithms 

 

Table 1. Attributes of test functions 

 
Test 

Function 
Characteristics 

ZDT1  Convex pareto front. 

ZDT2 Non-Convex pareto front 

ZDT3 Discontinuous front 

ZDT4 221 local optimal pareto fronts (multi-Modal) 

ZDT6 Non-uniform search space 

DTLZ1 Linear pareto front  

DTLZ2 Spherical pareto front 

DTLZ3 Many pareto front 

DTLZ4 Pareto front with a dense set of points near fM-f1 

DTLZ5 The ability to converge to a degenerated curve 

DTLZ6 It involves 2M − 1 discontinuous pareto front 

DTLZ7 Pareto front: mix of a hyperplane and a straight line 

MaF1 Linear, no one optimum in any set of objectives 

MaF2 Concave, no one optimum in any set of objectives 

MaF3 Convex, multimodal curve  

MaF4 
Concave, multimodal, weak scalability, and no a 

unique optimum within any set of objectives 

MaF5 Convex, asymmetric, and exhibiting poor scaling 

MaF6 Concave, degenerate curve 

MaF7 Mixed, disconnected, multimodal  

 

Table 2. Parameters of algorithms 

 
Algorithm Parameters 

MSSA 
The coefficient 𝑎1 = 𝑒−(

4𝑘

𝐾
)
, 2a and 3a : random 

numbers inside [0,1] 

MOEA/D 

Subproblems: M=100, mutation rates: cr=0,5, numbers 

of neighbors: u=10, the index of dispersion η=30, 

probability of selection δ=30 

MOGWO 
Grid Inflation σ=0,1, Grids number NG=10, Selection 

pressure γ=2, and β=4 

GMOHHO 

Scalling coefficients 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑢, 𝑣, and Fleeing 

chance q, are random numbers inside [0,1], Initial prey 

energy 𝐸0 = 2𝑟𝑎𝑛𝑑() − 1, Jump strengh 𝐽 = 2(1 −
𝑟𝑎𝑛𝑑()) 

 

To evaluate the efficacy of the newly introduced GMOHHO 

algorithm, an extensive collection of benchmark functions was 

utilized for evaluation. These benchmarks were carefully 

selected from well-established categories, namely the ZDT-

series [36] (consisting of five bi-objective functions), the 

DTLZ series [37] (consisting of a set of seven three-objective 

functions), and the MaF series [38] (encompassing seven 

many-objective functions). The attributes of these evaluation 

functions are outlined in Table 1. 

For the purpose of conducting a comparative study, three 

reputable benchmarking techniques, namely MSSA [19], 

MOEAD [11], and MOGWO [14], were chosen. The initial 

parameters of each algorithm, as recommended in their 

original sources, are provided in Table 2. All test methods 

were conducted with a population volume of 100. to reduce 

the impact of randomness, we conducted 31 runs of each 

comparative method, each consisting of 1000 iterations. 

 

4.3 Comparative experimental results on ZDT serie 

 

In this section, we comprehensively evaluate the efficacy of 

the suggested GMOHHO algorithm specifically in the context 

of bi-objective problems represented by the ZDT series. To 

effectively assess its performance, we conduct a comparative 

analysis between the GMOHHO and other well-established 

multi-objective methods. The results obtained from this 

comparative analysis are presented in Tables 3 and 4, where 

we utilize the IGD and HV indicators, respectively, to measure 

the performance of the algorithm.  

Table 3, which displays the IGD indicator, reveals that the 

GMOHHO algorithm consistently outperformed all other 

tested techniques across the entire range of ZDT benchmark 

problems. This outcome clearly signifies the superior 

performance of the GMOHHO algorithm in addressing the 

specific challenges posed by these problems. Similarly, Table 

4, which presents the HV measure, consistently showcases the 

GMOHHO algorithm's superiority over the other methods 

across all test functions. The statistically acquired results not 

only validate the efficacy of the GMOHHO algorithm but also 

highlight its capability to effectively handle MOPs. However, 

to provide a more comprehensive analysis, it is crucial to delve 

into the reasons behind the observed performance differences 

among the algorithms and elucidate how the proposed 

GMOHHO method addresses any shortcomings of the other 

methods. 

One potential reason for the GMOHHO algorithm's superior 

performance could be attributed to its innovative incorporation 

of hybridization between three strategies: the Bi-Goal 

Evolution (BIGE), Non-Dominated Sorting (NDS), and Multi-

Leader Selection (MLS). This hybridization allows the 

GMOHHO algorithm to effectively balance exploration and 

exploitation, leading to improved convergence and search 

capabilities. In contrast, the comparative algorithms may 

exhibit limitations in terms of their exploration and 

exploitation capabilities, as well as their adaptability to diverse 

problem domains. These limitations can lead to suboptimal 

solutions and hinder their performance when faced with the 

complexities of MOPs. 

It's essential to acknowledge that while the GMOHHO 

method demonstrated significant advantages, there are still 

potential areas for improvement. For instance, further 

investigations could be conducted to optimize the algorithm's 

parameter settings to enhance its overall performance. 

Additionally, the algorithm's robustness and scalability could 
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be explored and validated on larger-scale MOPs to ensure its 

applicability to real-world problem domains. 
 

Table 3. Results of IGD metric on ZDT test functions 

 
 Algorithms Best Worst Mean 

ZDT1 

GMOHHO 4,77E-4b 1,68E-03 6,60E-04 

MOGWO 5,89E-04 6,10E-03 1,50E-03 

MOEAD 5,41E-04 3,14E-03 1,15E-03 

MSSA 3,15E-03 7,20E-03 4,73E-03 

ZDT2 

GMOHHO 4,50E-04 5,66E-03 1,29E-03 

MOGWO 7,93E-04 2,31E-02 6,45E-03 

MOEAD 3,99E-04 6,24E-02 2,20E-02 

MSSA 3,65E-03 1,16E-02 5,30E-03 

ZDT3 

GMOHHO 5,07E-04 1,37E-03 7,21E-04 

MOGWO 3,06E-04 3,26E-03 9,66E-04 

MOEAD 6,03E-03 2,39E-02 1,04E-02 

MSSA 4,50E-03 1,16E-02 7,18E-03 

ZDT4 

GMOHHO 4,35E-04 9,13E-04 6,20E-04 

MOGWO 2,89E-02 7,19E-01 2,88E-01 

MOEAD 2,03E-01 2,56E+00 1,16E+00 

MSSA 6,93E-02 5,01E-01 1,94E-01 

ZDT6 

GMOHHO 2,91E-04 1,14E-03 4,79E-04 

MOGWO 2,88E-04 2,99E-03 1,45E-03 

MOEAD 3,52E-04 1,69E-01 3,35E-02 

MSSA 6,68E-04 4,21E-03 2,05E-03 

 

The extensive evaluation of the GMOHHO in comparison 

to established methods on the ZDT benchmark series, as 

supported by both statistical metrics and visual convergence 

curves (Figures 5-7), confirms its superior performance in 

generating well-spread non-dominated solutions along the 

optimal pareto front. 

 
Table 4. Results of HV metric on ZDT test functions 

 
 Algorithms Best Worst Mean 

ZDT1 

GMOHHO 7,11E-01 6,97E-01 7,07E-01 

MOGWO 7,09E-01 6,48E-01 6,93E-01 

MOEAD 7,11E-01 5,90E-01 6,85E-01 

MSSA 5,96E-01 4,83E-01 5,48E-01 

ZDT2 

GMOHHO 4,39E-01 3,95E-01 4,33E-01 

MOGWO 4,23E-01 9,09E-02 3,39E-01 

MOEAD 4,38E-01 0,00E+00 7,52E-02 

MSSA 3,13E-01 1,91E-01 2,61E-01 

ZDT3 

GMOHHO 5,91E-01 5,76E-01 5,81E-01 

MOGWO 6,00E-01 5,48E-01 5,81E-01 

MOEAD 5,80E-01 1,30E-01 4,22E-01 

MSSA 6,46E-01 4,70E-01 5,55E-01 

ZDT4 

GMOHHO 7,12E-01 7,02E-01 7,08E-01 

MOGWO 9,09E-02 0,00E+00 5,86E-03 

MOEAD 0,00E+00 0,00E+00 0,00E+00 

MSSA 0,00E+00 0,00E+00 0,00E+00 

ZDT6 

GMOHHO 3,84E-01 7,99E-02 3,21E-01 

MOGWO 3,85E-01 3,26E-01 3,59E-01 

MOEAD 3,83E-01 0,00E+00 2,08E-01 

MSSA 3,76E-01 2,52E-01 3,38E-01 

 

 
 

Figure 5. Best pareto fronts generated by each algorithm on ZDT1 
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Figure 6. Best pareto fronts generated by each method on ZDT2 

 

 
 

Figure 7. Best pareto fronts generated by each method on ZDT4 
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4.4 Comparative experimental results on DTLZ serie 

 

Table 5. Results of IGD metric on DTLZ test functions 

 

Note: Best results are marked in bold 
 

Tables 5-6 present the comprehensive statistical findings of 

the evaluated methods on the three-objective test problems 

from the DTLZ series, focusing on diversification evaluation 

criteria, convergence, and variety. The experimental findings 

demonstrate the superior performance of the proposed 

GMOHHO compared to other methods. This is evident in its 

enhanced convergence rate and its ability to generate a more 

diverse set of optimal solutions. 

 

Table 6. Results of HV metric on DTLZ test functions 

 

Note: Best results are marked in bold 

 

 
 

Figure 8. Best pareto fronts generated by each method on DTLZ2 

 Algorithms Best Worst Mean 

DTLZ1 

GMOHHO 6,80E-04 2,72E-02 4,07E-03 

MOGWO 3,49E-02 2,01E-01 1,25E-01 

MOEAD 3,71E-02 2,68E-01 1,58E-01 

MSSA 6,01E-03 2,70E-01 6,39E-02 

DTLZ2 

GMOHHO 1,37E-03 4,00E-03 1,86E-03 

MOGWO 6,69E-03 1,03E-02 7,88E-03 

MOEAD 1,32E-03 1,82E-03 1,58E-03 

MSSA 5,28E-03 8,21E-03 7,32E-03 

DTLZ3 

GMOHHO 1,74E-03 1,49E-02 8,87E-03 

MOGWO 1,70E+00 2,97E+00 2,78E+00 

MOEAD 4,08E-01 1,71E+00 1,16E+00 

MSSA 1,01E-01 2,37E+00 1,56E+00 

DTLZ4 

GMOHHO 1,48E-03 1,39E-02 3,55E-03 

MOGWO 1,76E-03 2,80E-03 2,20E-03 

MOEAD 1,36E-03 1,43E-02 5,52E-03 

MSSA 4,57E-03 1,02E-02 6,80E-03 

DTLZ5 

GMOHHO 2,42E-04 1,06E-03 3,82E-04 

MOGWO 8,71E-04 2,40E-03 1,50E-03 

MOEAD 2,01E-04 7,83E-04 4,41E-04 

MSSA 6,53E-04 3,72E-03 1,55E-03 

DTLZ6 

GMOHHO 5,74E-04 1,93E-02 6,79E-03 

MOGWO 7,58E-04 7,31E-03 2,19E-03 

MOEAD 2,49E-04 1,09E-03 5,43E-04 

MSSA 6,17E-04 5,75E-03 1,84E-03 

DTLZ7 

GMOHHO 1,09E-03 6,42E-03 1,94E-03 

MOGWO 2,71E-03 9,95E-03 5,58E-03 

MOEAD 2,69E-03 6,52E-02 2,42E-02 

MSSA 6,72E-03 2,52E-02 1,12E-02 

 Algorithms Best Worst Mean 

DTLZ1 

GMOHHO 7,74E-01 5,61E-01 7,09E-01 

MOGWO 0,00E+00 0,00E+00 0,00E+00 

MOEAD 0,00E+00 0,00E+00 0,00E+00 

MSSA 1,36E-02 0,00E+00 4,37E-04 

DTLZ2 

GMOHHO 5,34E-01 3,11E-01 5,01E-01 

MOGWO 3,09E-01 1,15E-01 4,48E-01 

MOEAD 4,04E-01 1,30E-01 4,79E-01 

MSSA 3,64E-02 1,33E-02 1,31E-02 

DTLZ3 

GMOHHO 5,24E-01 2,37E-01 4,16E-01 

MOGWO 0,00E+00 0,00E+00 0,00E+00 

MOEAD 0,00E+00 0,00E+00 0,00E+00 

MSSA 0,00E+00 0,00E+00 0,00E+00 

DTLZ4 

GMOHHO 5,36E-01 9,09E-02 3,87E-01 

MOGWO 4,50E-01 3,65E-01 4,18E-01 

MOEAD 5,00E-01 3,72E-02 3,85E-01 

MSSA 1,20E-02 1,95E-02 1,14E-01 

DTLZ5 

GMOHHO 1,96E-01 1,88E-01 1,92E-01 

MOGWO 1,55E-01 1,26E-01 1,73E-01 

MOEAD 1,85E-01 1,50E-01 1,90E-01 

MSSA 6,13E-03 1,38E-02 4,70E-03 

DTLZ6 

GMOHHO 1,78E-01 0,00E+00 1,50E-01 

MOGWO 1,32E-01 1,51E-02 1,82E-01 

MOEAD 1,95E-01 1,82E-01 1,92E-01 

MSSA 1,47E-02 3,82E-02 2,64E-03 

DTLZ7 

GMOHHO 2,24E-01 1,34E-01 1,62E-01 

MOGWO 2,08E-01 3,34E-02 9,56E-02 

MOEAD 1,42E-01 0,00E+00 1,33E-02 

MSSA 1,40E-01 0,00E+00 5,36E-02 
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Table 5 summarizes the obtained findings of the IGD 

measure for the DTLZ series used in our study. The findings 

demonstrate that the GMOHHO method consistently achieves 

superior heterogeneity of non-dominated solutions compared 

to other well-known methods, as indicated by the lower IGD 

values. However, for the DTLZ2 and DTLZ6 test functions, 

the MOEAD method achieved slightly better results than our 

algorithm, ranking it second in these cases. Furthermore, Table 

6 provides the findings obtained from the HV measure for the 

aforementioned benchmark tests. Our statistical analysis 

reveals that the optimal solutions generated by the GMOHHO 

outperform those of other well-known methods, particularly 

for DTLZ1, DTLZ2, DTLZ3, DTLZ5, and DTLZ7, as 

indicated by higher HV findings. However, it is noteworthy to 

mention that the MOGWO and MOEAD algorithms achieved 

better average HV values for DTLZ4 and DTLZ6, respectively. 

Furthermore, we analyzed the convergence behavior of the 

the DTLZ series’ comparison algorithms and plotted the 

corresponding convergence curves, as shown in Figures 8-9. 

Our observations indicate that the optimal solutions obtained 

by the GMOHHO algorithm are well-distributed for the real 

pareto front for all the tested problems. Specifically, the 

suggested algorithm exhibited exemplary convergence 

behavior and achieved diverse Pareto solutions for all the 

DTLZ test problems. The algorithm's dynamic hybrid 

approach enables it to outperform other methods in most cases. 

However, certain areas for improvement have been identified, 

particularly regarding the performance on specific test 

functions. Future research can focus on addressing these 

limitations. 
 

4.5 Comparative experimental results MaF on series 
 

Table 7. Results of IGD metric on MaF test functions 
 

 Algorithms Best Worst Mean 

MaF1 

GMOHHO 8,51E-03 2,06E-02 1,20E-02 

MOGWO 5,05E-02 7,54E-02 6,42E-02 

MOEAD 8,88E-03 1,34E-02 1,06E-02 

MSSA 3,32E-02 5,62E-02 4,52E-02 

MaF2 

GMOHHO 1,31E-02 1,79E-02 1,52E-02 

MOGWO 7,59E-02 9,96E-02 8,87E-02 

MOEAD 1,34E-02 2,43E-02 1,69E-02 

MSSA 3,32E-02 5,62E-02 4,52E-02 

MaF3 

GMOHHO 1,11E-02 1,04E-01 5,32E-02 

MOGWO 3,23E+03 8,00E+03 5,86E+03 

MOEAD 1,15E+03 3,37E+04 9,82E+03 

MSSA 1,86E+02 4,75E+03 2,96E+03 

MaF4 

GMOHHO 2,46E-01 5,47E-01 3,90E-01 

MOGWO 3,00E-01 1,10E+02 7,67E+01 

MOEAD 1,92E+01 6,65E+01 3,54E+01 

MSSA 8,34E+00 7,94E+01 5,39E+01 

MaF5 

GMOHHO 3,95E-02 2,61E-01 6,53E-02 

MOGWO 5,90E-02 9,66E-02 7,60E-02 

MOEAD 5,60E-02 2,59E-01 1,22E-01 

MSSA 1,25E-01 3,58E-01 2,47E-01 

MaF6 

GMOHHO 1,62E-03 3,20E-03 2,24E-03 

MOGWO 3,23E-03 8,18E-02 3,80E-02 

MOEAD 1,45E-03 9,78E-03 4,22E-03 

MSSA 5,54E-03 2,52E-02 1,47E-02 

MaF7 

GMOHHO 1,07E-02 6,54E-02 1,97E-02 

MOGWO 2,40E-02 9,18E-02 5,28E-02 

MOEAD 5,56E-02 4,77E-01 1,96E-01 

MSSA 6,61E-02 2,66E-01 9,59E-02 
Note: Best results are marked in bold 

 

The results obtained from the benchmarks functions with 

many-objective within the MaF series, as presented in Tables 

7-8, highlight the exceptional capabilities of the proposed 

GMOHHO in generating heightened convergence and a 

diverse set of optimal solutions. According to the IGD metric, 

the results in Table 7 demonstrate that the GMOHHO method 

consistently outperforms the competing methods across 

almost all the MaF series, converging quickly to the real pareto 

front. The only exception is the MaF1 test problem, where the 

MOEAD algorithm performed slightly better. 

 

Table 8. Results of HV metric on MaF test functions 

 

 Algorithms Best Worst Mean 

MaF1 

 

GMOHHO 1,97E-01 1,41E-01 1,77E-01 

MOGWO 7,53E-02 3,15E-02 4,73E-02 

MOEAD 1,97E-01 1,80E-01 1,89E-01 

MSSA 1,15E-01 4,52E-02 7,46E-02 

MaF2 

 

GMOHHO 2,05E-01 1,96E-01 2,02E-01 

MOGWO 6,93E-02 5,57E-02 5,90E-02 

MOEAD 1,99E-01 1,81E-01 1,92E-01 

MSSA 9,38E-02 5,10E-02 6,53E-02 

MaF3 

 

GMOHHO 9,19E-01 5,03E-02 5,54E-01 

MOGWO 0,00E+00 0,00E+00 0,00E+00 

MOEAD 0,00E+00 0,00E+00 0,00E+00 

MSSA 0,00E+00 0,00E+00 0,00E+00 

MaF4 

 

GMOHHO 2,56E-01 1,05E-02 1,98E-01 

MOGWO 1,70E-01 0,00E+00 5,48E-03 

MOEAD 0,00E+00 0,00E+00 0,00E+00 

MSSA 0,00E+00 0,00E+00 0,00E+00 

MaF5 

 

GMOHHO 5,36E-01 2,96E-01 5,01E-01 

MOGWO 4,47E-01 3,89E-01 4,22E-01 

MOEAD 4,87E-01 3,07E-01 4,16E-01 

MSSA 3,78E-01 8,75E-02 1,89E-01 

MaF6 

 

GMOHHO 1,96E-01 1,87E-01 1,92E-01 

MOGWO 1,66E-01 0,00E+00 8,76E-02 

MOEAD 1,96E-01 1,38E-01 1,87E-01 

MSSA 1,88E-01 1,09E-01 1,47E-01 

MaF7 

GMOHHO 2,69E-01 1,99E-01 2,53E-01 

MOGWO 2,25E-01 3,42E-02 1,07E-01 

MOEAD 6,25E-02 0,00E+00 8,25E-03 

MSSA 1,26E-01 0,00E+00 6,32E-02 

 

Analyzing the findings using the HV metric, as presented in 

Table 8, reveals that the GMOHHO algorithm surpasses the 

other methods for the majority of the examined issues, 

indicating its capacity to produce high-quality of solutions. 

However, similar to the IGD metric, the MOEAD algorithm 

exhibits a slight superiority over other algorithms for the MaF1 

problem. Overall, these findings conclusively showcase the 

superior performance of the GMOHHO method in effectively 

addressing MOPs, surpassing the capabilities of the algorithms 

under investigation. 

To gain deeper insights into the performance differences 

among the algorithms, let us discuss the underlying reasons. 

The GMOHHO algorithm employs a dynamic hybrid 

approach that combines BIGE, the NDS, and Multi-leader 

selection techniques. This unique combination empowers the 

algorithm to adeptly navigate the solution space, leading to a 

wider variety of optimal solutions. The method's efficient 

convergence to the real pareto front can be attributed to its 

ability to to harmonize diversification and intensification, 

thereby optimizing the trade-off between convergence and 

diversity. 

Furthermore, Figures 10-11 provide graphical 

representations of the convergence behavior of the compared 

methods for the benchmark issues. The visualizations clearly 

illustrate that, across all the studied issues, the optimal 

solutions generated by the GMOHHO method are uniformly 
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distributed and closely align with the ideal pareto front. This 

further substantiates the algorithm's ability to produce 

solutions characterized by a superior level of quality. 

Despite the success of the GMOHHO method, it is 

important to acknowledge its limitations and identify areas for 

improvement. Further investigation could be conducted to 

understand the reasons behind the MOEAD algorithm's better 

performance on the MaF1 problem and explore potential 

modifications to enhance the GMOHHO algorithm's 

capabilities in solving such challenges. Additionally, future 

research could focus on evaluating our method on larger-scale 

and more intricacy multi-objective optimization issues to 

validate its scalability and robustness. 

 

 
 

Figure 9. Best pareto fronts generated by each method on DTLZ7 

 

 
 

Figure 10. Best pareto fronts generated by each algorithm on MaF1 
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Figure 11. Best pareto fronts generated by each method on MaF3 
 

4.6 Running time analysis 

 

The running time was recorded as the total computational 

time required by each algorithm to complete the optimization 

process on a given benchmark problem. This includes the time 

taken for initialization, iterations, and any necessary 

calculations. In our study, we conducted an evaluation of the 

algorithms' performance with respect to their running time on 

each test problem. To measure this, we recorded the time taken 

to complete an iteration of 1000. The outcomes are presented 

in Table 9.  
 

Table 9. Execution time comparison of the four algorithms 

 
 Algorithms 

Test 

Functions 

GMOHHO MOEA-D MOGWO MSSA 

ZDT1 141.8110 440.0093 668.2665 89.9722 

ZDT2 136.8550 374.8618 67.2408 55.2313 

ZDT3 113.5348 371.5014 448.3240 92.0169 

ZDT4 151.5093 208.1556 76.3337 43.3857 

ZDT6 160.6806 370.6754 713.5653 49.8646 

DTLZ1 104.0166 405.8341 186.3638 56.8196 

DTLZ2 121.1297 444.8980 543.7021 222.9273 

DTLZ3 101.2963 433.9067 688.6034 78.0878 

DTLZ4 112.2558 428.1579 447.3627 150.7616 

DTLZ5 114.1447 424.8031 437.7445 153.5962 

DTLZ6 113.5271 453.2583 211.5742 28.6178 

DTLZ7 124.9172 292.8392 482.3534 83.7363 

MaF1 118.9803 432.7459 751.2107 135.9046 

MaF2 126.6412 441.2643 791.1880 128.2156 

MaF3 102.7200 182.9752 393.3237 45.9072 

MaF4 104.6724 477.8634 252.7810 117.4090 

MaF5 108.5752 647.3135 527.3682 174.9229 

MaF6 108.7966 437.5473 201.7451 66.3366 

MaF7 116.7403 358.6604 683.8026 63.2119 
Note: Best results are marked in bold 

Upon analysis, we observed that the MSSA algorithm 

achieved the best overall results, ranking first for 12 test 

benchmarks. In terms of execution time, our proposed 

GMOHHO algorithm demonstrated the fastest performance 

for the DTLZ3, DTLZ4, DTLZ5, MaF3, MaF6, and MaF7 test 

problems. Our algorithm also achieved a second-place ranking 

for the remaining test functions, closely following the MSSA 

algorithm. There were a few exceptions, specifically for the 

ZDT2 and ZDT4 problems, where the GMOHHO algorithm 

ranked third behind the MOGWO method. 

It is important to discuss the trade-offs between running 

time and efficiency indicators, such as IGD and HV. Although 

the GMOHHO algorithm might not consistently achieve the 

fastest execution time, it's essential to take into account the 

algorithm's overall effectiveness. When considering the 

quality of optimal solutions generated by the algorithms, as 

evaluated by IGD and HV metrics, the GMOHHO algorithm 

showcased competitive performance. It consistently 

outperformed the MOEAD and MOGWO algorithms. It is 

clear that there is a balance to be struck. Some algorithms may 

prioritize faster execution times at the expense of solution 

quality, while others may require more computational 

resources to attain improved performance. Regarding the 

GMOHHO, it strikes a favorable balance between running 

time and performance, achieving reasonable execution times 

while still generating high-quality non-dominated solutions. 

 
4.7 Wilcoxon statistical test analysis 

 

In this study, we incorporated the non-parametric Wilcoxon 

test [39] to assess the presence of significant statistical 

distinctions between the suggested GMOHHO algorithm and 

the other scrutinized algorithms being compared. The 

Wilcoxon test was chosen as a suitable statistical tool due to 
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its ability to analyze paired data and handle non-normal 

distributions. 

If the calculated pvalue is equal to or greater than the chosen 

significance level (α), the outcome would entail the non-

rejection of the null hypothesis (H0), indicating that there are 

no significant improvements associated with the comparative 

methods. However, if the pvalue is fewer than (α), we deny (H0) 

to the benefit of the alternative hypothesis (H1), which 

suggests that there are significant improvements associated 

with the comparative methods. In our analysis, we used a 

significance threshold of 5%, and compared the outcomes of 

two algorithms using the IGD and HV metrics. Specifically, 

µ1 and µ2 reflect the outcomes of the first and second 

algorithms, respectively.  

The Wilcoxon analysis conducted on the IGD measure 

involved formulating the ensuing hypotheses: 

• H0: µ1≥µ2 

• H1: µ1<µ2 

To perform the Wilcoxon analysis on the HV measure, we 

formulated the ensuing hypotheses: 

• H0: µ1≤µ2 

• H1: µ1>µ2 

 

Table 10. Test Wilcoxon results for IGD metric 

 

GMOHHO vs MOEA-D MOGWO MSSA 

ZDT1 2,1319E-03 1,4534E-08 7,0092E-12 

ZDT2 1,1840E-10 6,3105E-10 7,0092E-12 

ZDT3 7,0092E-12 5,1991E-03 7,0092E-12 

ZDT4 7,0092E-12 7,0092E-12 7,0092E-12 

ZDT6 0,023 0,658 3,0226E-03 

DTLZ1 7,0092E-12 7,0092E-12 7,0092E-12 

DTLZ2 0,999 5,9367E-10 2,1689E-09 

DTLZ3 7,0092E-12 7,0092E-12 7,0092E-12 

DTLZ4 0,913 0,854 3,4349E-03 

DTLZ5 3,1548E-03 7,0092E-12 7,0092E-12 

DTLZ6 0,964 5,0221E-09 2,7501E-08 

DTLZ7 1,2985E-09 3,4349E-03 7,0092E-12 

MaF1 8,1993E-01 7,0092E-12 7,0092E-12 

MaF2 1,36E-03 7,0092E-12 7,0092E-12 

MaF3 7,0092E-12 7,0051E-12 7,0092E-12 

MaF4 7,0092E-12 1,1840E-10 7,0092E-12 

MaF5 1,2797E-05 1,7447E-04 4,2855E-11 

MaF6 7,2483E-06 7,0092E-12 7,0092E-12 

MaF7 8,5090E-12 2,1689E-09 2,1399E-04 

Note: Best results are marked in bold 

 

The null hypothesis (H0) assumes that the IGD and HV 

scores of the compared methods are either equal to or worse 

than those of the proposed GMOHHO. Conversely, the the 

opposing hypothesis (H1) suggests that the IGD and HV scores 

of the GMOHHO algorithm are superior to those of the 

comparative methods. 

Tables 10-11 present the outcoms of the Wilcoxon 

statistical evaluations, confirming that the alternative 

hypothesis (H1) is accepted for the GMOHHO algorithm based 

on both the IGD and HV measures. The lower IGD values 

obtained by the GMOHHO algorithm indicate its superior 

ability to approach the true pareto front. Additionally, the 

higher HV values demonstrate its effectiveness in achieving 

better coverage of the Pareto set in contrast to the other 

methods, with a significance degree of less than 5%. These 

findings underscore the GMOHHO algorithm's potential in 

enhancing Pareto set diversity while converging towards the 

true pareto front. 

Table 11. Test Wilcoxon results for HV metric 

 

GMOHHO vs MOEA-D MOGWO MSSA 

ZDT1 1,9917E-02 1,8294E-09 7,0092E-12 

ZDT2 6,1610E-11 4,0593E-10 7,0092E-12 

ZDT3 8,2041E-11 0,979 8,3475E-03 

ZDT4 2,5259E-13 4,9413E-13 2,5259E-13 

ZDT6 1,3189E-03 0,583 1,3555E-03 

DTLZ1 2,5259E-13 2,5259E-13 3,5878E-13 

DTLZ2 2,5411E-08 7,0092E-12 7,0092E-12 

DTLZ3 2,5259E-13 2,5259E-13 2,5259E-13 

DTLZ4 9,0102E-03 8,3475E-03 3,6394E-04 

DTLZ5 0,236 7,0092E-12 1,1365E-11 

DTLZ6 1,000 7,6197E-05 0,968 

DTLZ7 7,5742E-12 3,1185E-04 9,3724E-12 

MaF1 9,9657E-01 7,0092E-12 7,0092E-12 

MaF2 1,5152E-11 7,0092E-12 7,0092E-12 

MaF3 2,5259E-13 2,5259E-13 2,5259E-13 

MaF4 2,5259E-13 6,1796E-13 2,5259E-13 

MaF5 1,2368E-08 1,4206E-10 1,1365E-11 

MaF6 3,6890E-02 7,0092E-12 8,5090E-12 

MaF7 6,3596E-12 3,5535E-11 6,9805E-12 
Note: Best results are marked in bold 

 

While the Wilcoxon test is a robust and widely used non-

parametric test, it is important to acknowledge its limitations 

and assumptions. One assumption is that the observations 

within each pair are independent and identically distributed. 

Violation of this assumption may affect the interpretation of 

the results. Additionally, the Wilcoxon test assumes that the 

two samples being compared come from the same population, 

except for a shift in their distributions. It is essential to 

consider these limitations when interpreting the outcomes of 

the Wilcoxon test.  

In summary, the non-parametric Wilcoxon test was 

employed to analyze the statistical significance of variances 

between the proposed GMOHHO and the comparative 

methods. Its selection was based on its suitability for paired 

data analysis and robustness against non-normal distributions. 

 

 

4. CONCLUSION 

 

This paper introduced GMOHHO, a Guided Multi-

Objective Harris Hawks Optimizer, to address the limitations 

of the standard HHO method and tackle complex multi-

objective optimization problems. The motivation behind 

developing GMOHHO was to extend the applicability of HHO 

to multi-objective problems, providing high-quality solutions 

within reasonable timeframes. We integrated several strategies, 

including a population archive, efficient multi-leader selection, 

and the Bi-Goal Evolution (BIGE)  framework with Non-

Dominated Sorting technique, to augment the algorithm's 

performance. 

The evaluation of GMOHHO on various benchmark 

functions showcased its superiority over the typical HHO 

method and other leading-edge multi-objective optimization 

methods. The results consistently demonstrated its robustness, 

efficiency, and ability to deliver a broad range of high-quality 

non-dominated solutions, thus effectively approximating the 

complete Pareto optimal front. 

The proposed GMOHHO algorithm has significant practical 

benefits and a broader impact in solving complex MOPs. By 

synergistically merging the strengths of the HHO method with 

guided search strategies and incorporating multi-objective 
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techniques, GMOHHO offers advantages such as improved 

convergence, diversity of solutions, and precise approximation 

of the pareto front.  

In summary, the GMOHHO algorithm presents a promising 

alternative for tackling MOPs of varying sizes. Its impact 

extends beyond the academic realm, as it offers practical 

benefits and solutions for real-world challenges. The 

algorithm's robustness, efficiency, and adeptness in 

approximating the complete Pareto optimal front make it a 

valuable approach in addressing MOPs. 

Future directions for research include parameter 

optimization, hybridization with other optimization techniques, 

scalability evaluation, and application to constrained 

optimization problems and real-world domains. These 

avenues will further advance the field and improve the 

practicality and applicability of the GMOHHO algorithm. 
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