
 

 
 
 

 
 

 
1. INTRODUCTION 

Oldroyd [1, 2] has formulated the constitutive model to 

study the flow behaviour of visco-elastic fluids having two 

rheological parameters as relaxation time and retardation 

times characterizing the response of visco-elastic material. 

Sellers and Walker [3] have investigated the problem of 

liquid metal in an electrically insulated rectangular duct with 

a non-uniform magnetic field. Visco-elastic fluid flow past 

porous surface due to fluctuation in main flow has been 

analyzed by Mukhopadhyay and Chaudhury [4]. Rajagopal 

and Bhatnagar [5], Ray et al. [6] gave the exact solution of 

Oldroyd fluid flows. Exact solutions of (i) stokes problem, 

(ii) modified stokes problem, (iii) the time-periodic Poiseuille 

fow due to an oscillating pressure gradient (iv) the non-

periodic fows between two boundaries, and (v) symmetric 

flow with an arbitrary initial velocity using Oldroyd model 

have been obtained by Hayat et al. [7]. Motion of electrically 

conducting, Oldroyd-B fluid between two non-conducting 

parallel plates in a rotating system under uniform transverse 

magnetic field has been studied by Hayat et al. [8]. Hall 

effects on unsteady fluid flows governed by Oldroyd-B 

model have been analyzed by Asghar et al. [9] and Hayat et 

al. [10]. Effect of Oldroyd fluid on unsteady free convective 

flow through porous medium along a moving porous hot 

vertical plate in presence of heat and mass transfer has been 

studied by Prasad et al. [11]. Unsteady hydro-magnetic flow 

of an Oldroyd fluid through a porous channel with oscillating 

walls using Laplace transform method has been examined by 

Ghosh [12]. Choudhury and Das [13], Choudhury 

Purkayastha [14], Choudhury and Das [15] have studied 

hydromagnetic visco-elastic fluid flow with various physical 

properties. 

The combination of viscous fluid and dust particles is a 

subject of interest because of its occurrence in powder 

technology, transport of liquid slurries in chemical 

processing, nuclear processing and in different geophysical 

situations. Stability of laminar flow of dusty gas by 

neglecting the volume fraction of dust particles has been 

studied by Saffman [16]. Michael and Miller [17] have 

investigated the flow pattern of dusty gas. Rudinger [18] has 

generalized the problem of gas particle mixtures by 

considering volume fraction. Nayfeh [19] has formulated the 

equations of motion of dusty fluid mixtures in presence of 

volume fraction of dust particles. Gupta and Gupta [20] have 

examined the motion of a dusty gas with time varying 

pressure gradient. Analysis of flow pattern of unsteady dusty 

fluid through a rectangular channel with time dependent 

pressure gradient has been done by Singh [21]. An unsteady 

two dimensional flow of an electrically conducting dusty 

viscous fluid through a channel under the influence of 

transverse magnetic field has been studied by Singh and Ram 

[22]. Prasad and Ramacharyulu [23] have discussed the 

nature of a dusty incompressible fluid between two parallel 

surfaces under impulsive pressure gradient. Gupta and Gupta 

[24] have investigated the unsteady flow of a dusty non-

Newtonian fluid through channel with volume fraction. Ajadi 

[25] has analyzed the isothermal flow of a dusty viscous 
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ABSTRACT  
 
An unsteady magneto-hydrodynamics flow of dusty Oldroyd fluid through a horizontal channel has been 

investigated under the influence of dissipation of energy and volume fraction. This energy dissipation 

generates the mechanism of heat transfer in the governing fluid motion and the dust particles absorb the heat 

through conduction. To study the dusty-visco-elastic fluid flow, Saffman model and Oldroyd model have 

been used. The visco-elastic responses are exhibited through the two rheological parameters 𝜆1 & 𝜆2 

(relaxation time and retardation time). To restrain the weak turbulent motion, a magnetic field of strength B0 

is applied along the transverse direction to the plate. The lower plate of the horizontal channel is kept fixed 

but the upper one is oscillating with the velocity 𝑈0(1 + 𝜀𝑒𝑖𝜔′𝑡′). The governing equations of motion are 

solved analytically and the results are discussed graphically/ numerically for various values of flow 

parameters involved in the solution.  
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electrically conducting fluid between oscillatory and non-

oscillatory boundary motions. Unsteady Couette flow with 

heat transfer of a viscous incompressible electrically 

conducting fluid under the influence of an exponentially 

decreasing pressure gradient has been discussed by Attia et 

al. [26]. Kumar and Gupta [27] have discussed MHD forced 

convection and entropy generation of fluid flow though a 

circular channel having hyper porous medium. Kumar et al. 

[28] have studied flow problem between two horizontal 

parallel plates moving in opposite direction with radiation 

and mass transfer effects. 

Application of visco-elastic fluids may be seen in various 

chemical and nucleaus industries, material processing, 

geophysics and in medical science. Flow problem of dusty 

visco-elastic fluid with heat transfer in presence of magnetic 

field may be applied in the extrusion of polymer sheet from a 

die[29]. Polymers are actually mixture of various organic 

solutions, so they may be modeled as visco-elastic fluid 

model (for fluid phase) and Saffman model (for dust phase). 

Another important application of dusty visco-elastic fluid 

flow model is  in blood flow. In blood flow, some parts of 

energy transferred by heart are stored due to elasticity, some 

parts are transformed into heat by viscosity and remaining 

energy is used in motion of blood [30]. Viscosity in 

combination with elasticity plays an important role in blood 

flow. In this paper, an unsteady electrically conducting dusty 

visco-elastic flow characterized by Oldroyd fluid model 

through horizontal channel has been considered in presence 

of volume fraction and energy dissipation.  

2. MATHEMATICAL FORMULATION 

An unsteady flow of dusty electrically conducting Oldroyd 

fluid in a horizontal channel has been considered. The 

channel is bounded by two parallel plates, the lower one is 

kept fixed and the upper one is oscillating with velocity 𝑢′ =
𝑈0(1 + 𝜀𝑒𝑖𝜔′𝑡′) , 𝑈0  is a constant and they are kept at 

different temperatures T1 and 𝑇2 + 𝜀(𝑇2 − 𝑇1)𝑒𝑖𝜔′𝑡′
, (T2 > 

T1). The upper plate is oscillating about the mean 

temperature 𝑇2. Dust particles are assumed to be electrically 

non-conducting, spherical in shape and uniformly distributed 

throughout the fluid. A magnetic field of uniform strength B0 

is applied along the transverse direction to the plate. 

 

   𝑦′ 
𝑦′ =d,  

 

 

 

 

 

 

 

                   𝑥′ 
 

Figure 1. Physical description of the Problem 

 

Equation of Continuity:    

   

  vi,i = 0                                                                                          (1) 

 

Equation of Continuity for dust particles: 

 

vpi,i = 0                                                                                          (2) 

 

Momentum Equation: 
 

ρ [
∂vi

∂t
+ 2vk

∂vi

∂xk
] = −p,i + τij,j + εijkJjBk +

KN

1 − ϕ
(vpi − vi)     (3) 

 

Momentum equation for dust particles: 

 

mp [
∂vpi

∂t
+ vpk

∂vpi

∂xk
]

=
ϕ

ρ
(−p,i + τij,j + εijkJjBk) − K(vpi − vi)   (4) 

 

Constitutive Equation: 

 

(1 + 𝜆1

𝑑

𝑑𝑡
) 𝜏𝑖𝑘 = 2𝜂0 (1 + 𝜆2

𝑑

𝑑𝑡
) 𝜖𝑖𝑘                                                (5) 

 

where, 𝜆1  and 𝜆2  denote relaxation and retardation times 

respectively. (𝜆1 = 0, 𝜆2 = 0) characterizes Newtonian fluid, 

(𝜆1 = 0, 𝜆2 ≠ 0) characterizes Second-grade fluid and (𝜆1 ≠
0, 𝜆2 = 0) represents the Maxwell fluid model. 

Energy Equation: 

 

𝜌𝐶𝑝

𝜕𝑇′

𝜕𝑡′
= 𝑘𝑇′,𝑖𝑖 + 𝜏𝑖𝑗𝑣𝑖,𝑗 +

𝜌𝑝𝐶𝑠

𝛾𝑇
(𝑇′𝑝 − 𝑇′)                                     (6) 

 

Following Attia et al. [26], energy Equation for dust 

particles: 

 
𝜕𝑇′𝑝

𝜕𝑡′
=

1

𝛾𝑇
(𝑇′ − 𝑇′𝑝)                                                                              (7) 

 

2.1 Velocity distribution 

 

For an incompressible unsteady flow through a horizontal 

channel, the stress components derived from (5) are obtained 

as follows: 

 

𝜏′𝑥𝑥 + 𝜆1 (
𝜕

𝜕𝑡′
𝜏′𝑥𝑥 −

𝜕𝑢′

𝜕𝑦′
2𝜏′𝑦𝑥) =

−𝜂0𝜆2

2
(

𝜕𝑢′

𝜕𝑦′
)

2

                         (8) 

 

𝜏′𝑦𝑥 + 𝜆1 (
𝜕

𝜕𝑡′
𝜏′𝑥𝑦 −

𝜕𝑢′

𝜕𝑦′
𝜏𝑦𝑦) = 𝜂0 [1 + 𝜆2 (

𝜕

𝜕𝑡′
)]

𝜕𝑢′

𝜕𝑦′
                (9) 

 

𝜏𝑦𝑦 + 𝜆1 (
𝜕

𝜕𝑡
𝜏𝑦𝑦) = 0                                                                          (10) 

 

Solving (10), we get 𝜏𝑦𝑦 = 0 [8, 10] and the governing 

equations of motion are: 

 
𝜕𝑢′

𝜕𝑡′
= −

1

𝜌

𝜕𝑝′

𝜕𝑥′
+

1

𝜌

𝜕𝜏′𝑥𝑦

𝜕𝑦′
−

𝜎𝐵0
2𝑢′

𝜌
+

𝐾𝑁

1 − 𝜙
(𝑣′ − 𝑢′)                   (11) 

 

𝜕𝑣′

𝜕𝑡′
= −

𝜙

𝜌𝑚𝑝
[
𝜕𝑝′

𝜕𝑥′
−

𝜕𝜏′𝑥𝑦

𝜕𝑦′
+ 𝜎𝐵0

2𝑢′] − 𝐾𝑁(𝑣′ − 𝑢′)                  (12) 

 

The boundary conditions of the problem are 

 
𝑦 = 0: 𝑢′ = 0, 𝑣′ = 0; 
 

 𝑦 = 𝑑:  𝑢′ = 𝑈(𝑡) = 𝑈0(1 + 𝜀𝑒𝑖𝜔′𝑡′) = 𝑣′                                    (13) 
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Using the constitutive equations, the equations (11) and 

(12) are written as follows: 

 

(1 + 𝜆1

𝜕

𝜕𝑡′)
𝜕𝑢′

𝜕𝑡′ = −
1

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′)
𝜕𝑝′

𝜕𝑥′

+
1

𝜌
𝜂0 [

𝜕𝑢′

𝜕𝑦′ + 𝜆2 (
𝜕2𝑢′

𝜕𝑦′𝜕𝑡
)]

−
𝜎𝐵0

2

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′) 𝑢′

+
𝐾𝑁

1 − 𝜙
(1 + 𝜆1

𝜕

𝜕𝑡′) (𝑣′ − 𝑢′)                     (14) 

 

(1 + 𝜆1

𝜕

𝜕𝑡′)
𝜕𝑣′

𝜕𝑡′ =
𝜙

𝑚𝑝
[−

1

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′)
𝜕𝑝′

𝜕𝑥′

+
1

𝜌
𝜂0 {

𝜕𝑢′

𝜕𝑦′ + 𝜆2 (
𝜕2𝑢′

𝜕𝑦′𝜕𝑡
)}

−
𝜎𝐵0

2

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′) 𝑢′]

+
𝐾𝑁

𝑚𝑝
(1 + 𝜆1

𝜕

𝜕𝑡′) (𝑢′ − 𝑣′)                          (15) 

 

The pressure gradient terms are eliminated by using 

boundary conditions (13) and it is observed that 

 

−
1

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′
)

𝜕𝑝′

𝜕𝑥′
= (𝐴1 + 𝑖𝐴2)𝑒𝑖𝜔′𝑡′                                         (16) 

 

where, 𝐴1 and 𝐴2 are arbitrary constants. 

Using (16) in (14) and (15), we get 

 

(1 + 𝜆1

𝜕

𝜕𝑡′)
𝜕𝑢′

𝜕𝑡′ = (𝐴1 + 𝑖𝐴2)𝑒𝑖𝜔′𝑡′
+

1

𝜌
𝜂0 [

𝜕𝑢′

𝜕𝑦′ + 𝜆2 (
𝜕2𝑢′

𝜕𝑦′𝜕𝑡
)]

−
𝜎𝐵0

2

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′) 𝑢′

+
𝐾𝑁

1 − 𝜙
(1 + 𝜆1

𝜕

𝜕𝑡′) (𝑣′ − 𝑢′)                     (17) 

 

(1 + 𝜆1

𝜕

𝜕𝑡′
)

𝜕𝑣′

𝜕𝑡′
=

𝜙

𝑚𝑝
[(𝐴1 + 𝑖𝐴2)𝑒𝑖𝜔′𝑡′

+
1

𝜌
𝜂0 {

𝜕𝑢′

𝜕𝑦′
+ 𝜆2 (

𝜕2𝑢′

𝜕𝑦′𝜕𝑡
)}

−
𝜎𝐵0

2

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′
) 𝑢′]

+
𝐾𝑁

𝑚𝑝
(1 + 𝜆1

𝜕

𝜕𝑡′
) (𝑢′ − 𝑣′)                          (18) 

 

Let us introduce the following non-dimensional quantities 

 

𝑢 =
𝑢′

𝑈0
, 𝑣 =

𝑣′

𝑈0
, 𝑦 =

𝑦′

𝑑
,

𝑡

𝑡′ =
 𝑈0

𝑑
,

𝜔

𝜔′ =
𝑑

𝑈0
, 𝑅 =

𝑈0𝑑

𝜈
, 𝛼1 =

𝜆1𝑈0

𝑑
  

𝛼2 =
𝜆2𝑈0

𝑑
, 𝑀 =

𝜎𝐵0
2𝑑

𝜌𝑈0
, 𝜖1 =

1

1 − 𝜙
, 𝑓 =

𝐾𝑁𝑑2

𝜂0
, 𝐺 =

𝑚𝑝𝜂0

𝐾𝑁𝑑2  (19) 

 

Using the above mentioned non-dimensional quantities in 

(17) and (18), we get the following dimensionless equations 

of motion, 

 
𝜕𝑢

𝜕𝑡
+ 𝛼1

𝜕2𝑢

𝜕𝑡2 = (𝐴1 + 𝑖𝐴2)𝑒𝑖𝜔𝑡 +
1

𝑅
(

𝜕2𝑢

𝜕𝑦2 + 𝛼2

𝜕3𝑢

𝜕𝑦2𝜕𝑡
)

−
1

𝑅
(1 + 𝛼1

𝜕

𝜕𝑡
) [𝑀𝑢 − 𝜖1𝑓(𝑣 − 𝑢)]           (20) 

 

𝜕𝑣

𝜕𝑡
+ 𝛼1

𝜕2𝑣

𝜕𝑡2 =
𝜙

𝑚𝑝
[(𝐴1 + 𝑖𝐴2)𝑒𝑖𝜔𝑡 +

1

𝑅
(

𝜕2𝑢

𝜕𝑦2 + 𝛼2

𝜕3𝑢

𝜕𝑦2𝜕𝑡
)

−
1

𝑅
(1 + 𝛼1

𝜕

𝜕𝑡
) [𝑢 −

𝑢 − 𝑣

𝐺
]]                       (21) 

2.2 Temperature distribution 

In the governing fluid motion, the energy equations of 

fluid and dust particles in Cartesian form are given below: 

 

𝜌𝐶𝑝

𝜕𝑇′

𝜕𝑡′
= 𝑘

𝜕2𝑇′

𝜕𝑦′2 + 𝜏′
𝜕𝑢

𝜕𝑦
+

𝜌𝑝𝐶𝑠

𝛾𝑇
(𝑇′

𝑝 − 𝑇′)                                 (22) 

 
𝜕𝑇𝑝

′

𝜕𝑡′
+

1

𝛾𝑇
(𝑇′𝑝 − 𝑇′) = 0                                                                      (23) 

 

The relevant boundary conditions are 

 
𝑦 = 0: 𝑇′ = 𝑇𝑝

′ = 𝑇1; 

 𝑦 = 𝑑:  𝑇′ = 𝑇𝑝
′ = 𝑇2 + 𝜀(𝑇2 − 𝑇1)𝑒𝑖𝜔′𝑡′                                        (24) 

 

Introducing the dimensionless variables  

 

𝑇 =
𝑇′ − 𝑇1

𝑇2 − 𝑇1
, 𝑇𝑝 =

𝑇𝑝
′ − 𝑇1

𝑇2 − 𝑇1
, 𝑃𝑟 =

𝜂𝑜𝐶𝑝

𝑘
,  

𝐸𝑐 =
𝑈0

2

𝐶𝑝(𝑇2 − 𝑇1)
, 𝑙1 =

𝜌𝑝

𝜌
, 𝑙2 =

𝐶𝑠

𝐶𝑝
, 𝐿0 =

𝑑

𝑈0𝛾𝑇
 

 

into (22) and (23) we get, 

 
𝜕𝑇

𝜕𝑡
=

1

𝑅𝑃𝑟

𝜕2𝑢

𝜕𝑦2 + 𝐸𝑐𝜏
𝜕𝑢

𝜕𝑦
+ 𝑙1𝑙2𝐿0(𝑇𝑝 − 𝑇)                                    (25) 

 
𝜕𝑇𝑝

𝜕𝑡
+ 𝐿0(𝑇𝑝 − 𝑇) = 0                                                                          (26) 

 

where Pr is the Prandtl number, Ec be the Eckert number, L0 

is the temperature relaxation time parameter in dimensionless 

form. 

The dimensionless boundary conditions for solving the 

equations (20), (21) and (25), (26) are 

 
𝑦 = 0: 𝑢 = 0 = 𝑣 = 𝑇 = 𝑇𝑝

𝑦 = 𝑑: 𝑢 = 1 + 𝜀𝑒𝑖𝜔𝑡 = 𝑣, 𝑇 = 𝑇𝑝 = 1 + 𝜀𝑒𝑖𝜔𝑡}                         (27) 

3. METHOD OF SOLUTION 

Assuming small amplitude of oscillation, we represent the 

velocity and temperature of fluid and dust particles as 

 
𝑢 = 𝑢1 + 𝜀𝑒𝑖𝑤𝑡𝑢2 + 𝑜(𝜀2), 𝑣 = 𝑣1 + 𝜀𝑒𝑖𝑤𝑡𝑣2 + 𝑜(𝜀2)              (28) 

 

𝑇 = 𝑇1 + 𝜀𝑒𝑖𝑤𝑡𝑇2 + 𝑜(𝜀2)

𝑇𝑝 = 𝑇𝑝1 + 𝜀𝑒𝑖𝑤𝑡𝑇𝑝2 + 𝑜(𝜀2)
}                                                          (29) 

 

Using (28) in (20) and (21) and equating the like terms, we 

get 

 
−𝑢0

′′ + (𝑀 + 𝜀1𝑓)𝑢0 = 𝜀1𝑓𝑣0                                                            (30) 
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𝑖𝑢1𝜔 − 𝛼1𝑢1𝜔2 =
(𝐴1 + 𝑖𝐴2)

𝜀
+

𝑢1
′′

𝑅
+ 𝑖𝛼2

𝜔𝑢1
′′

𝑅

− (1 + 𝑖𝛼1𝜔) [
𝑀𝑢1

𝑅
+

𝜀1𝑓

𝑅
(𝑣1 − 𝑢1)]          (31) 

 

𝜀2𝐺(𝑢0
′′ + 𝑀𝑢0) = 𝑣0                                                                            (32) 

 

𝑣1𝜔(𝑖 − 𝛼1𝜔)

= 𝜀2 [
(𝐴1 + 𝑖𝐴2)

𝜀
+

𝑢1
′′(1 + 𝑖𝛼2𝜔)

𝑅
−

𝑀(1 + 𝑖𝛼1𝜔)𝑢1

𝑅
]

−
(1 + 𝑖𝛼1𝜔)(𝑣1 − 𝑢1) 

𝐺𝑅
                                                                       (33) 

 

where, 𝜀2 =
𝜙

𝑚𝑝
. 

Viscous drags are formed at the surfaces of the channel 

and its non-dimensional form is given by 

 

𝛼1

𝜕𝜏

𝜕𝑡
+ 𝜏 =

1

𝑅

𝜕𝑢

𝜕𝑦
+

𝛼2

𝑅

𝜕2𝑢

𝜕𝑦𝜕𝑡
 

 

Solving the above linear differential equation, we get 

 

𝜏 =
√𝐴33

𝑅
(𝐶3𝑒√𝐴33𝑦 − 𝐶4𝑒−√𝐴33𝑦) (1 − 𝑒

−
𝑡

𝛼1)

+
𝜀√𝐴27

(
1

𝛼1
+ 𝑖𝜔)

(𝐶1𝑒√𝐴27𝑦 − 𝐶2𝑒−√𝐴27𝑦) (𝑒𝑖𝜔𝑡

− 𝑒
−

𝑡
𝛼1)

+
𝑖𝛼2𝜔𝜀√𝐴27

𝛼1𝑅 (
1

𝛼1
+ 𝑖𝜔)

(𝐶1𝑒√𝐴27𝑦

− 𝐶2𝑒−√𝐴27𝑦) (𝑒𝑖𝜔𝑡 − 𝑒
−

𝑡
𝛼1)                        (34) 

 

Using (34) and (29) in (25) and (26), and equating the like 

powers of ε and neglecting the higher powers, we get the 

following ordinary differential equations: 

 

𝑇1
′′

𝑅𝑃𝑟
+

𝐸𝑐√𝐴33

𝑅
(𝐶3

2𝑒√𝐴33𝑦 − 𝐶3
4𝑒−√𝐴33𝑦) + 𝑙1𝑙2𝐿0(𝑇𝑝1 − 𝑇1) = 0  

                                                                                                                    (35)    

 

1

𝑅𝑃𝑟
𝑇2

′′ + 𝐸𝑐 [
√𝐴27

(
1

𝛼1
+ 𝑖𝜔)

(𝐶1𝑒√𝐴27𝑦 − 𝐶2𝑒−√𝐴27𝑦) (𝐶3𝑒√𝐴33𝑦

+ 𝐶4𝑒−√𝐴33𝑦)

+
𝑖𝛼2𝜔𝜀√𝐴27

𝛼1𝑅 (
1

𝛼1
+ 𝑖𝜔)

(𝐶1𝑒√𝐴27𝑦

− 𝐶2𝑒−√𝐴27𝑦) (𝐶3𝑒√𝐴33𝑦 + 𝐶4𝑒−√𝐴33𝑦)

+
√𝐴33

𝑅
(𝐶3𝑒√𝐴33𝑦 − 𝐶4𝑒−√𝐴33𝑦) (𝐶1𝑒√𝐴27𝑦

+ 𝐶2𝑒−√𝐴27𝑦 + 𝐴28 + 𝑖𝐴29)]

+ 𝑙1𝑙2𝐿0(𝑇𝑝2 − 𝑇2) = 𝑖𝜔𝑇2                            (36) 

 

𝑇𝑝1 = 𝐿0(𝑇1 − 𝑇𝑝1)                                                                              (37) 

 

𝑇𝑝2 = 𝐿0(𝑇2 − 𝑇𝑝2)                                                                              (38) 

 

Solving the above equations, subject to the boundary 

conditions (27), the temperature profile of fluid and dust 

particles are obtained from (29) and the rate of heat transfer 

is given by 

 

𝑁𝑢 = −
𝜕𝑇

𝜕𝑦
|

𝑦=0  𝑜𝑟 1

 

4. DISCUSSIONS 

A problem of unsteady dusty electrically conducting 

Oldroyd fluid flow through the horizontal channel has been 

studied in presence of volume fraction and energy dissipation 

due to viscosity. This dissipation of energy creates heat 

transfer along with the conduction of heat from the surface to 

the fluid motion. The results are discussed for various pair of 

values of 𝛼1 , 𝛼2  and volume fraction φ. Velocity profile, 

temperature fields, skin frictions and rate of heat transfer are 

analyzed numerically and graphically for various values flow 

parameters present in the solution. Figures 2 to 4 represent 

the pattern of velocity profiles of fluid and dust particles 

against the displacement variable and figure 5 shows the 

pattern of temperature field of governing fluid and dust 

particles. In figures 2 to 4, the horizontal axis corresponds to 

the displacement variable y and the vertical axis corresponds 

to the velocity. Similarly, in figure 5, vertical axis 

corresponds to the temperature and horizontal axis indicates 

the displacement variable. 

It is seen that (figure 2), velocity of fluid particles rises 

with the increasing value of y and the maximum speed is 

noticed in the neighbourhood of the upper plate, which is 

oscillating about a non-zero mean velocity U0 and dust 

particles experience a back flow in the neighbourhood of the 

lower fixed plate and then gradually its magnitude rises 

towards the upper plate but in-comparison to the fluid 

particles, the dust particles are lacking behind along the 

increasing values of displacement variable (y).  

 

 

Figure 2. M=2, α1=0.5, α2=0.2, ε=0.001, ω=0.5, f=0.1, 

G=0.8, R=0.2, φ=0.01, mp=0.2, l1=0.5, l2=0.5, Pr=7, 

Ec=0.01, Lo=0.05 

Table 1 is showing the nature of fluid motion for different 

cases of 𝛼1  and 𝛼2 . For smaller values of these two 

rheological parameters, the energies used in visco-elastic 

responses are of smaller order of magnitude and hence 

maximum energy can be reserved and as a response the fluid 

flows experience acceleration in the motion, i.e, increasing 
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values of 𝛼1  and 𝛼2  decelerates the fluid motion. Effect of 

volume fraction on fluid motion and dust particles are shown 

in figure 3 and the figures enable the fact that the presence of 

volume fraction accelerates the fluid motion. Its effect is 

more prominent on the motion of dust particles, as the 

magnitude of the speed of dust particles increases but the 

dust particles experience a back flow in the neighborhood of 

the lower plate. Figure 4 states that the motion of dust 

particles reaches steady state quickly then in-comparison to 

the fluid particles as the change in time creates a negligible 

variation in the motion of dust particles. 

Table 1. M=2, ε=0.001, ω=0.5, f=0.1, G=0.8, R=0.2, φ=0.01, 

mp=0.2, l1=0.5, l2=0.5, Pr=7, Ec=0.01, Lo=0.05 

 
Cases u (α1=0.2, 

α2=0.2) 

u (α1=0.2, 

α2=0.5) 

u (α1=0.5, 

α2=0.2) 

y=0 0.0010 0.001 0.001 

y=0.1 0.0355 0.035 0.0348 

y=0.2 0.0715 0.0704 0.0702 

y=0.3 0.1093 0.1076 0.1074 

y=0.4 0.1493 0.1472 0.1468 

y=0.5 0.1920 0.1895 0.1891 

y=0.6 0.2379 0.235 0.2345 

y=0.7 0.2875 0.2842 0.2838 

y=0.8 0.3414 0.3377 0.3373 

y=0.9 0.4001 0.3962 0.3957 

y=1 0.4644 0.4601 0.4596 

 

 

Figure 3. M=2, α1=0.5, α2=0.2, ε=0.001, ω=0.5, f=0.1, 

G=0.8, R=0.2, mp=0.2, l1=0.5, l2=0.5, Pr=7, Ec=0.01, 

Lo=0.05 

 

Figure 4. M=2, α1=0.5, α2=0.2, ε=0.001, ω=0.5, f=0.1, 

G=0.8, R=0.2, mp=0.2, φ=0.01, l1=0.5, l2=0.5,  Pr=7, 

Ec=0.01, Lo=0.05 

 

After studying the velocity profile, now the viscous drag at 

the surfaces formed by the fluid motion are calculates for 

various values of flow parameters and it is represented in 

tabular form. Table 2, states that, magnitude of shearing 

stresses at both the plates increase with the time but the effect 

of time is seen prominent at the upper plate.  

Effect of relaxation time and retardation time on shearing 

stress are seen in Table 3a and Table 3b and it is noticed that 

increase of the relaxation time diminishes the magnitude the 

of shearing stress at the lower plate. 

 

Table 2. M=2, α1=0.5, α2=0.2, ε=0.001, ω=0.5, f=0.1, 

G=0.8, R=0.2, mp=0.2, l1=0.5, l2=0.5, Pr=7, Ec=0.01, 

Lo=0.05 

 
Cases τ (lower 

plate) 

(φ=0.01) 

τ (upper 

plate) 

(φ=0.01) 

τ (lower 

plate) 

(φ=0.02) 

τ (upper 

plate) 

(φ=0.02) 

t=0.1 2.9325         9.1069    2.9326     9.1074    

t=0.2  3.8135     11.5578    3.8136     11.5585    

t=0.3 4.6956     13.9910    4.6958     13.9918    

t=0.4 5.5766     16.4003    5.5769     16.4012    

t=0.5 6.4544     18.7796    6.4547     18.7807    

t=0.6 7.3266     21.1232    7.3271     21.1244    

t=0.7 8.1912     23.4250    8.1917     23.4264    

t=0.8 9.0460     25.6794    9.0465     25.6809    

t=0.9 9.8888    27.8807    9.8894    27.8824    

t=1 10.7175 30.0234 10.7182 30.0252 

Table 3a. M=2, ε=0.001, ω=0.5, f=0.1, G=0.8, R=0.2, 

φ=0.01, mp=0.2 l1=0.5, l2=0.5, Pr=7, Ec=0.01, Lo=0.05 

Cases (α1=0.2, 

α2=0.2) 

(α1=0.2, 

α2=0.5) 

(α1=0.5, 

α2=0.2) 

τ (lower plate) τ (lower plate) τ (lower 

plate) 

0.1 4.8329     5.6635     2.9325     

0.2 5.7999    8.0125    3.8135     

0.3 6.7631     10.3520    4.6956     

0.4 7.7200     12.6763    5.5766     

0.5 8.6683     14.9796    6.4544     

0.6 9.6055    17.2561    7.3266     

0.7 10.5294    19.5001    8.1912     

0.8 11.4376    21.7060    9.0460     

0.9 12.3279    23.8683    9.8888    

t=1 13.1980 25.9816 10.7175 

Table 3b. M=2, ε=0.001, ω=0.5, f=0.1, G=0.8, R=0.2, 

φ=0.01, mp=0.2, l1=0.5, l2=0.5, Pr=7, Ec=0.01, Lo=0.05 

Cases  (α1=0.2, 

α2=0.2) 

(α1=0.2, 

α2=0.5) 

(α1=0.5, 

α2=0.2) 

τ (upper 

plate) 

τ (upper 

plate) 

τ (upper plate) 

0.1 7.5761    5.6635     9.1069    

0.2 10.3098     8.0125    11.5578    

0.3 13.0288    10.3520    13.9910    

0.4 15.7263    12.6763    16.4003    

0.5 18.3956    14.9796    18.7796    

0.6 21.0300    17.2561    21.1232    

0.7 23.6230    19.5001    23.4250    

0.8 26.1680    21.7060    25.6794    

0.9 28.6587    23.8683    27.8807    

1 31.0888 25.9816 30.0234 
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The same diminishing effect of retardation time is seen on 

the shearing stress at the upper plate but it has an increasing 

effect at the lower plate.Volume fraction also has a positive 

impact on shearing stresses at both the plates but its effect is 

seen superior at the upper plate (Table 2). 

Both the temperatures of fluid particles and dust particles 

rise in the neighbourhood of the upper oscillating plate 

(figure 5). Effects of relaxation time and retardation time on 

the temperature fields are represented by Table 4 and Table 5 

and it is experienced that during the growth of relaxation 

time, the temperature of dusty visco-elastic fluid and dust 

particles experience enhancing pattern over the entire channel 

but a reverse mechanism is seen during the growth of 

retardation parameter. 

Nusselt number plays an important role in the mechanism 

of heat transfer as it enables the rate of heat transfer in the 

governing fluid motion. Table 6 is representing the numerical 

values of Nusselt number at the plates for a time period [0.1, 

1] and it can be concluded that magnitude of rate of heat 

transfer increases in the above mentioned time period at both 

the plates. 

 

Figure 5. M=2, α1=0.5, α2=0.2, ε=0.001, ω=0.5, f=0.1, 

G=0.8, R=0.2, φ=0.01, mp=0.2, l1=0.5, l2=0.5,  Pr=7, 

Ec=0.01, Lo=0.05 

Table 4. M=2, α1=0.5, α2=0.2, ε=0.001, ω=0.5, f=0.1, 

G=0.8, R=0.2, φ=0.01, mp=0.2, l1=0.5, l2=0.5, Pr=7, 

Ec=0.01, Lo=0.05 

 
Cases T (α1=0.2, 

α2=0.2) 

T (α1=0.2, 

α2=0.5) 

T (α1=0.5, 

α2=0.2) 

y=0 0.0078 0.0077 0.008 

y=0.1 0.1102 0.1101 0.1104 

y=0.2 0.2128 0.2127 0.2131 

y=0.3 0.3159 0.3158 0.3161 

y=0.4 0.4196 0.4195 0.4199 

y=0.5 0.5242 0.5241 0.5245 

y=0.6 0.6299 0.6298 0.6302 

y=0.7 0.7369 0.7368 0.7372 

y=0.8 0.8454 0.8453 0.8457 

y=0.9 0.9557 0.9556 0.956 

y=1 1.0679 1.0678 1.0682 

 

 

Table 5. M=2, ε=0.001, ω=0.5, f=0.1, G=0.8, R=0.2, φ=0.01, 

mp=0.2,  l1=0.5, l2=0.5, Pr=7, Ec=0.01, Lo=0.05 

Cases Tp(α1=0.2

,α2=0.2) 

Tp(α1=0.2,α2=

0.5) 

Tp(α1=0.5,α2=

0.2) 

y=0 0.0074     0.0073     0.0076     

y=0.1 0.1049     0.1048     0.1052     

y=0.2 0.2027     0.2026     0.2029     

y=0.3 0.3008     0.3007     0.3011     

y=0.4 0.3996     0.3995     0.3999     

y=0.5 0.4992     0.4991     0.4995     

y=0.6 0.5999     0.5998     0.6002     

y=0.7 0.7018     0.7017     0.7021     

y=0.8 0.8052     0.8051     0.8054     

y=0.9 0.9102     0.9101     0.9105     

y=1 1.0171 1.0170 1.0174 

Table 6. M=2, α1=0.5, α2=0.2, ε=0.001, ω=0.5, f=0.1, 

G=0.8, R=0.2, φ=0.01, mp=0.2,  l1=0.5, l2=0.5, Pr=7, 

Ec=0.01, Lo=0.05 

Cases Nu (lower plate) 

 

Nu (upper plate) 

 

t=0.1 0.9504 0.9349 

t=0.2 0.9507 0.9353 

t=0.3 0.9511 0.9369 

t=0.4 0.9518 0.9367 

t=0.5 0.9526 0.9378 

t=0.6 0.9536 0.09391 

t=0.7 0.9548 0.9407 

t=0.8 0.9562 0.9424 

t=0.9 0.9577 0.9444 

t=1 0.9594 0.9467 

 

 

7. CONCLUSIONS 

Some of the important conclusions from the above work 

are cited below: 

 Speed of fluid flow is maximum in the neighbourhood 

of the upper plate. 

 Dust particles experience a back flow in the 

neighbourhood of the lower plate. 

 Increasing values of relaxation and retardation time 

parameters decelerates the fluid motion. 

 Temperature of fluid and dust particles increases 

uniformly from lower surface to upper surface. 

 Magnitude of Nusselt number increases in the time 

interval [0.1, 1] at both the plates. 
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NOMENCLATURE 

 

vi, 𝑢′ Velcoity of fluid, LT-1 

vpi, 𝑣′  Velocity of dust in tensorial form, LT-1 

xi, 𝑥′ 
𝑡′ 

Displacement variable, L 

Time, T 

p 

d 

Ji 

K= 6πµa 

𝑇′ 
𝑇′𝑝 
Cp 

 

Cp 

 

N 

 

mp 

k 

Bi 

U0 

y 

u 

v 

t 

T 

Fluid pressure, ML-1T-2  

Distance between two plates, L 

Current density, IL-2  

Stokes constant, MT-1 

Temperature of fluid, K(Kelvin) 

Temperature of dust particles, K 

Specific heat of fluid at constant 

pressure, L2T-2K-1 

Specific heat of dust at constant 

pressure, L2T-2K-1 

Number of dust particles per unit 

volume, L-3 

Average mass of dust particles, M 

Thermal conducitivity, MLT-3I2 

Magnetic induction vector, MT-2I-1 

A constant, LT-1 

Dimensionless displacement variable 

Dimensionless velocity of fluid 

Dimensionless velocity of dust particles 

Dimensionless time 

Dimensionless temperature of fluid 

Tp 

f 

R 

M 

G 

Pr 

Ec 

Nu 

Sh 

L0 

Dimensionless temperature of dust 

Particle concentration parameter 

Reynolds number 

 Hartmann number 

Particle mass parameter 

Prandtl number 

Eckert number 

Nusselt number 

Shearing stress 

Dimensionless temperature relaxation 

time 

 

Greek symbols 

 

 

𝜌 

𝜌0 

𝜏𝑖𝑗 , 𝜏 

𝜈 

𝜂0 

𝜎 

𝜀 

𝜆1 

𝜆2 

𝛼1 

𝛼2 

𝜙 

𝛾𝑇 

𝜔′ 
𝜔 

εijk 

Density of fluid, ML-3 

Density of dust particle, ML-3 

Viscous stress, ML-1T-2 

Kinematic viscosity, L2T-1 

Dynamic viscosity, ML-1T-1 

Electrical conductivity, L-3M-1T3I2 

Dimensionless amplitude of oscillation 

Relaxation time parameter, T 

Retardation time parameter, T 

Dimensionless relaxation time 

Dimensionless retardation time 

Volume fraction 

Temperature relaxation time, T 

Frequency of oscillation, T-1 

Dimensionless frequency 

Levi-Civita symbol 
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