
Multimodal System of Ambient Assistance Services for Human Activity Monitoring 

Isma Boudouane1* , Amina Makhlouf1 , Nacereddine Djelal1 , Nadia Saadia1 , Amar Ramdane-Cherif2

1 LRPE Laboratory, University of Sciences and Technology Houari Boumediene, Algiers 16111, Algeria 
2 LISV Laboratory, University of Versailles Saint-Quentin-en-Yvelines, Velizy78140, France 

Corresponding Author Email: iboudouane@gmail.com

https://doi.org/10.18280/jesa.560508 ABSTRACT 

Received: 11 August 2023 

Revised: 11 October 2023 

Accepted: 21 October 2023 

Available online: 31 October 2023 

The global demographic has seen a significant surge in the population aged 65 or over in 

recent years, a trend projected to accelerate in the coming decades. This elderly 

demographic is progressively losing autonomy, becoming increasingly susceptible to 

domestic accidents such as falls and heart rhythm abnormalities. To address this, this 

article introduces a multimodal system designed for continuous monitoring of elderly or 

disabled individuals within their homes. The developed architecture hinges on a fusion 

system, integrating signals from acceleration, heart rate, and presence sensors to generate 

ambient services. These services enable simultaneous detection of heart rate irregularities 

and falls, as well as tracking the individual's location within their home. Our methodology 

proposes a conditional fusion, employing IF THEN ELSE rules to produce outputs 

correlated to the presence or absence of one or more critical situations. This strategy 

amplifies the accuracy of moving object estimation, particularly during activities of daily 

living (ADLs), and ensures synchronized assistance services. An emergency service is 

introduced to classify the urgency and initiate the appropriate action. Validation of the 

proposed architecture and performance analysis were conducted using the CPNTools tool. 

Experimental test-based results demonstrated a 78.33% accuracy in the fall detection 

service. Heart disorder detection service tests confirmed 100% success rate in detecting 

tachycardia, while the location service demonstrated a sensitivity of 90%. 
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1. INTRODUCTION

According to data from World Population Prospects 2022 

[1], the number of people aged 65 and over has increased 

significantly in recent years and is expected to accelerate in the 

coming decades. This elderly population is becoming less 

independent and more exposed to the risk of domestic 

accidents, especially indoors. Among these accidents, falling 

is a major public health disorder that affects several tens of 

millions of elderly in the world every year, with immediate, 

fatal consequences, but also disabling complications, both 

physical and psychological. In most cases, the elderly person 

cannot get up alone after a fall, so it is necessary to react very 

quickly and therefore to be able to detect this event as soon as 

possible. In addition, considering heart rhythm disorders as a 

risk factor for elderly falls would be appropriate [2]. 

These challenges are essential for developing effective 

systems with applications in health, safety and improving 

people's quality of life. It is therefore imperative to develop 

real-time systems for automatic recording of physical activity 

and heart rate variability. 

In this context, a multimodal structure is proposed in this 

paper to enable the elderly and disabled to be monitored 

continuously in their homes. This structure provides three 

ambient assistance services: the fall detection service, the heart 

disorder detection service and the location service.  

These services make it possible to detect simultaneously 

heart rate disorders and falls from a standing position and to 

locate the person in home. Indeed, cardiac arrhythmias can 

lead to sudden and significant spikes in blood pressure. These 

spikes can make individuals more susceptible to dizziness and 

loss of balance, increasing the risk of falls. A fourth service, 

called the emergency service, is also offered to categorize 

emergency situations and determine the appropriate action 

plan based on the person's situation. This may involve 

contacting the emergency services, activating a medical alert 

or implementing other specific measures, depending on the 

circumstances. 

2. BACKGROUND

Activity detection and classification using various sensors 

has become a revolutionary technology for real-time, 

autonomous monitoring in behavior analysis, assisted living, 

activities of daily living, elderly care, rehabilitation, 

entertainment and surveillance in smart home environments. 

Wearable devices, smartphones and ambient environment 

devices are equipped with various sensors such as 

accelerometers, gyroscopes, magnetometers, presence sensors, 

heart rate sensors, pressure sensors and wearable cameras for 

activity detection and monitoring. 

Several contemporary researchers, have published studies 

on or developed fall detection systems [3]; these have been 

categorized from the perspective of "portability" or "sensor 

type". As reported in the study [4], 186 out of 197 published 

works on fall detection systems develop wearable devices. 

Most of these devices are accelerometer-based, while others 

incorporate gyroscopes to obtain information on the patient's 

position. Biomedical sensors can also be included for fall 
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detection. Currently, with the development of Smartphones 

incorporating accelerometers and gyroscopes, the latter are 

also being used in a number of research projects. 

 

2.1 Single sensor systems 

 

Chen et al. [5], Wu et al. [6] have developed similar wireless, 

triaxial accelerometer-based, waist-worn fall detection 

systems. The latter automatically distinguishes between falls 

and ADLs and communicates with a care or monitoring center. 

Similarly, Palmerini et al. [7] have exploited acceleration 

signals recorded by an inertial sensor, from continuous real-

world monitoring of subjects at moderate to high risk of falling. 

Of the various methods proposed, the most promising, based 

on SVM and a multi-phase fall model, achieved a sensitivity 

of over 80%. These results expand the boundaries of 

knowledge about fall detection in real-life environments, 

while proposing relevant metrics for evaluating fall detection 

systems in real-life contexts. 

More recently, the wearable camera has been the subject of 

research with a view to its integration into fall detection 

systems-monitoring is then not limited to confined areas and 

extends wherever the subject may move (indoors and outdoors) 

while reducing the problems of user privacy intrusion [8]. 

Ozcan et al. [9] proposed a fall detection and activity 

classification system using a camera placed at the person's belt; 

the proposed fall detection algorithm uses histograms of 

oriented gradients (HOG) and an optical flow-based activity 

classification method. In addition, Boudouane et al. [10] 

proposed a fall detection system using a camera (Rasbcam) 

worn at the user's hips. The introduction of the optical flow 

technique reduced the false positive rate, observed mainly for 

rotation scenarios using the HOG alone. 

 

2.2 Multisensor systems 

 

New trends are emerging in the implementation of fusion 

strategies to combine sensor data, features and classifiers to 

bring diversity, offer better generalization and solve 

challenging problems. In the study [11], the authors provide a 

thorough and comprehensive review of data fusion techniques 

and multiple classification systems for human activity 

recognition, with a focus on mobile and wearable devices. 

Sensor fusion can be performed on data from wearable sensors 

(accelerometers, gyroscopes), ambient sensors (cameras, 

vibration, microphones, IR), or both (camera, IR, 

accelerometer). 

Wang et al. [12], proposed a low-power fall detector using 

triaxial accelerometry and barometric pressure detection, worn 

around the neck using a lanyard. Using an RF link, the system 

can transmit the fall alarm to a remote operator installed in the 

user's home. The latter then relays the alarm to a remote care 

center to trigger a care intervention. Huynh et al. [13] and Guo 

et al. [14], used a wearable device with an integrated 

accelerometer and triaxial gyroscope for fall detection; they 

used an algorithm based on a simple threshold method and was 

implemented on a microcontroller, to check whether the 

person has fallen or not. Jefiza et al. [15] designed a fall 

detection device to minimize post-fall risk based on an 

MPU6050 sensor with a 3-axis accelerometer and 3-axis 

gyroscope. This research recognizes different types of falls as 

well as different ADLs such as sitting, sleeping, crouching, 

going up and down stairs and praying with an accuracy of 

98.18%. Kerdjidj et al. [16] propose an efficient system for 

automatic detection of falls and various ADLs. The system is 

based on a portable Shimmer device, with an on-board 

accelerometer and gyroscope, which transmits inertial signals 

to a computer via a wireless connection; the resulting system 

achieved 99.8% accuracy. 

 

2.3 Smartphone based systems 

 

With the development of Smartphones integrating 

accelerometers, gyroscopes, cameras and communication 

tools, these are also used in several research works [17, 18]. In 

the study [19], the authors propose a fall detection system 

based on a Smartphone's accelerometer data from two publicly 

available databases. An eccentric approach with a one-class 

classification based on SVM was used, resulting in a 

sensitivity of 98.81% and a specificity of 98.65%. In this 

context, Hakim et al. [20] detect a fall using the inertial sensors 

of a body-worn smartphone, with signals transmitted 

wirelessly to a remote PC for processing. Chen et al. [21] 

proposed a fall detection system based on a wrist-worn 

accelerometer. Experiments conducted on simulated falls and 

real ADL data from two different groups of volunteers yielded 

an accuracy of 97.45% and 97.82%, respectively. Sanchez and 

Muñoz [22] presented a multi-sensor, wrist-worn fall detection 

system that uses an artificial neural network (ANN) to 

differentiate between falls and ADLs. Three types of sensor - 

an accelerometer, a gyroscope and a magnetometer - were 

used in the prototype. Tests carried out under laboratory 

conditions gave an accuracy, sensitivity and specificity of 

98.10%, 98.10% and 98.10% respectively. The results suggest 

that reliable fall detection is achievable using the 

generalization capability of the neural network, eliminating 

the need for complex feature extraction algorithms. This seems 

a promising approach with the potential to improve user safety. 

 

2.4 Systems with ambient sensors 

 

Ambient devices enable the monitoring of people in a 

confined environment such as the home, care homes or even 

smart housing for health; They collect data on the user's daily 

activities and detect any falls. These devices include: cameras, 

infrared sensors, vibration sensors, acoustic sensors, contact 

detectors placed on doors/windows and temperature sensors 

[23, 24]. 

In the work developed by Chaccour et al. [25], falls are 

estimated by monitoring the pattern of recorded vibrations and 

comparing it with those of habitual movements such as 

walking; the alarm is triggered if a fall is detected. Li et al. [26] 

use a multi-microphone system for fall detection based on 

sound recognition. 

In addition, there are other localization methods, such as the 

installation of infrared sensors [27]. Sixsmith et al. [28] 

installed pyroelectric infrared sensors on walls to detect 

subject activity. 

 

2.5 Biomedical sensor based systems 

 

Continuous monitoring of heart rate can reduce the risk of 

accidents due to heart failure. To achieve this objective, 

several heart rate sensors have been developed. Mahmood et 

al. [29] developed a system that monitors an athlete's heart rate 

during training or exercise using a finger pulse meter. The 

pulsometer sends the collected data to a wrist strap, and is used 
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as a heart rate monitor so that athletes and coaches can monitor 

their fitness level.  

Biomedical sensors can also be integrated for fall detection; 

a wearable fall detection system using a triaxial accelerometer 

and pulsometer was developed in the study [30]. Wang et al. 

[31] proposed an improved fall detection system for 

monitoring the elderly, based on body-worn smart sensors and 

operating via consumer home networks. Using information 

gathered by an accelerometer, cardiotachometer and smart 

sensors, fall impacts can be recorded and distinguished from 

normal daily activities. 

Emerging trends in fall detection systems include the 

growing adoption of machine learning for improved accuracy, 

the integration of diverse sensor technologies for more 

comprehensive data, and the increasing use of wearable 

devices for unobtrusive monitoring and effective alerts. These 

advances aim to improve fall detection systems' reliability and 

accessibility. 

 

2.6 Discussion 

 

As previously reported, portable devices are the most 

commonly used in the field of fall detection because of their 

ability to be used both indoors and outdoors. The 

accelerometer is a good fall detector with a low cost and it is 

better accepted by users due to its small size. A portable 

camera can also be used to detect a fall. Ambient devices are 

also characterized by low cost and are much less cumbersome 

than portable devices, since they are placed in the environment; 

however, when using them, the parameters measured are not 

specific only to the person being monitored. 

Heart rate monitoring can be done for all types of people, 

healthy people, athletes and people with heart disease. As well 

as this monitoring is done for any activity such as: sleeping, 

exercising, walking and falling. The most commonly used 

devices for this monitoring are finger pulse meters, although 

their constant wearing by users is inconvenient. Belts worn 

around the chest are increasingly improved to give more 

accurate information but their cost remains high. Oximeters 

placed on the ear can reduce the discomfort caused by portable 

devices with a low cost. 

Integrating fall detection systems raises important ethical 

issues, particularly as relates to privacy, especially for the 

elderly and vulnerable populations. Wearable and ambient 

devices collect sensitive data, requiring rigorous privacy 

policies and clear consent mechanisms, while aiming to 

minimize privacy intrusion and maximize security.  

We can remark that the work on heart rate monitoring and 

posture detection is mainly based on the use of accelerometers 

and pulsometers. The systems developed make it possible to 

detect falls and/or heart disorders, but do not allow their 

simultaneous detection. The system proposed in this paper 

allows the simultaneous detection of heart rate disorders and 

falls from a standing position, and the location of the person in 

his home. When designing the system, we particularly focused 

on its acceptability by the user, as well as its comfort when 

worn. The fall detection service uses a portable device based 

on a tri-axial accelerometer placed at the belt. The heart 

disorder detection service monitors the heart rate using a 

pulsometer placed at the person's ear. The location is detected 

with photoelectric sensors placed at the home doors. 

 

 

3. PROPOSED ARCHITECTURE 

 

The system proposed in this article is related to the 

development of a multimodal architecture, as shown in Figure 

1. This architecture is based on the work presented in [30], 

whose aim is to carry out continuous monitoring of elderly or 

disabled people in their homes. The method we have 

implemented on this architecture is based on two fusion levels: 

a low-level fusion processing sensor signals, which are then 

fused at the higher level using an algorithm based on IF, 

THEN, ELSE conditions, to trigger an emergency service in 

the case of a serious fall or cardiac problem. The proposed 

modular architecture detects simultaneously falls and heart 

disorders, and also allows the location of the person. This 

system collects data from portable and ambient sensors; this 

data will be processed and merged by a fusion system in order 

to generate the required actions. In order to validate the 

proposed architecture, we modeled it using Stochastic Timed 

and Colored Petri Nets. The CPNTools tool was used to 

simulate this architecture and generate fault or error detection 

scenarios. 

 

 
 

Figure 1. Proposed multimodal architecture 

 

As shown in Figure 1, the proposed architecture is modular 

and extensible for other input modalities, which can be other 

sensors (gyroscope, camera etc...); or modalities issued from 

artificial intelligence based machines. This architecture sends 

only emergency messages or phone calls that do not contain 

confidential or security information about the user. In addition, 

this information is transmitted only to the medical emergency 

center. The architecture is composed of three main modules: 

the input modalities, the fusion system and the output 

modalities. 

- Module 1: Input modalities 

Input modalities are the information collected from 

continuous monitoring of the daily activities of a person living 

alone. For this architecture, we consider data from three 

modalities: absolute acceleration, heart rate and presence 

detection. To generate these modalities, we propose to use 

light and less invasive sensors, which are: 

· A tri-axial accelerometer to measure the absolute 

acceleration of the body, which will allow us to detect daily 

life risks such as a fall. 

·A pulse oximeter to calculate the number of heart beats 

per minute to detect heart rate disorders. 

·Photoelectric sensors to detect the presence of the user in 

his home. 

- Module 2: Fusion system 

The input modalities send the collected information to a 

computer for processing. This processing is carried out by a 

fusion system based on a centralized approach, consisting of 

two levels of fusion, a low level and a high level. 
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·The "low level" fusion is based on the signals from the 

sensors. It is carried out on several ambient sensors or on the 

data, taken over an interval of time, of a portable sensor. The 

data from each modality is processed separately to generate 

the three ambient assistance services.  

·The data collected by these three services will, in turn, be 

merged at a high level to trigger an emergency service. The 

latter activates the appropriate output modality according to 

the user's current situation. 

- Module 3: Output modalities 

The emergency service is charged to provide the appropriate 

action according to the degree of risk. If an anomaly is detected, 

this service sends an alert to an emergency center, which 

produces the various output modalities: calls, messages, 

ambulance request and urgency order classification. 

 

 

4. FUSION SYSTEM  

 

The fusion system processes the data from the various 

portable and ambient sensors. Fusion is applied at two levels, 

a low level and a high level. The "low level" of fusion is the 

processing of data from each modality separately to generate 

three ambient assistance services: the fall detection service, the 

heart disorder detection service and the localization service. 

The "high-level" fusion is performed on the information from 

these three services, and generates the emergency service. 

 

4.1 Low-level fusion 

 

By collecting data on absolute body acceleration, heart rate 

and presence detection, we can detect accidents that may occur 

during ADLs. Input modalities represent the first module of 

our multimodal architecture. This module contains three 

pieces of sensory information collected from two devices worn 

by the user and eight sensors placed in the environment. This 

information constitutes the three input modalities: absolute 

acceleration, heart rate and presence detection. 

4.1.1 Fall detection 

- Modality I1: Acceleration 

In this work, the fall is considered as a "sudden event" 

bringing the person to the ground. When a real fall occurs, the 

collision between the human body and the ground produces an 

obvious peak value of absolute acceleration; we exploit this 

feature to determine falls using an accelerometer. We chose 

the ADXL362 triaxial accelerometer from Analog Devices, 

which we placed at hip level using a belt; the choice of this 

location is justified by the fact that the hips, unlike the rest of 

the trunk, constitute the zone closest to the center of mass [32]. 

The magnitude of the linear acceleration A is obtained, 

according to Shinde and Chawan [33], by relation (1) 

according to the values of the acceleration components Ax, Ay 

and Az, delivered by the triaxial accelerometer. 

 

|𝐴𝑡| = √(𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2) (1) 

 

where, Ax, Ay and Az represent the body's accelerations 

according to the orthogonal axes X, Y and Z respectively, and 

|At| is measured as a function of the Earth's surface 

acceleration 'g'. 

- Fall detection service 

The proposed system identifies a fall by evaluating the two 

phases, critical and post-fall, shown on Figure 2. During the 

critical phase of a fall, the body's vertical velocity increases 

linearly with time, and this phase contains a free-fall stage 

followed by the ground impact stage [34, 35]. We detect the 

impact of the body on the ground and the duration of the post-

fall phase in order to determine whether a fall has occurred. 

 

 
 

Figure 2. Acceleration prototype of a fall 

 

Free fall (T0): the fall starts with a free fall where the 

acceleration is less than 1g and more precisely less than 0.7g. 

Impact (T1): Impact occurs when the body hits the ground 

with an acceleration greater than or equal to 3g. 

Extended position (t>T2): the body remains elongated with 

an acceleration of around 1 g and an orientation close to 90° 

with respect to the start of free fall (T0). 

After a fall, the person often remains motionless in an 

extended position. Lack of movement can therefore be the 

consequence of a fall. This can be detected by calculating the 

time interval during which the person has remained in an 

extended position. In the study [36], the authors exploited the 

person's immobilization time during the post-fall phase to 

reduce the false positive rate. The proposed fall detection 

service receives accelerometer values At(t), At(t+1), ...... 

At(t+n), .... every 500 ms. and compares them with critical 

values. 

These critical values are as follows: 

- impact detection threshold=3g; 

- free-fall detection threshold=0.7g; 

- extended position detection=1g. 

where, g=9.81 m/s represents the gravity acceleration on the 

earth's surface. 
 

4.1.2 Heart disorder detection 

- Modality I2: Heart frequency 

The proposed device for continuous heart rate monitoring is 

a pulse oximeter. This is clipped to the user's ear, as shown in 

Figure 3, and is less bulky and intrusive than finger-level 

pulsometers. 

We chose to use the Grove-Ear-clip heart rate sensor from 

"Seeed studio", consisting of an ear clip and a receiver module 

linked by a 120 cm long wire. We have placed the receiver 

module with the accelerometer at belt level to make the system 

less bulky. 

The Grove-Ear-clip measures heart rate per minute (Fc). For 

each heartbeat, it delivers the number of heartbeats in the 

previous minute. 

- Heart disorder detection service 

We propose to monitor the user's heart rate using an 

oximeter, with the aim of detecting abnormal heart function, 
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i.e., tachycardia and bradycardia, during activities of daily 

living. Detection of these disorders depends on the category of 

the population we wish to monitor; the heart rate norms for 

each category are given by the Table 1. 

 

 
 

Figure 3. Pulse oximeter clipped to ear 

 

Table 1. Heart rate standards [37] 

 
Age HeartBeats per Min 

Adolescent and adult (≥13 years) 60-80 

Elderly person (≥65 years) 

bradycardie 

tachycardie 

50-100 

<50 

>100 

Children (3-12 years) 90-110 

Baby (1-2 years) 100-130 

New born 130-140 

 

Our system is dedicated to the elderly, with a minimum 

heart rate of 50 beats/min and a maximum of 100 beats/min. 

For this service, we offer to merge heart rate 'Fc' data from the 

pulse oximeter. 

To avoid triggering false detections of heart disorders or 

overlooking true detections, we propose to evaluate the heart 

rate value for ten '10' seconds, i.e., for ten successive 'Fc' 

samples. 

 

4.1.3 Presence detection 

- Modality I3: Presence detection 

The proposed architecture is dedicated to elderly people 

living alone, and is implemented in an environment composed 

of just four rooms: a living room, a bedroom, a kitchen and a 

bathroom, distributed around a hall. In order to detect the 

user's location in the home, we propose to place two 

photoelectric sensors at each door in the home [38], for a total 

of eight sensors. In order to detect that the person has actually 

passed through the door, as well as the direction of passage, 

we have adopted the configuration shown in Figure 4. We have 

placed two photoelectric sensors, each consisting of a 

transmitter and a receiver, at each door. The first sensor is 

located on the external side, while the second is on the internal 

side. In order to avoid any confusion between the detection of 

the person being tracked and that of a pet, for example, we 

have placed the detector at an average height of one '1' meter 

above the ground. 

- Location service 

This service detects a person's movement from one room to 

another, by merging data collected from photoelectric sensors 

placed around the home at door level. The transmitter of each 

sensor sends a light beam to the receiver, which sends a logic 

output equal to '1' if no object crosses the beam, and equal to 

'0' if the person passes through the door and cuts the beam. In 

our case, we use the detector in sampled mode, reading these 

values every 500 ms. We say that the person has passed 

through a room door on the way in if, and only if, the receiver 

on the external side has generated a logic output equal to '0' 

before the one on the internal side. Similarly, when the person 

has left the room through the door, the receiver on the internal 

side generates a '0' output first. After merging the outputs from 

the eight sensors, we can determine the room number (noted 

Rnb) where the person is located. 

 

 
 

Figure 4. Positioning of photoelectric sensors on door frame 

 

Sensor data from the accelerometer, oximeter and presence 

detector are transmitted via an interface card to a computer. 

An algorithm based on sliding average calculation is used to 

guarantee data reliability. 

 

4.2 Height level fusion 

 

After a fusion at the level of each of the three ambient 

assistance services, another fusion is applied to the results 

from the latter. The detection of a fall and/or a heart condition 

with location triggers an emergency service whose role is to 

merge the events from the three services and then produce the 

appropriate action. 

 

4.2.1 Emergency service 

We have chosen to perform decision-level fusion for this 

service. In our case, to solve all possible cases and give a better 

result, we propose to combine this fusion with rule-based 

conditional fusion (IF THEN ELSE) to derive outputs 

according to the detection or non-detection of one or more 

hazardous situations [39]. This method allows us to estimate 

moving objects such as a person during ADLs and ensure good 

synchronization between the different assistance services. 

This service takes as input the results of the three ambient 

assistance services and as output the state of the person with 

his location in the habitat. The outputs can then be: "detection 

of a fall without detection of the cardiac disorder", "detection 

of the cardiac disorder without detection of a fall" or "detection 

of a fall with detection of the cardiac disorder". The 

information provided by this service, such as the detection of 

falls and/or cardiac disorders, is then sent to an emergency 

center, which is responsible for generating the output 

modalities according to the situation and the danger detected. 

 

4.2.2 Output modalities 

Once the alert has been sent by the emergency service to the 

emergency center, the operator decides to request an 

intervention or not. Exit modes that can be set are: 

Modality 1: a call to the user's telephone is made by the 

emergency center operator to speak to the user and enquire 

about his or her condition. Depending on the response, the 
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operator may decide to request an on-site intervention or 

activate other procedures. 

Modality 2: the operator sends the message "Are you OK?" 

to the user; the response to this message can be "Positive" or 

"Negative". In the case of false risk detections, the user replies 

"Positive" and the operator considers the user to be in a normal 

state. If the response is "Negative", the operator activates other 

modalities, such as a call. 

Modality 3: an ambulance is requested urgently by the 

operator in the event of anomalies being detected that are 

dangerous to the user's health, or if the user does not respond 

to calls. 

Modality 4: the emergency order classification ranges from 

a minimum value of '0' for normal situations to a maximum 

value of '1' for dangerous situations. Between the two values, 

the operator can classify the urgency with a percentage 

between 0% and 100%, after a conversation with the 

monitored person.  

In addition, our system records the history of any anomalies 

detected, and stores all data concerning the user's condition in 

a database so that the doctor can consult the file at any time. 

 

 

5. IMPLEMENTATION 

 

For the architecture modeling, we use the Timed and 

Stochastic Colored Petri Nets (CPN), simulated with 

CPNTools version V4.0.0 [40]. The programming language 

used for this modeling is CPN ML which is an extension of 

the standard ML language. The architecture composed of the 

three modules, input modalities, merge system and output 

modalities, is shown in Figure 5. 

 

 
 

Figure 5. Model of multimodal architecture 

 

The CPN model developed contains twelve places 

(represented by ellipses or circles), six transitions (represented 

by rectangles), a set of oriented arcs connecting the places and 

transitions, and finally the textual expressions relating to the 

places, transitions and arcs. 

To model this architecture under CPNTools, we used the 

hierarchical network based on the call of "sub-networks" in 

order to present a simplified view of it. The double rectangle 

transitions named 'Fall detection Service', Heart 

disorderdetection Service' and 'Location Service' represent 

sub-networks that take as input the input modalities and 

generate as output the detected anomalies and the user location 

for the same sample. 

The 'Emergency Service' transition is a sub-network that 

takes the outputs from the three Ambient Assistance Services 

and generates specific codes according to the user's status. 

 

5.1 Falldetection service implementation 

 

The fall detection service is charged with merging the user's 

absolute acceleration data 'At' for 'n' samples. This information 

is provided by the tri-axial accelerometer located on the user's 

belt. The algorithm in Figure 6 illustrates the fall detection 

service procedure. 

 

 
 

Figure 6. Fall detection algorithm 

 

The algorithm detects the occurrence of a fall when the 

acceleration decreases below the minimum threshold of 0.7g 

and then rises again to the value of 3g. 

After the detection of the freefall phase and the impact, the 

person often remains in an extended position. To minimize the 

false positive rate, this service takes into account the duration 

of this phase (extended position). In our case, we have set this 

duration at one minute, i.e., 120 samples. 

 

5.2 Heartdisorder detection service implementation 

 

The heart disorder detection service (Figure 7) merges the 

user's heart rate value 'Fc' to detect tachycardia and 

bradycardia. The limits, minimum 'Fcmin' and maximum 

'Fcmax' of a so-called normal heart rate depend on the health 

status of the person to be monitored.  

After reading 'Fc' and entering 'Fcmin' and 'Fcmax', we can 

determine two distinct cases:  
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Fcmin≤Fc≤Fcmax: the number of heart beats per minute is 

within the limits of the standard. 

Fc<Fcmin or Fc>Fcmax: following cases may occur. 

- Fc>Fcmax: if for ten successive samples the value 'Fc' is 

greater than 'Fcmax', the service detects a tachycardia. 

- 0 beats/min<Fc<Fcmin: corresponds to the detection of 

bradycardia. 

- Fc=0 beats/min: if the service receives five 'Fc' values 

equal to '0 beats per minute', we consider the oxymeter to be 

incorrectly positioned. 

 

 
 

Figure 7. Heart disorder detection algorithm 

 

In the heartdisorder detection service, minimum and 

maximum heart rate limits are set according to the standard 

shown in Table 1 [37]. 

 

5.3 Location service implementation 

 

In the proposed architecture (Figure 8), we have assigned a 

number to each room as shown in Table 2. 

In order to detect the user's location in the habitat, we placed 

two photoelectric sensors at each door, for a total of eight 

sensors. 

The location service merges the 'in-room' and 'out-room' 

('room' refers to the living room, bedroom, kitchen or 

bathroom) outputs of the eight photoelectric sensors, placed 

respectively on the 'internal' and 'external' side of each door. 

 

 
 

Figure 8. Proposed habitat with the presence detectors 

arrangement 

Table 2. Numbering of habitat rooms 

 
Room Hall Livingroom Bedroom Kitchen Bathroom 

Room 

number 
0 1 2 3 4 

 

5.4 Emergency service implementation 

 

The emergency service is responsible for merging the data 

from the three ambient assistance services, i.e., fall detection 

data, heart rate data and location data. During activities of 

daily living, a person may fall, have a heart disorder, or both 

can occur at the same time. The system allows to send the code 

corresponding to the action to be taken with the user's location. 

This code contains all the information about the user's 

condition, particularly the order of the emergency. We have 

proposed to classify the emergency from a minimum order 

"Order 0" to a maximum order "Order 1". We can then 

determine three distinct cases: detection of a fall without a 

heart disorder, detection of a heart disorder without a fall and 

detection of a fall with a heart disorder. 

In order to achieve a better follow-up of the users, the 

system developed in this work allows the archiving of the 

results from the emergency service, in the objective of keeping 

a history of anomaly detection. For each situation, a summary 

message is sent to the doctor and stored in a database. Each 

message contains the anomaly detected, whether it is a fall, a 

heart disorder or both anomalies at the same time. 

 

 

6. EXPERIMENTAL VALIDATION 

 

Validation is an important step in the process of multimodal 

architecture development. It allows showing that the system 

responds positively to the specifications requirements, 

especially to the real-time response of the system. It also 

makes it possible to check whether the method used in this 

work is functional in the simulation environment. 

 

6.1 Experimental context 

 

In order to validate and evaluate the proposed system in 

terms of accuracy, we conducted several experimental tests. 

All of these tests were conducted in a non-hospital 

environment and by volunteers in good health. During the tests, 

we ensured the volunteers' safety by having them fall onto a 

mattress in the presence of a doctor, who instructed them on 

how to fall. 

We solicited six (06) volunteers, who were 30 to 70 years 

old and had no heart disorders or physical handicaps, to wear 

the device. Each subject performed ten (10) tests, which were 

free-falling from a standing position or ADLs; some of which 

may be similar to falls such as picking up an object from the 

ground or sitting down suddenly.  

This allowed us to achieve four scenarios:  

Scenario 1: We detached the oximeter from the volunteer's 

ear to perform the "Oximeter detachment" scenario. 

Scenario 2: We asked the volunteer to walk up and down 

the stairs, jump and run to have a heart rate above 'Fcmax' and 

detect tachycardia. 

Scenario 3: The volunteer free-falled and stayed on the 

ground for more than two minutes before getting up again. 

Scenario 4: After the volunteer fell, we asked the volunteer 

to get up quickly. 
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Tests involving final users of the developed system require 

it to be worn by individuals in care residences for the elderly 

or in hospital settings. 

In what follows, we present, among the different scenarios 

carried out, the results relating to Scenario 4 " Fall detection 

without cardiac disorder ", introducing accelerometer and 

oximeter values into the models developed in CPNTools. 

 

6.2 Experimental results 

 

The values of the absolute acceleration 'At' provided by the 

accelerometer are extracted every 500 ms, which led us to have 

1200 values for the ten minutes of the test. In Figure 9, we 

have represented only the part between the moments 500/2 s 

and 850/2 s in order to better visualize the critical event. 

We can distinguish: free-fall at t=521/2 s, impact at t=522/2 

s and start of extended position at t=523/2 s. The duration of 

the extended position is more than one minute (from t=523/2 

s to t=805/2 s), which means that the volunteer actually 

remained on the ground after the fall. 

 

 
 

Figure 9. Absolute acceleration 'At' generated by the 

accelerometer 

 

The pulse oximeter generates one value every second, 

giving 600 values 'Fc' for the ten-minute test. In Figure 10 we 

present only the part in the interval 100s and 500s, when the 

fall occurred. 

For the 600 generated values we did not obtain ten (10) 

successive values of 'Fc' greater than 'Fcmax' or less than 

'Fcmin', so no disorder is detected. We can see that the values 

of 'Fc' slightly exceed 'Fcmax' for t=262s, which means that 

the fall occurred at the same instant. 

 
 

Figure 10. Heart rate 'Fc' generated by the oximeter 

 

During the tests, when the subject moved from one room to 

another, photoelectric detectors placed on the doors generated 

outputs, which, once processed, gave his location. We have 

represented in Figure 11, the 1200 values corresponding to the 

room number 'Rnb' where the person is located. 

 

 
 

Figure 11. Room number 'Rnb' 

 

As shown in the Figure 11, at each passage from one room 

to another, the location 'Rnb' takes the value '0' corresponding 

to the passage through the hall. At the time t=523/2 s 

corresponding to the fall, the volunteer is in the room with the 

number '1', corresponding to the living room. 

According to the three Figures 9, 10 and 11, we can see that 

the fall point appeared at time 512/2 s on the acceleration 

graph, corresponding to time t=256 s on the oximeter graph, 

which coincides with the location of point Rnb3 in the room 

number graph. By analyzing these three quantities, we can 

conclude that a fall has occurred. 

After retrieving the results extracted from the three ambient 

assistance services, the emergency service merges them to 

deliver the appropriate message. The result delivered by the 

emergency service, for the scenario considered, is shown in 

Figure 12. 

 

 
 

Figure 12. Sent message and code number 

 

Among the three possible codes for this scenario (Code 5, 6 

and 7), the emergency service transmitted Code 6 for this case. 

This code was transmitted for sample 523, and the message 

sent is 'Fall without Heart problem, Person on the floor, 

Intervention, Emergency, Operator order, Code 6, Person in 

living room'. 

Through this message we can deduce that at the moment t= 

523/2 s, the volunteer was in the living room and made a free-

fall. He remained on the ground for more than one minute. The 

operator decided, after a telephone conversation, to activate an 

emergency. 
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After testing each scenario several times, we were able to 

verify the four scenarios by obtaining the appropriate codes. 

An evaluation was carried out for each of the proposed 

services on the system. 

 

 

7. EVALUATION 

 

Evaluation involves quantitative analysis based on 

performance measures such as sensitivity, specificity and 

accuracy [24, 41]. These performance measures, represented 

by Eqs. (2), (3) and (4), are deduced from four main 

coefficients obtained from statistical analysis of experimental 

test results, namely True Positive (TP), False Positive (FP), 

True Negative (TN) and False Negative (FN). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑉𝑃/(𝑉𝑃 + 𝐹𝑁) (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑉𝑁/(𝑉𝑁 + 𝐹𝑃) (3) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑉𝑃 + 𝑉𝑁)/(𝑉𝑃 + 𝐹𝑃 + 𝑉𝑁 + 𝐹𝑁) (4) 

 

In order to evaluate the system developed in this work in 

terms of precision, we made a static analysis of the results 

obtained from the sixty experimental tests carried out by six 

healthy volunteers. Table 3 presents the results of the fall 

detection service performance evaluation. 

 

Table 3. Performance parameters 

 
 Coefficients Performance Parameters 

Test 

(nbr) 
TP FP TN FN Sensitivity Specificity Accuracy 

Fall (30) 24 06 - - 80% - 

78.33% ADL 

(30) 
- - 23 07 - 76.67% 

 

The obtained results showed that the fall detection service 

is characterized by an accuracy of 78.33%. Indeed, this service 

can identify most fall events with a sensitivity of 80%. 

Similarly, that it correctly detects activities of daily life that 

are not falls with a specificity of 76.67%. Indeed, the fall 

detection sensitivity obtained, reaching 80%, leads to a false 

positive rate of 20%; this is acceptable but could be improved 

by integrating other sensors, for example. We have tested our 

system on healthy subjects who do not present cardiac diseases 

such as bradycardia. However, the system should be able to 

detect bradycardia if we tested it on subjects with cardiac 

disorders. 

The tests of the heart disorder detection service confirm the 

detection of tachycardia and the detection of oximeter 

detachment with 100% success. However, we were unable to 

realize the case of the bradycardia detection. The cardiac 

disorder detection algorithm has been validated for 

tachycardia and bradycardia using Cpntools tests. However, 

evaluation of our algorithm regarding bradycardia could only 

be carried out in a real hospital environment. 

The location service detected the user's location in the 

habitat with a sensitivity of 90%. 

The emergency service was tested in simulation with 

experimental input data from portable and ambient devices. It 

was able to detect the oximeter detachment, the case of a fall 

without heart disorder detection, and the case of tachycardia 

without fall. 

8. CONCLUSION AND PERSPECTIVES 

 

The system proposed in this article is based on the 

development of a multimodal architecture whose aim is to 

ensure continuous monitoring of elderly in their homes. The 

proposed modular architecture simultaneously detects falls 

and heart disorder, while locating the person in his home. 

The system is based on three ambient assistance services, 

namely: the fall detection service, the heart disorder detection 

service and the location service. An emergency service is also 

developed to detect anomaly in the health of the persons 

monitored. 

In order to validate the proposed architecture, we modeled 

it with the Timed and Stochastic Colored Petri Networks. The 

CPNTools was used to simulate this architecture and generate 

fault or error detection scenarios to validate and analyze the 

overall operation. The validation of the proposed system was 

made on the basis of experimental tests carried out on 

volunteers, who were 30 to 70 years old, who have no heart 

disorder or physical handicap. Tests have shown that the 

system allows the appropriate code to be sent for each case of 

detection of a fall and / or a heart disorder by locating the user 

in the home. Indeed, the results showed that the system is 

characterized by:  

·An accuracy of 78.33%, a sensitivity of 80% and a 

specificity of 76.67% for the fall detection service. 

·A 100% success rate for the detection of tachycardia. 

·A sensitivity of 90% for the location service. 

In addition to detecting heart problems and falls, our system 

offers other functionalities such as: locating the person in their 

home when they fall, making it easier for the emergency 

services to rescue them; and remote medical monitoring, 

enabling the doctor or emergency service operator to monitor 

the patient's condition in real time. Given the results, we 

consider the prospects for, firstly improve the response of the 

system, and secondly, use modularity to expand to other types 

of use. Then as a first step, we aim to validate the emergency 

service through real-life tests, ensuring accurate and quick 

responses during emergency situations. on the other hand, we 

plan to carry out a satisfaction survey to assess the 

acceptability of our system among final users, including the 

elderly and healthcare professionals Their feedback will help 

refine the technology to respond to real user needs and 

healthcare standards. 
Furthermore, this kind of system could reduce strain on 

healthcare allowing more efficient home monitoring, which 

could reduce unnecessary hospitalizations. It could also be 

used to monitor patients with chronic diseases, improving their 

quality of life and reducing healthcare costs.  

Finally, a distant detection system for falls and cardiac 

disorders could be a useful tool for healthcare professionals, 

enabling them to proactively monitor a large number of 

patients remotely. However, guaranteeing privacy and data 

security in such applications is essential to ensure user 

confidence and compliance with ethical standards. 
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