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As the impacts of global warming intensify, the automotive industry is increasingly 

emphasizing the development of eco-friendly vehicles with superior range and 

performance compared to conventional ones. Electric vehicles have emerged as a 

promising solution to reduce harmful emissions in the transportation sector. This study 

focuses on creating a nonlinear dynamic model for electric vehicles by integrating kinetic 

and electrical components. The key criterion in EV speed control is robustness, prompting 

the construction of various controllers to ensure resilience and disturbance rejection. These 

controllers include both traditional ones like proportional-integral-derivative (PID) and 

fractional order PID (FOPID) controllers. Fractional calculus has gained significant 

attention in control systems engineering due to the fractional orders of the integral and 

derivative terms, offering enhanced robustness and optimal control. This thesis employs 

multiple optimization strategies to design an FOPID controller, ensuring the optimal 

performance of a robust control system for electric vehicles. Initially, the controller is 

developed using intelligent swarm optimization techniques, such as particle swarm 

optimization (PSO) and grey wolf optimization (GWO), through simulations in MATLAB 

R2022b. The results demonstrate the effectiveness of PSO and GWO algorithms in 

reducing the objective integral of time multiplied by absolute error (ITAE) function in the 

speed control system utilizing an FOPID controller. The performance of a conventional 

PID controller is compared with that of a FOPID controller, highlighting the superiority 

of the GWO-FOPID strategy, presented as a novel methodology. The outcomes underscore 

the remarkable performance of the GWO-FOPID controller, ensuring rapid responsiveness 

in controlling EV speed, with a rise time of 0.008978 seconds, a settling time of 0.01 

seconds, and zero absolute time error (ITAE). 
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1. INTRODUCTION

Due to environmental and energy concerns, electric vehicles 

are becoming an attractive alternative to traditional Vehicles 

with internal combustion engines. The research community 

has paid much attention to improving the performance of 

electric vehicles (EVs), which has also made progress in their 

design [1, 2]. A permanent magnet synchronous motor 

(PMSM) has been used in the design of electric vehicles as it 

has high energy density and efficiency. Therefore, it is suitable 

for high-performance applications [3]; PMSM are preferred by 

researchers and manufacturers over DC motors because of 

their many disadvantages. Thus, there is much room for 

improvement and development of a more compact intelligent 

swarm speed controller for PMSM drives [4, 5]. The 

controllers for electric vehicles have been the subject of 

numerous published studies. A gain-scheduled controller for 

the independent driving of four-wheel electric vehicle lateral 

stability was proposed by Xian J. Jin and coworkers in 2015 

[6]. Khooban et al. [7] suggest an optimal multi-objective 

fuzzy fractional-order PIλ Dμ controller (MOFFOPID) for 

time-delayed EV. speed control. Simulation findings show the 

suggested controller performs well. Munoz-Hernandez et al. 

[8] present an electric vehicle cruise control design based on a

fractional-order proportional and integral (PI) direct control of 

the torque applied to the propulsion system. Results from the 

simulation demonstrate the efficiency of the control. George 

et al. [9] propose an efficient adaptive neuro-fuzzy inference 

system (ANFIS)-based fractional order PID (FOPID) 

controller for an electric vehicle speed tracking control 

propelled by a DC motor. The proposed controller resists 

external disturbances and encourages speed regulation control 

for electric vehicles. The outcomes demonstrate the superior 

performance of the ANFIS-based FOPID controller with its 

high prediction and low error rates. Babaei et al. [10] 

introduced a negative swarm method (SSA) to modify the PID 

control coefficients (FOPID). Additionally, assessments of the 

suggested findings show that the FOPID controller may 

Greatly decrease overrun time and stability in Frequency 

change signals. This paper proposes to design a micro-

arranged PID controller for an electric vehicle using PSO and 

GWO algorithms. The proposed design aims to improve the 

overall performance and efficiency of the electric vehicle 

control system. PSO and GWO algorithms optimize the 

controller parameters, resulting in an optimized control design. 

The effectiveness of the proposed controller design is 

evaluated through simulation studies. The results show that the 

design of the gray wolf controller is superior to the PSO, which 
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indicates the effectiveness of the GWO algorithms in 

optimizing the partial arrangement of PID controllers for EVs. 

The format of this essay is as follows: 2. Fractional order 

controller (FOC) and Mathematical Modeling of the EVs is the 

subject of Section 3. A summary of optimization methods and 

various metaheuristic PSO and GWO algorithms are provided 

in Section 4. Results from the tests are applied in Section 5. 

then highlights the conclusions of the proposed system. 

 

 

2. FRACTION ORDER CONTROLLER 

 

A fractional differential equation or integral equation 

defines a fractional-order system, a concept beyond the scope 

of conventional calculus that focuses on integer-order 

differentiation and integration. Unlike traditional methods, 

fractional calculus allows differentiation and integration of 

any order, be it non-integer or integer. This approach has 

gained widespread acceptance across fields like fluid 

mechanics and electrical systems, becoming a significant 

method in engineering and science [11]. 

The incorporation of fractional order calculus into 

traditional controllers, like PI and PID, has significantly 

expanded performance capabilities. While traditional methods 

have dominated industrial applications, fractional order 

controllers have gained traction due to their precise modeling 

abilities. Initially, fractional order systems were approximated 

using integer models, but advancements in numerical methods 

have facilitated accurate representations using non-integer 

derivatives and integrals [12]. 

FOPID controllers, a notable application, have found use in 

electric vehicles, robotic systems, engines, and power systems. 

Despite their effectiveness, tuning FOPID controllers is 

challenging due to the additional parameters they introduce 

compared to traditional PID controllers. However, these 

parameters enhance the controller’s flexibility and design 

possibilities. 

In the time domain, the FOPID controller is represented by 

the equation [13]: 

 

𝑈(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖𝐷−𝜆𝑒(𝑡) + 𝐾𝑑𝐷µ𝑒(𝑡) (1) 

 

The Laplace transform provides a transfer function 

representation of FOPID as [9]: 

 

𝐺𝑐(𝑠) =
𝑢(𝑠)

𝑒(𝑠)
= 𝐾𝑝 + 𝐾𝑖(𝑠−𝜆) + 𝐾𝑑(𝑠µ)  (2) 

 

The FOPID controller operates based on fractional power 

integral and differential terms represented by 𝜆 and 𝜇, 

respectively as shown in the Figure 1. Various combinations 

of 𝜆 and 𝜇 values can emulate classical controllers: 𝜆 = 1, 𝜇 = 

1 corresponds to the classical PID controller, 𝜆 = 1, 𝜇 = 0 

corresponds to the PI controller, and 𝜆 = 0, 𝜇 = 1 corresponds 

to the PD controller. This relationship is visually represented 

in a two-dimensional plan, as depicted in Figure 2. The shaded 

area in blue indicates the fractional controller. 

 

𝐺𝑐(𝑠) =
𝑢(𝑠)

𝑒(𝑠)
= 𝐾𝑝 + 𝐾𝑖(𝑠−𝜆) + 𝐾𝑑(𝑠µ)  

 

where, 

Gc(s): FOPID transfer function. 

u(s): Controller output. 

e(s): An error has been produced. 

Kp,  Ki, and Kd: the earnings equitably distributed, integral 

and derivative terms, respectively.  
µ: Fractional portion of the derivative part. 

λ: fractional component of the integral term 

 

 
 

Figure 1. FOPID controller block diagram 

 

 
 

Figure 2. Operation region of the FOPID controller 

 

 

3. MATHEMATICAL MODEL OF ELECTRIC 

VEHICLE 

 

3.1 Mechanical model 

 

The EV consists primarily of a battery pack, a controller, 

and electric motors connected to the gearbox device. Vehicle 

and motor dynamics make up the EV system dynamics. 

Modelling the electric vehicle system involves balancing all 

forces acting on a moving vehicle. There are primarily four 

forms of forces: aerodynamic drag force (Fad), rolling friction 

(Frr), acceleration force (Fa) and gravitational force (Fg) [14] 

as depicted in Figure 3. 

 

 
 

Figure 3. External forces are acting in EV 

Aerodynamic force is: 

 

Farea =
1

2
ρACdv2  (3) 

 

Rolling force is: 
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Ftire = μrrmg (4) 

 

Hill climbing force is: 

 

Fslope = mgsin(φ) (5) 

 

Acceleration force is: 

 

Facce = m
dv

dt
  (6) 

 

Finally, the total force affected by the electric vehicle is: 

 

FT = Farea + Ftire + Fslope + Facce (7) 

 

FT =
1

2
ρACdv2 + μrrmg + mgsin(φ) + m

dv

dt
  (8) 

 

The velocity of the EV is denoted by v, the head portion of 

the car or truck is represented by A, the electric vehicle mass 

is m, the rolling resistance coefficient is 𝛍𝐫𝐫 , g is the 

acceleration gravity, the density of the air is 𝜌, 𝜑 is the angle 

at which the machine climbs a slope, and 𝐂𝐝 is the coefficient 

of the drag operation [15]. 

The consequent force (FT)  will result in a torque 

counterproductive to the driving motor, as illustrated by the 

following formula: 

 

TL = FT (
r

G
)  (9) 

 

where, G and r are the gearing ratio and tire radius of the EV, 

respectively, and the driving motor-produced torque is shown 

by TL [16]. 

 

3.2 Modeling of PMSM motor 

 

The PMSM’s mathematical model can be expressed in a d-

q reference frame rotating synchronously. This model is 

comparable to that of the wound rotor synchronous motor 

because the stator structures of both motors are similar. The 

PMSM’s model was created based on certain assumptions, 

including the neglect of saturation and the assumption that the 

induced EMF is sinusoidal. Eddy current and hysteresis losses 

are also considered negligible, and there are no current field 

dynamics. The resulting equations for the stator d and q 

components of the PMSM in the rotor reference frame can be 

derived from these assumptions [17]. 

 

Vd = RSid + pλd − weλq (10) 

 

Vq = Rsiq + pλq + weλd (11) 

 

Te = (
3

2
) P(λafiq + (Ld − Lq)idiq)  (12) 

 

Te = TL + Bwr + Jpwr (13) 

 

we = Pwr (14) 

 

where, 

 

λq = Lqiq (15) 

 

λd = Ldiq + λaf (16) 

Voltages are represented by Vd and Vq, and currents by id 

and iq along the d and q axes, respectively. P stands for the 

number of pole pairs; Lq and Ld designate the inductances on 

the q and d axes, respectively; p is the derivative operator; 

TL and Te stands for the load and electric torques, and B stands 

for the damping coefficient. The mutual flux, also known as 

the airgap flux, is denoted by λaf, and J describes the inertial 

moment. 

Assume all Eqs. (11) to (12) are nonlinear and that the 

vector-controlled PMSM forces the id variable to zero. 

Solving Eqs. (11) to (12) is shown below [18]: 

 

Vq = RSiq + LqiqP + weλaf (17) 

 

Vd = −weLqiq (18) 

 

Te = (
3

2
) Pλaf iq − Ktiq  (19) 

 

Transfer function of PMSM: 

 
wr(S)

Vq(S)
=

Kt

(R+LqS)(JS+B)+KtPλaf
  (20) 

 

Table 1. PMSM motor parameters [18] 

 
Parameter Values Units 

𝐾t 

𝜆𝑎f 

𝐽s 

R 

𝐿q 

B 

P 

6.807 

1.513 

0.0337 

0.12 

0.764 

0.086 

2 

N-m/A 

V/rad/sec 

Kg-m2 

Ω 

mH 

 

pole pairs 

 

Table 1 shows the parameter values of the PMSM motor. 

These values are used in Eq. (20), we obtain Eq. (21). 

 
Wr(S)

Vq(S)
=

6.807

0.02257s2+3.96s+20.6
  (21) 

 

 
 

Figure 4. Schematic of a permanent magnet  

synchronous motor 

 

As depicted in Figure 4, the visual representation illustrates 

the connection of the Torque load to the synchronous motor, 

denoted as TL. Here, the Torque load signifies the combined 

torques influencing the electric vehicle's motion. Eq. (22) 

provides a detailed explanation of this scenario. 

 

TL = (
r

G
) (

1

2
ρACdv2 + μrrmg + mgsin(φ) + m

dv

dt
)  (22) 

 

It is recommended that appropriate nonlinear control 

strategies be utilized in developing the control system for these 
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types of structures. Some process parameters are subject to 

change due to the broad range of process parameters, making 

accurate design an arduous task. As an illustration, the 

armature resistance of the motor is susceptible to change 

whenever there is a shift in the operating temperature. This 

underlines the importance of a resilient personality for the 

controller. Table 2 explains this research’s EV parameters and 

coefficients [18, 19]. 

 

Table 2. EV system’s parameters 

 
Values Parameters Values Parameters Values Parameters Values Parameters 

0.764 𝐿q (mH) 35∘ φ (∘) 0.015 μrr 2800 ωnom 

0.086 B 6.807 Kt (N-m/A) 11 G 800 m (kg) 

2 P 1.513 λaf (V/rad/sec) 0.0002 B (N.M.s) 1.8 A (m2) 

  0.0337 𝐽s (Kg-m2) 78 I (A) 1.25 𝜌 (𝑘𝑔/m2) 

  0.12 R (Ω) 0∼48 V (volt) 0.3 Cd 

 

 

4. INTELLIGENT SWARMS 
 

Intelligent swarms, refer to systems composed of multiple 

autonomous agents that can interact and collaborate with each 

other to accomplish complex tasks. These swarms are often 

inspired by the collective behavior observed in natural systems 

such as ant colonies, bird flocks, and bee hives. Intelligent 

swarms typically consist of a large number of simple 

individual agents that follow local rules and communicate with 

their neighbors. Through these local interactions and 

communication, they exhibit emergent behavior, which leads 

to complex and intelligent global behavior of the entire swarm, 

make decisions based on local information, and coordinate 

their actions with other agents to achieve specific goals [20]. 

These swarms can be applied in various domains, including 

robotics, artificial intelligence, optimization, and logistics. 

Intelligent swarms have the advantage of being robust, 

scalable, and adaptable. Even if individual agents fail or are 

removed from the swarm, the overall system can continue to 

function. Additionally, these swarms can exhibit emergent 

properties and self-organization, allowing them to adapt to 

changing environments and tasks [21]. 

However, there are also challenges associated with 

intelligent swarms, including coordination, communication, 

scalability, and ensuring the swarm’s behavior aligns with 

desired objectives. Research in this field continues to advance 

our understanding of swarm intelligence and develop practical 

applications for these systems. 

 

4.1 Grey wolf optimization (GWO) 

 

In 2014, Mirjalili et al. [22] developed the Grey Wolf 

Optimizer (GWO) by modelling the hierarchy and hunting 

organization of the Grey Wolf. Aims to enhance efficiency in 

controller design, addressing the need for a more optimized 

approach, leveraging the insights from grey wolf behavior for 

optimization strategies. The strategy utilized exemplifies grey 

wolf communities’ hierarchical social structure and 

cooperative hunting behavior. As can be seen in Figure 5, 

members of the grey wolf order imitate their prey in a variety 

of distinct ways. The person in charge of leading the group and 

making decisions is the Alpha (α). Alpha (α) is responsible for 

making decisions regarding where to sleep, when to wake up, 

and when to go hunting. Beta (β) represents the position at the 

second level of the hierarchy. The Beta (β) wolf assists the 

Alpha (α) wolf in making decisions regarding various tasks, 

including hunting. The ranking that comes after Alphas (α) and 

Betas (β) is called Omega (ω), and it is the lowest possible 

ranking. The alpha, beta, gamma, omega, and zeta wolves all 

defer to the ruling pack. The Delta (δ) is a subordinate wolf 

that does not belong in the same pack as the Alpha (α), Beta 

(β), or Omega (ω). The exploration phase of grey wolf 

optimization begins with the random production of the 

population of wolves (the solutions). During the hunting phase, 

called the optimization phase, these wolves use an iterative 

process to determine where the prey is located (the optimal 

spot) [23]. The social structure of grey wolves is seen in Figure 

5. 

 

 
 

Figure 5. Grey wolf hierarchy [24] 

 

The general mathematical model of the movement of 

wolves towards their prey is formulated as follows: 

 

𝐶𝑤𝑜 = 2 × r  (23) 

 

𝐴𝑤𝑜 = (2 × 𝑎𝑤𝑜 × r)– a  (24) 

 

𝐷𝑤𝑜 = |𝐶𝑤𝑜 × 𝑊wop(t) − 𝑊wo(t)|  (25) 

 

𝑊𝑤𝑜(𝑡 + 1) = 𝑊𝑤𝑜𝑝(𝑡) − (𝐴𝑤𝑜 × 𝐷𝑤𝑜)  (26) 

 

where, 𝑎𝑤𝑜 is a coefficient, whose value goes from 2 to 0 in a 

straight line with each repetition. 𝐶𝑤𝑜 , 𝐴𝑤𝑜 , and 𝐷𝑤𝑜  are 

called factors, and Eq. (23), Eq. (24), and Eq. (25) show how 

to figure out their values. Respectively, r is a random value 

produced between (0, 1). t stands for the step in the process 

that is happening right now. 𝑊wop is the position of the food, 

and 𝑊𝑤𝑜 is the position of the wolf. The first three types of 

wolves (α, β and δ) help guide the hunting process. Because of 

this, all wolves should change their position and movement 

based on what these three types of wolves tell them. The 

mathematical model of hunting can be shown in the following 

way. 
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The behavior of individual wolves in relation to the alphas 

is described as: 

 

𝐷𝑤𝑜α = |𝐶𝑤𝑜1 × 𝑊woα − 𝑊wo(t)| (27) 

 

𝑊𝑤𝑜1 = 𝑊𝑤𝑜α − (𝐴𝑤𝑜1 × 𝐷𝑤𝑜α) (28) 

 
The behavior of individual wolves in relation to the betas is 

described as: 

 

𝐷𝑤𝑜β = |𝐶𝑤𝑜2 × 𝑊woβ − 𝑊wo(t)| (29) 

 

𝑊𝑤𝑜2 = 𝑊𝑤𝑜β − (𝐴𝑤𝑜2 × 𝐷𝑤𝑜β) (30) 

 

The behavior of individual wolves in relation to the deltas 

is described as: 

 

𝐷𝑤𝑜δ = |𝐶𝑤𝑜3 × 𝑊woδ − 𝑊wo(t)| (31) 

 

𝑊𝑤𝑜3 = 𝑊𝑤𝑜δ − (𝐴𝑤𝑜3 × 𝐷𝑤𝑜δ) (32) 

 

The changed status of each wolf: 

 

𝑊𝑤𝑜𝑛𝑒𝑤(𝑡 + 1) =
𝑊𝑤𝑜1+𝑊𝑤𝑜2+𝑊𝑤𝑜3

3
  (33) 

 

The optimal solution discovered by the Alpha, Beta, and 

Delta variables is denoted as 𝑊𝑤𝑜α , 𝑊𝑤𝑜β , and 𝑊𝑤𝑜δ , 

respectively. Empirical evidence suggests that the GWO has 

demonstrated efficacy in the optimization of controller 

parameters in various scholarly works, including those 

pertaining to the PI, PID, and FOPID controllers [25]. 

 

4.2 Particle swarm optimization (PSO) 

 

The PSO process gets the best values for determining the 

P.I. controller. Possible answers include particles, which stand 

in for the code for fish in schools of fish or flocks of birds. 

These particles are made randomly and are propelled through 

multidimensional space. Particles update their positions and 

velocities throughout the flight based on the collective 

residents’ knowledge. The approach for renewing will direct 

the swarm of particles to move in the direction of a state with 

a higher fitness value. The best fitness value point is where all 

the particles are finally gathered. The PSO procedure 

flowchart is shown in Figure 6 [26]. 

Drawing from the equations presented, it can be inferred 

that the particles undergo a process of renewal [27]: 

 

𝑣(𝑘 + 1)𝑖.𝑗 = 𝑤. 𝑣(𝑘)𝑖.𝑗 + 𝑐1𝑟1(𝑔𝑏𝑒𝑠𝑡 − 𝑥(𝑘)𝑖.𝑗) +

𝑐2𝑟2(𝑝𝑏𝑒𝑠𝑡 𝑗 − 𝑥(𝑘)𝑖.𝑗)  

𝑥(𝑘 + 1)𝑖.𝑗 = 𝑥(𝑘)𝑖.𝑗 + 𝑣(𝑘)𝑖.𝑗 

 

In 𝑔𝑏𝑒𝑠𝑡  Mode, the search trajectory for each particle is 

affected by the best point reached using any one of the 

residents. Every other particle tends to gravitate towards the 

best one because of how well it performs. In the end, every 

particle will end up where it belongs. The 𝑝𝑏𝑒𝑠𝑡  the option 

allows for everyone to be impacted by a select group of very 

near residents. Compared to other optimization methods, such 

as genetic algorithms, PSO algorithms have the advantages of 

being straightforward in concept, adaptable in implementation, 

producing high-quality results in less time, and exhibiting 

consistent convergence characteristics [28]. 

 
 

Figure 6. PSO procedure flowchart 

 

 

5. DISCUSSION OF RESULTS AND SIMULATION 

 

The present study employed PSO and GWO algorithms to 

fine-tune the parameters of PID and FOPID controllers, 

respectively, in order to achieve an optimal response while 

minimizing tracking errors. In order to effectively execute the 

PSO and GWO algorithms, it is imperative to establish a clear 

definition of the cost function. The present study employed an 

ITAE cost function, which can be mathematically expressed 

as follows: 

 

ITAE=∫ 𝑡|𝑒(𝑡)| 𝑑𝑡
𝑇

0
 

 

In this context, the term “Error” denotes the variance 

between the desired and factual speed of the electric vehicle. 

The Simulink diagram depicted in Figure 7 illustrates the 

implementation of the proportional-integral-derivative (PID) 

controller on the electric vehicle (EV) model. 

In Figure 8 evidently, the maximal velocity underwent a 

significant reduction and the recorded measurement 

approached the anticipated speed, albeit with a protracted 

period of ascension to attain the coveted value. Table 3 

portrays the acquired outcomes of the conventional PID 

optimization, along with the optimal values attained for the 

controller. 

 

 
 

Figure 7. Simulation model of the EV speed control 
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Figure 8. Output of the simulated EV using conventional 

PID controller (pu: per unit) 

 

Table 3. Results of the conventional PID optimization 

 

Method 
Optimum 

Gain Values 

M.P. 

(%) 
𝑻𝒔 (𝒔𝒆𝒄) 𝑻𝒓 (𝒔𝒆𝒄) 

Steady-

State 

Error 

Conventional 

PID 

𝐾𝑝 = 4.34 

𝐾𝑖 =43.0663 

𝐾𝑑

= −0.00295 

7.67 0.582 0.158 0 

 

Table 4. The PSO variables 

 
Values Variable Name 

0.4 Inertia 

100 Number of iterations 

20 Number of particles 

2 Cognitive component c1 

2 Cognitive component c2 

Lower=0.1 

Upper=300 
𝐾𝑝, 𝐾𝑖  𝑎𝑛𝑑 𝐾𝑑 bounds 

 

PID 

Lower=0.1 

Upper=300 
𝐾𝑝,  𝐾𝑖  𝑎𝑛𝑑 𝐾𝑑 bounds 

 

FOPID Lower=0.1 

Upper=1 
𝜆, 𝑎𝑛𝑑 𝜇 bounds 

 

The PSO algorithm is utilized to train a PID controller by 

adjusting its physical parameters in MATLAB. This involves 

modifying the m file in conjunction with the Simulink model, 

as shown in Figure 9. Through iterative experimentation and 

analysis of the results presented in Table 4, the aim is to 

improve the system’s performance by finding optimal values 

for the PID controller’s 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 , which were 

determined to be 12.187, 130.766, and 0.0633, respectively. 

The results indicate significant settling time, rise time and 

overshoot improvements compared to the classical PID 

response. 

Additionally, the FOPID controller algorithm is employed 

for parameter tuning. The optimal values for the FOPID 

controller’s parameters (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, λ, and μ) are determined 

to be 112.41, 296.103, 0.6151, 0.9501, and 0.9570, respectively. 

The step responses of the EV speed, governed by the PSO-PID 

and PSO-FOPID controllers, are depicted in Figure 9 and 

Figure 10. The outcomes of the optimization process are 

tabulated in Table 5. 

Upon juxtaposing the system responses, it is evident that the 

simulation outcomes evince a noteworthy advancement in the 

system response efficacy by utilizing the FOPID controller. 

This is evidenced by the improvement of all parameters in the 

system, thereby attesting to the superior performance of the 

proposed FOPID controller over the PID controller that 

employs the PSO algorithm. 

In the process of training the PID controller via the GWO 

algorithm, the selection of GWO variables was determined 

through a series of iterative experiments. The objective of 

these experiments was to optimize system performance, as 

evidenced by the data presented in Table 6. 

 

 
 

Figure 9. Step responses of the EV  

using PSO-PID controllers 

 

 
 

Figure 10. Step responses of the EV  

using PSO-FOPID controllers 

 

Table 5. Comparison between the proposed PID and  

the FOPID controllers’ results using the PSO algorithm 

 

Method 
Optimum Gain 

Values 

M.P. 

(%) 
𝑻𝒔 (sec) 𝑻𝒓 (𝐬𝐞𝐜) 

Steady-State 

Error 

 

PSO-PID 

𝐾𝑝 = 12.187 

𝐾𝑖 =130.766 

𝐾𝑑 = 0.0633 

1.531 0.076 0.0539 0.0000513 

PSO-

FOPID 

𝐾𝑝 = 112.41 

𝐾𝑖 = 296.103 

𝐾𝑑 = 0.6151 

𝜆=0.9501 

𝜇=0.9570 

0.505 0.00955 0.00846 0.000365 

 

The GWO algorithm trains a PID controller by adjusting its 

physical parameters, as shown in Figure 7. Through repeated 

experimentation and analysis of the results presented in Table 

6, the goal is to improve system performance by finding 

optimal values for the PID controller 𝐾𝑝, 𝐾𝑖 , and 𝐾𝑑 , which 

are determined to be 17.132, 82.054, and 0.520, respectively. 

The results indicate a significant improvement in settling time, 

rise time and overshoot compared to the conventional PID 

response. 

In addition, a FOPID control algorithm is used to adjust the 

parameters. The optimal values for the parameters of the 

FOPID controller (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, λ, and μ) were determined to be 

25.982, 178.78, 4.7037, 0.9064, and 0.2758, respectively. The 

step responses to the EV velocity, governed by the GWO-PID 
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and GWO-FOPID controllers, are depicted in Figure 11 and 

Figure 12. The results of the improvement process are 

tabulated in Table 7. 

 

Table 6. The GWO variables 

 
Values Variable Name 

100 No. of iteration 

9 Population size (N) 

20 Sample size 

0.7 Evaporate rate 

2 Scaling rate 

Lower=0.1 

Upper=300 
𝐾𝑝,  𝐾𝑖  𝑎𝑛𝑑 𝐾𝑑 bounds 

 

PID 

Lower=0.1 

Upper=300 
𝐾𝑝,  𝐾𝑖  𝑎𝑛𝑑 𝐾𝑑 bounds 

 

FOPID Lower=0.1 

Upper=1 
𝜆, 𝑎𝑛𝑑 𝜇 bounds 

 

 
 

Figure 11. Step responses of the EV using GWO-PID 

controllers 

 

 
 

Figure 12. Step responses of the EV using GWO-FOPID 

controllers 

 

Table 7. Comparison between the proposed PID and the 

FOPID controllers’ results using the GWO algorithm 

 

Method 
Optimum Gain 

Values 

M.P. 

(%) 
𝑻𝒔 (sec) 𝑻𝒓 (𝐬𝐞𝐜) 

Steady-

State Error 

GWO-

PID 

𝐾𝑝 = 17.132 

𝐾𝑖 =82.054 

𝐾𝑑 = 0.520 

0.505 0.548 0.144 0.00065 

GWO-

FOPID 

𝐾𝑝 = 25.982 

𝐾𝑖 = 178.78 

𝐾𝑑 = 4.7037 

𝜆=0.9064 

𝜇=0.2758 

0.257 0.0438 0.0235 0.00025 

 

When comparing the system responses, it is clear that the 

simulation results show a significant progression in the 

effectiveness of the system response through the use of the 

FOPID controller. This is evidenced by the optimization of all 

parameters in the system and thus attests to the superior 

performance of the proposed FOPID controller over the PID 

controller using the GWO algorithm. It is evident through the 

comparison as in Table 7 that the FOPID-GWO control unit is 

superior to the FOPID-PSO control unit in terms of Steady-

state error and overshoot. 

 

 

6. CONCLUSION 

 

The research aimed to optimize the FOPID controller for 

EVs speed control utilizing the GWO and PSO algorithms. 

The primary objective was to minimize the ITAE objective 

function, a metric assessing the controller’s ability to 

accurately track the desired speed while minimizing error 

accumulation over time. Various performance metrics, 

including transient response, frequency response, settling time, 

rising time, and ITAE, were meticulously analyzed to gauge 

the effectiveness of the proposed GWO-FOPID controller in 

comparison to other controllers such as GWO-PID, PSO-PID, 

and PSO-FOPID. 

The results unequivocally demonstrated the superiority of 

the GWO-FOPID controller over its counterparts. This finding 

holds significant implications for the design of electric 

vehicles, suggesting that employing the GWO-FOPID 

controller could substantially enhance the precision and 

efficiency of speed regulation in EVs. Beyond the realm of 

electric vehicles, these results also contribute valuable insights 

to the broader field of control systems, emphasizing the 

potential of intelligent optimization algorithms in refining 

controller performance across various applications. 

In terms of future research directions, a more targeted 

approach could involve exploring specific aspects of the 

controller that could be further improved. For instance, 

investigating methods to enhance the controller’s adaptability 

to varying driving conditions or evaluating its robustness 

against unexpected disturbances could be valuable areas of 

focus. Additionally, delving into advanced algorithms or 

hybrid approaches that combine the strengths of different 

optimization techniques might lead to even more optimized 

controllers. 

Acknowledging the limitations of the study is crucial for a 

comprehensive understanding. For instance, the study might 

have specific constraints related to the chosen optimization 

algorithms or the complexity of the EV model. Addressing 

these limitations in future research endeavors could provide a 

more nuanced perspective on the proposed controller’s 

applicability and potential areas of refinement. By taking these 

factors into account, future studies can build upon these 

findings to develop even more sophisticated and effective 

control systems for electric vehicles and related applications. 
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NOMENCLATURE 

 

Rs stator resistance [Ω]  

∅ rotor magnetic flux [Weber]  

Lq, Ld quadrature and direct axis inductance [H]  

P number of pole pairs 

Iq, Id quadrature and direct axis currents [A]  

p derivative concerning time 

Eb back emf [V] 

Te electromagnetic torque [Nm]  

T load torque [Nm] 

B friction coefficient  

J moment of inertia [Kg/m2]  

Kt torque constant 

We angular rotation [rad/sec]  

λd, λq flux linkages [weber] 

λaf mutual flux between magnet and stator 

Xt Position of particle 

Vt Velocity of particle 

pbest Best position of a single particle 

gbest Best position of all particles 

w Inertial weight factor 

C2, C1 Acceleration coefficients 
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