
Elevated Temperature Effects on Geo-Polymer Concrete: An Experimental and Numerical-

Review Study 

Firas Abed Turkey1* , Salmia B.T. Beddu1 , Suhair Kadhim Al-Hubboubi2 , Nada Mahdi Fawzi3

1 Department of Civil Engineering, Universiti Tenaga Nasional (UNITEN), kuala lumpur 40673, Malaysia 
2 Construction Department, Building Research Directorate, Baghdad 10070, Iraq 
3 Department of Civil Engineering, Baghdad University, Baghdad 10071, Iraq 

Corresponding Author Email: PE20917@student.uniten.edu.my

https://doi.org/10.18280/acsm.470507 ABSTRACT 

Received: 2 August 2023 

Revised: 9 September 2023 

Accepted: 20 September 2023 

Available online: 31 October 2023 

The manufacture of cement plays a substantial role in the emission of carbon dioxide 

(CO2) into the atmosphere, hence exacerbating the adverse impacts of global warming. 

Consequently, the emergence of Geo-Polymer concrete has presented itself as a 

potentially feasible substitute owing to its commendable environmental sustainability. 

This manuscript provides a comprehensive analysis of prominent studies investigating 

the effects of increased temperatures and fire exposure on concrete across its entire 

operating duration. This study examines the significant impacts on the fundamental 

physical and mechanical characteristics of concrete, as revealed by laboratory 

experiments. Furthermore, this review comprehensively examines previous research 

endeavors that have used machine learning methodologies to predict tangible actions, 

aiming to optimize resource allocation, time efficiency, and cost-effectiveness in 

laboratory inquiries. Geo-Polymer concretes have exhibited remarkable resistance to 

elevated temperatures and severe fires, as evidenced by laboratory and field assessments 

of cracking, spalling, and strength degradation. Prior studies have demonstrated that both 

the aggregate type and temperature have a substantial impact on the degradation of 

compressive strength. Moreover, previous research has indicated that Geo-Polymeric 

concrete, which is comprised of fly ash, exhibits superior heat resistance compared to 

conventional concrete using Portland cement, withstanding temperatures of up to 400 

degrees Celsius. This research also highlights the widespread adoption of the Artificial 

Neural Network (ANN) technique in forecasting the compressive strength of 

conventional concrete. Conversely, alternative approaches such as the Genetic Weighted 

Pyramid Operation Tree (GWPOT) are preferred for high-performance concrete. The 

primary objective of this extensive investigation is to establish a fundamental basis for 

future studies on sustainable alternatives to concrete and approaches for predictive 

modeling. 
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1. INTRODUCTION

Concrete is an essential material in construction due to its 

affordability, durability, accessibility of raw materials, and 

versatility in size and shape [1, 2]. However, the production of 

cement, a key component of concrete, is a significant 

contributor to CO2 emissions, causing a substantial increase in 

global greenhouse gas levels [3]. Regular Portland cement, 

commonly used in civil engineering projects, releases a 

significant amount of CO2 [4]. In fact, concrete is responsible 

for approximately 7% of atmospheric carbon dioxide 

emissions [5], exacerbating the issue of greenhouse gas 

accumulation. Consumption-based emissions frameworks 

hold consumers accountable for their carbon dioxide 

emissions [6]. Fortunately, there are various measures 

available to mitigate carbon dioxide emissions, and several 

indicators can be used to assess their effectiveness. The 

Carbon Monitor near-real-time CO2 emission dataset reveals 

an 8.8% reduction in global CO2 emissions from January 1 to 

June 30, 2020, compared to the same period in 2019. However, 

the dataset also indicates a subsequent increase in CO2 

emissions by late April, primarily attributed to the recovery of 

economic activity in China and the partial easing of 

restrictions in other countries. This daily-updated CO2 

emission dataset offers valuable opportunities for scientific 

research and policy development. It is projected that these 

emissions will contribute to 12% of the global CO2 emissions 

by 2020 [7]. The production of electric energy from gases and 

solids is a pressing global pollution issue, and addressing it 

necessitates significant efforts and funding. Hence, the 

concept of recycling these wastes in various industries, 

particularly the construction sector, offers promising prospects 

for pollution reduction and decreased reliance on natural 

resources. Fly ash, widely recognized as one of the most 

prevalent solid waste materials globally, presents a significant 

environmental concern, particularly regarding its disposal 

from thermal power plants [8]. In order to meet the 

requirements of low carbon emissions and environmental 

sustainability in the construction industry, it becomes 

imperative to explore viable alternatives for structures that 

consume fewer energy and resources [9]. 
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Based on the previously mentioned results, it has been 

determined that conventional concrete exerts a negative 

impact on the environment, including with regards to the 

emission of carbon dioxide and its contribution to the 

phenomenon of global warming. In this paper, reviewed 

alternatives to ordinary Portland cement, especially Geo-

Polymer concrete, and its environmental impact, in addition to 

the issue of concrete durability, as well as the effect of high 

temperatures and fires on the physical and mechanical 

properties of its type of concrete from both the laboratory and 

numerical sides. 

Davidovits introduced the term 'Geo-Polymer' in 1978 to 

describe a cementitious material possessing ceramic-like 

properties [10]. Geo-Polymers are considered sustainable 

cementitious binders [11] and can be produced from various 

precursors rich in alumina and silica. They are globally 

accessible, reactive, and cost-effective. The adoption of 

modern eco-friendly binders has grown significantly [12]. Due 

to their ceramic-like characteristics, Geo-Polymers exhibit 

excellent heat and fire resistance [13]. The process of Geo-

Polymerization requires 60% less energy compared to the 

synthesis of ordinary Portland cement (OPC) [14]. 

Furthermore, the reaction kinetics of Geo-Polymers occur at 

low temperatures and atmospheric pressure conditions. Since 

fly ash is already a byproduct, the production of fly ash-based 

Geo-Polymers does not require substantial energy inputs, 

unlike OPC. With the implementation of the Geo-Polymer 

technique, emissions have the potential to be reduced by up to 

80% [15]. Geo-Polymer represents the advancement of cement 

technology, classified as the third generation of cement [16]. 

Geo-Polymer concrete (GPC) serves as an environmentally 

friendly alternative to traditional cement. By 2050, significant 

reductions in gas emissions, particularly carbon dioxide, 

ranging from 50% to 80%, are anticipated [17]. Geo-Polymers 

undergo a reactive process that results in the formation of 

synthetic alkali alumina silicate, commonly, Geo-Polymers 

are produced using materials such as meta-kaolin, fly ash (FA), 

slag, or rice husk ash [18].  

Wu and Sun [19] employed silica-alumina resources such 

as fly ash (FA) and meta-kaolin (MK) to activate a gel 

formation using an alkali activator solution consisting of 

Na2SiO3 and NaOH. In 2011, David Easton invented Geo-

Polymer concrete through the utilization of burnt watershed 

resources. Poly-condensed alumina is derived from various 

sources including fly ash, red mud, rice husk ashes, silica fume, 

and palm oil fuel ashes. Silica exhibits polymer-like behavior 

below 100℃. Chemical reactions between alumina-silicate 

oxides and alkali poly-silicates lead to the formation of 

polymeric Si-O-Al linkages, resulting in three-dimensional 

silica-aluminates that can be amorphous or semi-crystalline. In 

1991, Davidovits described three fundamental forms: a-Poly 

(Sialite) (-Si-O-Al-O-), b-Poly (Sialate-Siloxo) (-Si-O-Al-O-

Si-O-), and c-Poly (Sialate-Disiloxo) (-Si-O-Al-O-Si-O-Si-

O-). Construction composites must possess high-temperature 

strength endurance to meet the demands of the construction 

industry. Reinforced concrete (RC) buildings are prone to fire 

damage throughout their lifespans. The molecular structures 

of concrete are only stable within specific temperature ranges, 

and their stability can fluctuate with temperature variations. 

Factors such as temperature, exposure time, and heating rates 

can lead to changes in the molecular structure and degradation 

of concrete. Consequently, concrete experiences a loss of 

strength under severe temperature conditions [20]. This loss of 

strength can result in the development of cracks in concrete 

structures, making them porous and increasing the risk of 

corrosion, rendering them unusable [21]. The reduction in 

concrete stiffness and mechanical properties is attributed to the 

strength loss and dihydroxylation of Ca(OH)2 that occurs 

between 400 and 500℃, leading to significant crack formation. 

The gradient of ordinary Portland cement (OPC) thermal 

concrete makes it perform poorly at high temperatures. Geo-

Polymer concrete has garnered significant attention for its 

remarkable thermal, fire, and spalling resistance at high 

temperatures. The inorganic structure of Geo-Polymers is 

fortunately thermally stable and fire resistant, with only a 

minimal loss of the gel structure observed up to 700-800℃ 

[22]. Compared to composites based on ordinary Portland 

cement (OPC), Geo-Polymers exhibit slower dehydration. 

They maintain their chemical stability even at elevated 

temperatures [23]. In OPC-cement concrete, the concrete 

matrix undergoes dehydration of Calcium-Silica-Hydrate (C-

S-H) at 105℃. Figure 1 illustrates the primary advantages of 

Geo-Polymer concrete. An exemplary benefit is the reduction 

in the demand for natural raw materials, such as clay and 

limestone, which are traditionally used in the cement industry. 

Instead, waste materials harmful to the environment can be 

utilized in the production of Geo-Polymer concrete, thereby 

minimizing their impact and preserving nature. 

 

 
 

Figure 1. The main benefits of Geo-Polymer concrete 
 

 

2. GEO-POLYMER CONCRETE (GPC) 

 

Geo-Polymer represents the third type of binder, following 

Portland cement and lime. In 1978, Daidovits coined the term 

'Geo-Polymer' to describe materials composed of chains or 

networks of inorganic molecules. Concrete made with Geo-

Polymer cement is produced utilizing waste materials such as 

fly ash, ground granulated blast furnace slag (GGBS), among 

others. These 'Geo-Polymers' are amorphous alkali alumina-

silicates. Despite the name, these substances share similar 

chemistry [24]. Alumina-silicate minerals such as kaolinite, 

feldspar, fly ash, metallurgical slag, and mining refuse are 

employed in the production of Geo-Polymers. The reactions of 

these alumina-silicate materials are influenced by their 

mineralogy, glassy phase composition, and fineness. In 

traditional Geo-Polymer systems, alkali activators such as 

NaOH, KOH, Na2SiO3, and KOH (K2SiO3) are utilized. KOH 

exhibits higher alkalinity compared to NaOH, while NaOH 

facilitates the dissolution of silicate and aluminate monomers 

in alumina-silicate precursors [24]. The characteristics of Geo-

Polymers can be enhanced for specific purposes through the 

selection of raw components, upgrading processes, and 

refining techniques. The growing interest in Geo-Polymer 

concrete is evident from the abundance of research and studies 

exploring various scientific aspects, as well as the mechanical 

and durability effects of concrete the table below presents titles 

of recent research and studies that provide valuable insights 
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for researchers engaged in the investigation and application of 

Geo-Polymer concrete. Table 1 below showcases Geo-

Polymer concrete research conducted between 2021 and 2022. 

As mentioned earlier, Geo-Polymer concrete comprises two 

primary components: the alumina-silica source and the alkali 

activator solution. These materials react to form the binder 

material for the Geo-Polymeric paste, which binds the 

aggregate granules, both fine and coarse, to create Geo-

Polymer concrete. The following section provides an 

explanation of the commonly used materials in the production 

of Geo-Polymer concrete, serving as sources of alumina-silica, 

along with the alkali activator solution.

 

Table 1. Some research on Geo-Polymer concrete for the years, 2021 and 2022 

 
Source Year Title 

[25] 2021 A scientometric review of Geo-Polymer concrete 

[26] 2022 Ultra-high-performance Geo-Polymer concrete: A review 

[27] 2022 Durability Performance of Geo-Polymer concrete: A Review 

[28] 2022 A Study on the Properties of Geo-Polymer concrete Modified with Nano Graphene Oxide 

[29] 2022 Geo-Polymer concrete as a cleaner construction material: An overview on materials and structural performances 

[30] 2022 The role of nanomaterials in Geo-Polymer concrete composites: A state-of-the-art review 

[31] 2022 Geo-Polymer concrete incorporating recycled aggregates: A comprehensive review 

[32] 2022 Production of Geo-Polymer concrete by utilizing volcanic pumice dust 

[33] 2022 Durability performance evaluation of green Geo-Polymer concrete 

[34] 2022 Review on the Relationship between Nano Modifications of Geo-Polymer Concrete and Their Structural Characteristics 

[35] 2022 Sustainability benefits and commercialization challenges and strategies of Geo-Polymer concrete: A review 

[36] 2022 Compressive strength prediction of fly ash-based Geo-Polymer concrete via advanced machine learning techniques 

[37] 2022 Effect of air agent on mechanical properties and microstructure of lightweight Geo-Polymer concrete under high temperature 

[38] 2022 Factors affecting production and properties of self-compacting Geo-Polymer concrete – A review 

[39] 2022 Analyzing the mechanical performance of fly ash-based Geo-Polymer concrete with different machine learning techniques 

[40] 2022 The roles of cenosphere in ultra-lightweight foamed Geo-Polymer concrete (UFGC) 

2.1 Alumina-silicate precursors 

 

Geo-Polymer paste consists mainly of precursors derived 

from alumina silicate. The polymer chains are formed through 

their reaction with the activated base solution. In the presence 

of a significant amorphous component, these materials will 

undergo decomposition and condensation, resulting in the 

formation of carrier inorganic polymers under alkaline 

circumstances. The chemistry of precursors has a significant 

impact on the process of Geo-Polymerization. Silicate and 

aluminate precursor particle size impacts monomer solubility. 

These reactions utilize the system's natural alkalinity Potent 

bases activate alumina-silicates. Several studies addressed this. 

GC can be polymerized from alumina-silicates like fly ash, 

slag, meta-kaolin, rice husk ash, and HCWA. Alkaline 

solutions activate Geo-Polymer-binding pozzolanic materials 

rich in SiO2 and alumina, Alumina-silicate availability impacts 

Geo-Polymer concrete quality. Fly ash dominates Geo-

Polymer concrete. Fly ash is Class F or C per ASTM C618-03 

[41, 42]. Class-C fly ashes have more CaO than Class-F. Ash's 

calcium, silica, alumina, and iron concentration distinguishes 

these classes. Geo-Polymer composites are made from 

alumina-silicate low-calcium fly ash [43, 44]. This section 

briefly reviews Geo-Polymer precursors: 

 

2.1.1 Fly ash (FA) 

Geo-Polymers can be produced using fly ash from coal 

power plants [45]. Fly ash, also known as 'pulverized fuel ash' 

or FA, is a byproduct of coal combustion that includes fine 

particles generated from power plant boilers and flue gases 

[46]. In typical concrete, FA is frequently used as a substitute 

for Portland cement [47]. In ordinary concrete, Portland 

cement is partially replaced with FA due to its pozzolanic 

reaction, which enhances mechanical properties and durability 

[48, 49]. 

 

2.1.2 Ground granulated blast slag (GGBS) 

GGBS, a byproduct of blast furnace in metal production, is 

utilized [50]. The molten slag consists of approximately 40% 

calcium oxide and 30% to 40% silicon dioxide [51]. To 

produce GGBS, the molten slag is rapidly quenched by water 

after being tapped off [52]. GGBS enhances porosity in 

conventional OPC concrete and improves resistance against 

alkali silica and sulfate reactions. Moreover, GGBS reduces 

hydration heat and enhances the long-term performance of 

OPC [53]. 

 

2.1.3 Meta-kaolin (MK) 

The optimal conversion of kaolin to meta-kaolin is typically 

achieved during the calcination process. Mehsas et al. [54] 

examined the results of calcining two types of kaolin used for 

meta-kaolin production. The target temperature (ranging from 

500 to 1000℃) and holding duration were varied to create 

different thermal cycles for the raw ground materials (2, 3, and 

5 hours). The investigations consistently demonstrated that 

calcination improved the pozzolanic reactivity of the materials, 

with the temperature of 800℃ and a holding duration of 5 

hours resulting in the highest level of pozzolanicity. This 

indicates the significant value of these materials as 

supplementary cementitious materials (SCMs) and their 

potential for use in environmentally friendly cement. 

 

2.1.4 Red mud (RM) 

Red mud (RM), a by-product of the Bayer process, is 

involved in the refinement of 55-65% of bauxite into alumina 

[55]. A typical alumina mill produces RM in quantities 1-2 

times greater than alumina. The red color of RM is attributed 

to its iron oxide content, which ranges from 30 to 60%. 

Additionally, RM exhibits alkalinity with a pH level ranging 

from 10 to 13 [56]. The annual usage of RM in OPC 

manufacturing amounts to 2-3 million tons. As mentioned 

earlier, RM solids contain toxic heavy metals, alumina, and 

primarily hematite, which is an iron oxide [57]. 

 

2.1.5 Rice husk ash (RHA) 

Milling rice necessitates the application of heat in order to 

boil it. In most rice mills, heat energy is obtained from a boiler. 

The boiler directly combusts or gasifies rice husks (hulls), 
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which are generated during the milling process, to produce 

energy [58, 59]. Rice husk ash (RHA), an inorganic waste, 

contains highly reactive silica. The properties of RHA can be 

influenced by the burning temperature and holding time [60]. 

Higher temperatures result in the production of more 

crystalline silica and less unburned carbon in the RHA [61]. 

 

2.1.6 Glass powder (GP) 

Glass powder serves as another precursor for Geo-Polymers. 

Geo-Polymers can be produced using glass powder. 

Sustainable roof tiles utilize glass polishing powder. 

Additional research indicates that Geo-Polymers can be 

created using glass powder and other precursors. One 

advantage of incorporating crushed glass in concrete is its 

minimal water absorption, rendering it an exceptionally 

durable material [62]. 

 

2.1.7 Palm oil fuel ash (POFA) 

Palm oil is widely used in kitchens [63]. The production of 

palm oil serves as a significant economic driver in Malaysia 

and Thailand. In addition to crude palm oil, substantial 

quantities of kernels, fibers, and dried fruit bunches are 

generated. Approximately four kilograms of dry biomass are 

required to produce one kilogram of palm oil [64]. These 

byproducts are burned in boilers at palm oil factories to reduce 

the energy demand. The waste product known as Palm Oil 

Fuel Ash (POFA) contains 5% fiber and ash from shells, this 

type of ash is described in the literature [65-67]. 

 

2.1.8 Silica-Fume (SF) 

Silica-Fume (SF), similar to FA, is used as a partial 

replacement for Portland cement in concrete [68]. SF is 

produced from a ferrosilicon alloy with silicon metal. 

According to Amran et al. [69], the silica in pozzolana 

reinforces the portlandite formed during OPC hydration. The 

interaction of SF provides a binder that enhances the strength, 

impermeability, and durability of concrete [70]. Silica Fume 

Geo-Polymers contribute to increased compressive strength. 

Silica fume-based Geo-Polymers enable the production of 

environmentally friendly high-strength or ultra-high-

performance concrete [71]. 

SF can be utilized in the construction of concrete without 

the need for cement. It also offers a sustainable solution for 

disposing of silica fume [72]. Table 2 provides a list of typical 

product materials [72-74]. Figures 2, 3, 4, and 5 depict the 

scanning electron microscopy (SEM) images of fly ash, glass 

powder, GGBS, and Red Mud particles, respectively. Table 3 

showed FA, SF, GGBS, RHA, and GP chemical composition. 

 

Table 2. Typical properties of by product materials 

 
Property/Element FA RHA GGBS SFA POFA 

Fineness (m2/kg) 450 ~450m2/kg 350 to 550 15,000 to 35,000 4900e5200cm2/g 

Bulk density (kg/m3) 1300 96e160kg/m3 1200 1350e1510 2.40e2.50g/cm3 

Specific gravity 2.2 2.11 2.9 2.2 2.14 

 
 

Figure 2. (SEM)-Fly ash particles [72] 

 

 

 

Figure 3. (SEM) -Glass powder particles [72] 

 
 

Figure 4. (SEM)-GGBS particles [73] 

 

 
 

Figure 5. (SEM)-Red mud particles [74] 
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Figure 6. Raw material XRD patterns. mullite, quartz-FA, 

and GP [72] 

 
 

Figure 7. FA and GP particle distribution [72] 

 

Table 3. FA, SF, GGBS, RHA, and GP chemical composition 

 
Precursor Oxide Source 

 SiO2 Al2O3 Fe2O3 CaO Na2O K2O SO3 MgO TiO2 LOI  

FA 61.86 - - - - - 0.28 0.86 - 0.83 [75] 

 63.13 24.58 3.07 2.58 0.71 2.01 0.18 0.61 0.96 1.45 [76] 

 66.56 22.47 3.54 1.64 0.58 1.75 0.1 0.65 0.88 1.66 [77] 

 64.97 26.64 5.69 0.33 0.49 0.25 0.33 0.85 - 0.45 [78] 

SF 92.39 1.41 0.15 0.54 - 0.85 - - - 2.59 [79] 

 94 1.2 1.6 0.95 0.7 1.2 - 1.8 - 3.5 [80] 

 93.67 0.83 1.3 0.31 0.4 1.1 0.16 0.84 - 2.1 [81] 

 

RHA 96.23 0.281 1.36 0.57 0.05 0.45 0.2 0.27 - - [82] 

 93.46 0.58 0.52 1.03 0.08 - 0.6 0.51 - 7.76 [83] 

 89.17 - 0.41 0.61 7.29 1.12 - 1.22 0.03 0.15 [84] 

 89.47 0.83 0.53 0.68 0.22 0.17 0.12 0.37 - 7.61 [85] 

GGBS 35.8 13.21 1.97 35.68 0.48 0.57 0.21 9.76 - 2.32 [85] 

 32.9 - 0.7 41.3 0.45 - 0.21 5.9 - 2.1 [75] 

 34.51 10.3 0.6 42.84 0.4 0.52 1.95 7.41 0.67 0.45 [86] 

 33.54 1.17 12.52 37.93 - - 2.51 9.29 0.95 1.25 [87] 

GP 71.20 1.71 0.24 10.02 13.17 0.19 0.25 3.01 0.07 - [88] 

 70.01 1.8 0.45 10.15 12.95 0.45 0.25 2.75 - - [89] 

 71.19 2.81 - 10.26 14.31 0.52 0.07 0.9 0.11 - [90] 

 72.38 1.49 0.29 11.26 13.52 0.27 0.07 0.54 0.04 - [91] 

Figure 6 shows the XRD traces of mullite, quartz-fly ash, 

and glass powder. Most of the trial setting is made up of 

amorphous glass powder. X-ray diffraction research was used 

to figure out what glass powder and fly ash were made of. SiO2 

contains quartz. Figure 7 shows the particle distribution (PD) 

of glass powder and fly ash that are used in commercial goods. 

 

2.2 Alkali-activator solution 

 

The alkali activator solution is typically composed of two 

main types: sodium or potassium silicate and hydroxide. These 

solutions interact with the silica-alumina present in the Geo-

Polymer source to form the binder. The strength of Geo-

Polymer concrete depends on the ratio of the binder to alkali 

during curing at either oven or room temperature [92]. The 

most commonly used alkaline solutions for Geo-

Polymerization are NaOH or KOH, along with Na2SiO3 [93]. 

Among these, NaOH solution is the most widely employed 

alkali hydroxide activator for Geo-Polymerization due to its 

availability and cost-effectiveness [94]. Figure 8 illustrates the 

main components of Geo-Polymer cement as follows:

 

 
 

Figure 8. Main compounds of Geo-Polymer cement 
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Thus, sodium silicate and hydroxide bring about two 

alterations in Geo-Polymeric concrete. Firstly, they affect the 

alkaline activator solution in terms of its molarity (NaOH) and 

weight ratio to the alumina-silica resource. Molarity 

concentration represents the percentage of a chemical in a 

solution. The optimal NaOH concentration for Geo-Polymer 

samples reached its peak value and gradually decreased as the 

NaOH concentration was further increased. Consequently, an 

ideal NaOH concentration resulted in increased compressive 

strength [95]. Eq. (1) below shows the Molarity 

 

𝑀 = 𝑀𝑂𝐹/LOS (1) 

 

where, M is Molarity, MOF is mole of solute, and LOS is liter 

of solution. 

The strengths mentioned above largely depend on changes 

in various parameters, such as the (Na2SiO3/NaOH) ratio and 

the molarity of the alkaline solution, while keeping the curing 

temperature constant at 80℃. Geo-Polymer concrete offers the 

advantage of rapid strength development, as its compressive 

strength can improve significantly within the first 24 hours, 

this enables faster construction processes [96]. 
 

 

3. HIGH TEMPERATURE IMPACT 

 

Concrete is frequently exposed to elevated temperatures due 

to fires or other extreme conditions, which can have a 

profound impact on its structural characteristics. The specific 

type of aggregate chosen, as well as the primary constituents 

of the concrete, are key factors that determine how it responds 

under such circumstances. In environments characterized by 

extremely high temperatures, the binder-alkali ratio becomes 

an indispensable factor in achieving the optimum performance 

of Geo-Polymer concrete (GPC) [96-98]. This ratio, given its 

dominant presence in both Geo-Polymer and conventional 

concrete compositions, exerts a substantial influence over the 

overall concrete properties and behavior. 

 

3.1 Compressive strength (CS) 

 

Numerous factors influence the compressive strength of 

Geo-Polymer concrete after exposure to high temperatures. 

Internal factors include the proportions of materials used in the 

concrete industry, such as the Geo-Polymeric paste created 

from aluminates-silicates, the alkaline activated solution, the 

molarity of sodium hydroxide, and the solution-to-source 

weight ratio as well as another internal factor is the type and 

quantity of aggregate used as mentioned above [72]. The 

following are key research studies investigating the effects of 

internal and external factors on Geo-Polymer concrete after 

exposure to high temperatures. A Geo-Polymer mortar, 

composed of two types of Class-F fly ash, was subjected to 

testing after exposure to temperatures of 800℃ [99, 100]. All 

specimens experienced a decrease in strength up to 300℃, 

with Si/Al ratios of 2.2, 1.9, and 1.7 exhibiting strength losses 

of 50%, 58%, and 63% at 900℃, respectively [101]. Palm oil 

and powdered fuel ashes demonstrated higher heat resistance 

compared to other alumina-silicate materials [102]. The 

combination was weakened between 200 and 800℃. The three 

Geo-Polymer concrete samples, consisting of 60% fly ash 

Class-F and an activator solution with NaOH concentration of 

12M, exhibited a moderate to significant improvement in 

strength between 200 and 400℃, but all samples were 

weakened at 800℃ [103]. The compressive strength of the 

GM specimens showed some improvement after 100℃ before 

declining between 300 and 700℃ [104]. Another study 

examined the performance of Geo-Polymer concrete 

containing Fly Ash Class-F and GGBS at temperatures of 200, 

400, 600, and 800℃. The compressive strength increased by 

40% at 200℃ [98]. Geo-Polymeric concrete, utilizing Fly Ash 

Class-C and Class-F paste, was tested up to 1200 degrees. At 

1200℃, Class-C exhibited a residual compressive strength of 

2.65%, while Class-F showed 0% residual compressive 

strength [105]. In Fly Ash-based Class-F Geo-Polymer 

concrete, utilizing an activator solution with NaOH 

concentration of 10M and typical particles, lower compressive 

strength was observed at 200, 400, 600, and 800℃ compared 

to ambient temperature [1 60 ]. Using a mixture of FA Class-F 

and GGBFS, along with a 10M NaOH solution, tests revealed 

a decrease in compressive strength with losses of 42.46%, 

66.60%, and 84.43% at temperatures of 300, 500, and 700℃, 

respectively [107]. Fly ash Class-F Geo-Polymer concrete was 

used to compare the residual strength after high temperatures 

under ambient and heated curing conditions. The Geo-

Polymer concrete (GPC) specimens retained 82.24%, 64.61%, 

55.78%, and 49.91% of their strength after exposure to 

temperatures of 400, 600, and 800℃, while ambient curing 

retained 133.29%, 118.15%, 81.79%, and 72.71% [108].  

 
3.2 Volume stability and mass loss 

 
The alteration in mass has a profound impact on the cross-

sectional morphology of materials when subjected to elevated 

temperatures. This thermal exposure induces the processes of 

dehydration and de-hydroxylation within the Geo-Polymer gel, 

resulting in a discernible loss of both mass and bulk density in 

the concrete. In their comprehensive study, Abdulkareem et al. 

[109] meticulously examined the behavior of hardened Geo-

Polymer materials under these conditions and identified three 

distinct forms of water trapped within the material that can 

escape during heating. Vapor pressure continues to rise above 

100℃, resulting in mass loss when water adsorbed to the 

binder's surface is removed between room temperature and 

100℃, and when pore water is eliminated between 100℃ and 

1000℃. The loss of water within the paste reduces the mass 

because Geo-Polymers act as solvents, containing more free 

water that is displaced at temperatures below 400℃ [110]. 

Low calcium fly ash, granite aggregate, and river sand all 

experience weight loss when heated to 800℃ [111]. In a 

previous study the mass weight of Fly Ash Class-C Geo-

Polymer paste was measured at various temperatures: 20℃, 

100℃, 300℃, 500℃, 800℃, 1000℃, and 1200℃, the 

average weight loss for Geo-Polymer concrete, containing 

combinations of fly ash and GGBS, at 800℃ heat exposure 

was 4.64%, and conducted an evaluation of the volume effects 

at high temperatures using waste glass as a fine aggregate 

substitute for sand in a mixed fly ash Class-F and GGBFS 

Geo-Polymer mortar. After exposure to 800℃, the mortar 

based on sand experienced expansion, leading to longitudinal 

and transverse fractures. Cement exhibits greater expansion 

than Geo-Polymer concrete at higher temperatures [112]. 

Additionally, the figures showcase the alterations in color 

observed in four distinct types of Lightweight Geo-Polymer 

concrete after being exposed to a range of temperatures, 

namely 35°C, 200°C, 400°C, 550°C, and 800°C, respectively.  
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Figure 9. The Cracks on the Surface of Geo-Polymer after 

exposed to 800℃ (Own source) 

 

Khan and Sarker [112] conducted an evaluation of the 

volume effects at high temperatures using waste glass as a fine 

aggregate substitute for sand in a mixed fly ash Class-F and 

GGBFS Geo-Polymer mortar. After exposure to 800℃, the 

mortar based on sand experienced expansion, leading to 

longitudinal and transverse fractures. Cement exhibits greater 

expansion than Geo-Polymer concrete at higher temperatures. 

Hussin et al. [113] discovered that Geo-Polymer concrete 

utilizing agro-industrial waste ashes exhibited greater stability 

compared to cement concrete within the temperature range of 

200-800℃. GPC demonstrates higher stability than OPC due 

to the melting of fly ash particles at 600℃. X-ray 

investigations comparing GPC to regular concrete at 700℃ 

revealed that OPC concrete experiences more spalling than 

GPC [114]. Geo-Polymers without calcium fly ash display 

significant volumetric strain at 600℃, with the most 

significant weight loss occurring at 300℃ [115]. Figure 9 

illustrates the surface of Geo-Polymer concrete after exposure 

to a temperature of 800℃. 

 

3.3 Chemical stability 

 

Lahoti et al. [116] investigated the chemical stability of the 

core mechanisms through microstructure studies and 

characterization methods before and after exposure to 

excessive temperatures. The findings of this study indicate that 

the binders subjected to high-temperature exposure exhibit 

chemical stability and form distinct crystal phases. 

 

3.4 Flexural behavior 

 

Mathew and Joseph [117] suggest that the strain 

compatibility approach can predict the curvature of GPC 

(Geo-Polymer concrete) beams at ambient atmospheric 

temperature, as well as OPC (Ordinary Portland Cement) 

reinforced concrete beams. However, stress compatibility 

underestimates the load curvature at the formation of initial 

cracks in GPC beams subjected to higher temperatures. The 

ductility of Geo-Polymerized beams reduces rapidly with 

increasing temperature. As the exposure temperature rises, the 

peak curvature of the Geo-Polymer concrete beam decreases. 

For instance, at 800℃, a Geo-Polymer concrete beam 

experienced a loss of 64% in flexibility. 

 

3.5 Color change 

 

After reaching a temperature of 500 degrees Celsius, Geo-

Polymer concrete undergoes a color transformation from gray 

to yellow and pink. Four types of lightweight Geo-Polymer 

concrete, namely Porcelanite aggregate (PA), Recycled Clay 

Bricks Aggregate (RBA), Lightweight Expanded Clay 

Aggregate (Leca), and Recycled Foam Concrete Aggregate 

(RFA), exhibited color changes after one hour of exposure to 

temperatures of 35, 200, 400, 550, and 800℃. In calcined fly 

ashes at 500 and 800℃, the crystallization of hematite results 

in the transformation of gray fly ash to a red-brown color, 

indicating increased crystallization [118]. The occurrence of 

hematite crystallization can cause fly ash to change from gray 

to red-brown. Figure 10 illustrates the color changes observed 

in the four types of lightweight Geo-Polymer concrete after 

exposure to temperatures of 35, 200, 400, 550, and 800℃. 

 

 
 

Figure 10. The color change in four types of lightweight 

Geo-Polymer concrete after exposed to (35, 200, 400, 550, 

800℃) (Own source) 

 

3.6 Water absorption 

 

High temperature significantly affects the density and water 

absorption of concrete. The average results from three 

lightweight Geo-Polymer concrete specimens revealed 

variations in density and water absorption under high 

temperature conditions. The elevated temperatures induce 

evaporation, fractures, and promote fungal growth, thereby 

accelerating water penetration into the concrete [119, 120]. 

 

3.7 Shrinkage and expansion 

 

Shrinkage occurs in concrete when moisture is lost. The 

extent of shrinkage shows little dependence on the applied 

load weight, as reported by Mane and Jadhav [121]. Geo-

Polymer specimens exhibit some expansion up to 100℃, 

which ceases around 200℃. However, a significant shrinkage 

is observed in the temperature range of 200-300 degrees 

Celsius. This thermal shrinkage leads to thermal 

incompatibility damage, which is the most prominent factor. 

Heating the Geo-Polymer results in shrinkage, and between 

300-500℃, both shrinkage and expansion come to a halt. The 

expansion of aggregates plays a role in the strain of the Geo-

Polymer/aggregate composite since aggregates contribute to 

75-80% of the concrete composition. At temperatures ranging 

from 220℃ to 320℃, aggregates undergo more expansion 

than the Geo-Polymer paste, leading to overall concrete 

expansion [122]. Table 4 displays the residual strengths 

obtained from the high-temperature study.
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Table 4. Previous studies on the effect of high temperatures, type and proportions of materials on compressive strength 

 

N. 
Alumina-Silicate 

Resource 
Type of Aggregate 

Temp. 

℃ 
M 

Activator/Ash 

Ratio 

Residual Comp. 

Strength % 
Ref. 

2 Fly ash class-F Types 
1- Basalt aggregates+River sand 

2- Granite aggregates+crushed sand 
500 14 0.35 

1- 66.65% 

2- 70.99 % 
[123] 

1 Fly ash class-C 

Paste 

Mortar (river sand) 

LWA (clay aggregate) (LECA) 

800 12 0.6 

0% 

47.7% 

61% 

[124] 

3 
Fly ash class F Types 

(A,B) 
River Sand 800 10 0.605 

A=41.86% 

B=28.83% 
[125] 

4 
Fly ash class F (Si/Al=2.2, 

1.9, and 1.7) 
None 900 - 0.32 50%, 58%. and 63% [126] 

5 
Fly Ash, palm oil fuel ash, 

and pulverized fuel ash 
Normal 800 14 0.4 84% [127] 

6 Fly ash class-F 

Basalt natural aggregates and non-

pelletized lightweight Fly Ash 

(Flash-Ag) aggregate 

800 12 0.6 55% [128] 

7 
Fly Ash class-C and 50% 

met kaolin 
River sand 700 15.8 0.45 66.8% [129] 

8 Fly ash class-F and GGBS River sand & Crushed granite 800 8 0.55 35% [130] 

9 Fly ash class-C and class-F None 1200 10 0.45 
Class-C=2.65% Class-

F=0% 
[131] 

 

3.8 Microstructure of Geo-Polymer concrete 

 

The morphology of Geo-Polymer concrete (GPC) is 

analyzed using field emission scanning electron microscopy 

(FESEM) to examine its microstructure [122]. The choice of 

precursors employed in the Geo-Polymerization process 

influences the microstructure of Geo-Polymers, as highlighted 

by Myers et al. [132]. The majority of the studies indicate the 

formation of cross-linked structures through Geo-

Polymerization according to the study the type of precursors 

used plays a significant role in the micro-structuring of Geo-

Polymers, with Geo-Polymerization resulting in the formation 

of cross-linked structures. Figure 11 illustrates different types 

of Geo-Polymer concrete after exposure to high temperatures 

of around 800℃.

 

 
 

Figure 11. Multi-types of Geo-Polymer concrete after exposed to 800℃ 

 

 

A- FA Class F (90%)-GP (10%) 

[133] 

C- FA Class C [133] 

B- FA Class F (40%)-GGBS (60%) [134] 

D- MK (40%)-GBBS (60%) [134] 
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4. NUMERICAL PREDICATED 

 

To mitigate the labor, time, and financial resources 

expended on laboratory testing aimed at understanding the 

characteristics of concrete under diverse external and internal 

factors, including temperature impacts, certain measures need 

to be implemented. In this section, a comprehensive evaluation 

is conducted on significant prior studies and research 

regarding the influence of temperature on mechanical 

properties, with a particular emphasis on investigations related 

to compressive strength using various methodologies. 

Machine learning, a computational approach that leverages 

experiential knowledge to enhance system performance, offers 

a diverse range of techniques. Compressive strength is 

commonly used as a metric to assess the effectiveness of 

concrete in structural applications, as it takes into account 

other qualities such as density and durability. By employing 

machine learning, the time and effort required for determining 

concrete strength can be reduced. Traditionally, compressive 

strength is assessed after a curing period of 28 days. However, 

utilizing the proposed Artificial Neural Network (ANN) model, 

which is inspired by the structural organization of the human 

brain, serves as a basis for machine learning models. The ANN 

system consists of interconnected nodes, known as neurons, 

arranged in layers. These nodes facilitate the flow of data, and 

the weights of connections are dynamically adjusted to acquire 

knowledge of patterns and provide predictions. By utilizing 

the ANN model, the results can be predicted in a shorter time 

frame [135, 136]. 

In recent studies, researchers have focused on utilizing 

machine learning (ML) algorithms to estimate the compressive 

strength of Geo-Polymer concrete (GPC). Dao et al. [137] 

conducted a study using Fly ash-based Geo-Polymer concrete 

(GPC) that incorporated fine and coarse aggregates made from 

scrap steel slag. They predicted the 28-day compressive 

strength of 210 specimens using Artificial Neural Network 

(ANN) neural network is a machine learning algorithm based 

on the model of a human neuron. The human brain consists of 

millions of neurons, and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) An adaptive neuro-fuzzy inference system or 

adaptive network-based fuzzy inference system (ANFIS) is a 

kind of artificial neural network that is based on Takagi-

Sugeno fuzzy inference system techniques, both models 

demonstrated a high level of accuracy as evaluated by various 

metrics. ANFIS showed superior performance with a 

correlation coefficient (R2) of 0.879, surpassing the correlation 

coefficient R2 of 0.851 achieved by ANN. Furthermore, the 

stability of each method was assessed over 100 iterations, and 

the findings confirmed the previous observation that ANFIS 

outperforms ANN. 

Conventional methods are disregarded in this investigation 

due to their inefficiency and slow performance. The 

publication employs widely used and reliable techniques to 

ensure accurate predictions. Kandiri et al. [138] utilized a 

modified Artificial Neural Network (ANN) to assess the 

compressive strength of recycled aggregates. By incorporating 

the Salp Swarm Algorithm (SSA) is a recent metaheuristic 

inspired by the swarming behavior of salps in oceans. SSA has 

demonstrated its efficiency in various applications since its 

proposal [139], Genetic Algorithm (GA) Genetic algorithm 

(GA) is a well-known algorithm, which is inspired from 

biological evolution process, and GA mimics the Darwinian 

theory of survival of fittest in nature [140], and Grasshopper 

Optimization Algorithm (GOA) is a recent swarm intelligence 

algorithm inspired by the foraging and swarming behavior of 

grasshoppers in nature [141], the ANN model's outputs were 

improved. Among the models, SSA-ANN demonstrated 

superior accuracy. Kaperkiewicz et al. [142] employed a 

fuzzy-ARTMAP network (A Neural Network Architecture for 

Incremental Supervised Learning of Analog Multidimensional 

Maps) to estimate compressive strength (CS) with limited 

information and input parameters. While predicting the 

compressive strength of high-performance concrete (HPC) 

remains challenging, reasonable precision can be achieved 

using models. Yeh [143, 144] advocated the use of machine 

learning in high-performance concretes and suggested that 

ANN can effectively predict HPC-CS. Tayfur et al. [145] 

studied the predictive ability of Fuzzy Logic (FL) and ANN 

for HPC-CS, reporting that ANN outperformed FL by 15% in 

terms of effectiveness. 

Among the different models, the Genetic Weighted Pyramid 

Operation Tree (GWPOT) The Global Weighted Prediction 

Operation Tree (GWPOT) model combines the Weighted 

Operation Structure (WOS) and Pyramid Operation Tree (POT) 

models in order to improve both prediction accuracy and 

alignment with empirical data. demonstrated the best 

performance in solving the problem of predicting high-

performance concrete compressive strength when compared to 

other methods such as ANN, SVM, and GOT, as indicated by 

the study results [146]. Nehdi et al. [147] claim to be the first 

to utilize machine learning (ML) for predicting self-

consolidating concrete compressive strength (SCC). The 

authors argued that ANN could accurately forecast the 

compressive strength as well as other factors of SCC, such as 

segregation, droop, and filling capacity. 

Uysal and Tanyildzi [148] compared the learning 

algorithms Fletcher conjugate power and Levenberg-

Marquardt back-propagation. They found that while the 

Fletcher method achieved an R2 of 0.95, the Levenberg-

Marquardt method achieved an R2 of 0.92. Topcu and 

Saridemir [149, 150] discovered that both Fuzzy Logic (FL) is 

a method of reasoning that resembles human reasoning, this 

approach is similar to how humans perform decision making 

and ANN models accurately predicted the compressive 

strength (CS) of fly ash and recycled aggregate concrete (RAC) 

with minimal data. In both cases, ANN outperformed FL. 

Naderpour et al. [151] employed an ANN model to determine 

the compressive strength (CS) of Fiber-reinforced polymer 

(FRP) reinforced concrete samples. By iteratively determining 

model parameters that enhance the findings, they were able to 

uncover 11 previously hidden neurons. 

Jalal and Ramezanianpour [152] utilized Artificial Neural 

Network (ANN), Linear Regression (LR), and Non-Linear 

Regression Analysis (NLR) to calculate the compressive 

strength (CS) of Functional Reactive Programming (FRP)-

confined concrete. The ANN model exhibited the highest 

performance among the three. Nehdi et al. [153] predicted the 

compressive strength (CS) of cellular concrete using an ANN 

model. Their algorithms accurately anticipated the CS with a 

prediction error that was 47% smaller than the real data. 

Ashrafian et al. [154] determined the compressive strength 

(CS) of cellular concrete by comparing Linear Regression (LR) 

models, Artificial Neural Network (ANN), standard 

Multivariate Adaptive Regression Splines (MARS), is an 

algorithm for complex non-linear regression problems. The 

algorithm involves finding a set of simple linear functions that 

in aggregate result in the best predictive performance, Support 

Vector Machine (SVM), and the combination of MARS with 
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the Water Cycle Algorithm (MARS-WCA). MARS-WCA 

outperformed the competing methods, showing a 25% higher 

effectiveness. The Mat Lab program can be utilized to predict 

the behavior of materials under the influence of external 

factors [155]. For the testing dataset, the ensemble boosted 

model demonstrated the highest levels of reliability and 

accuracy, achieving an R2 of 0.97, an RMSE of 71.963 kN, 

and a mean absolute error of 43.452 kN. 

 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

Based on reviews of previous studies and research, Geo-

Polymer concrete is regarded as the future alternative to 

traditional concrete currently in use. This is due to the 

environmental impact associated with traditional concrete, as 

explained in the research paper and summarized below. 

Additionally, Geo-Polymer concrete addresses certain 

weaknesses of traditional concrete, including its high-water 

absorption capacity, susceptibility to sulfates and chlorides 

attacks, and deterioration in compressive strength when 

exposed to high temperatures. 

Geo-Polymer concrete is a viable alternative to 

conventional Portland cement due to its environmental and 

economic advantages. The micro-structure of Geo-Polymers is 

influenced by the choice of precursors, which leads to the 

formation of cross-linked structures during Geo-

Polymerization. Although Geo-Polymer concrete is 

susceptible to damage from high temperatures, the rate of 

deterioration is 15 to 25% lower compared to Portland cement-

based concrete, particularly at temperatures exceeding 500 

degrees Celsius. Additionally, Geo-Polymer concrete exhibits 

reduced volumetric changes and water absorption compared to 

Portland cement-based concrete, owing to the different 

reaction products. Employing machine learning techniques 

enables efficient prediction of the impact of high temperatures 

on Geo-Polymer concrete, resulting in significant time, effort, 

and cost savings by minimizing the need for extensive 

laboratory testing. Previous studies have shown that the 

Artificial Neural Network (ANN) method is commonly used 

for predicting the compressive strength of conventional 

concrete, while for high-performance concrete, alternative 

methods such as the Genetic Weighted Pyramid Operation 

Tree (GWPOT) are preferred. Based on the obtained findings, 

it is recommended that researchers should perform 

comprehensive laboratory tests on construction waste 

generated during demolition processes, alongside the 

development and evaluation of numerical models. These 

models should aim to predict the behavior of the resulting 

demolition materials when incorporated into Geo-Polymer 

concrete, in order to enhance our understanding of the effects 

of high temperatures on Geo-Polymer concrete. Such 

investigations are crucial, particularly in regions prone to fire 

or elevated temperatures, such as factory walls. By gaining 

insights into the behavior of these materials under extreme 

thermal conditions, they can potentially serve as viable 

replacements for existing construction materials. 
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