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Techniques for object detection rooted in deep learning can be broadly segregated into 

two major categories: single-stage and multi-stage architectures. Notably, multi-stage 

object detection methods often deliver superior performance due to their intricate 

structure. However, they demand careful scrutiny during both their design and training 

phases. This manuscript offers a thorough review of the latest progress in the realm of 

multi-stage object detection, with the objective of fostering a comprehensive 

understanding of contemporary designs from a network architecture viewpoint. To 

facilitate this, the structure of the multi-stage object detection framework is divided into 

distinct modules, each reflective of a specific learning process stage. Each module is 

addressed in a systematic manner, beginning with an in-depth exploration of initial 

structural designs and proceeding to discuss optimization solutions drawn from recent 

scholarly contributions. A summarization of the performance of reviewed strategies 

within each module is provided, thereby offering a clear overview of current 

methodologies. Additionally, significant unresolved challenges in each module are 

identified, highlighting potential areas of investigation for future research. 
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1. INTRODUCTION

1.1 Background 

Object detection methodologies, fundamental in a myriad of 

practical applications such as autonomous driving, video 

surveillance, and medical image analysis, rely heavily on 

precise object detection. The intricate nature of these methods 

facilitates higher accuracy, enabling objects to be identified 

and localized even within demanding and fluctuating 

environments. The progress within the field of object detection, 

therefore, holds transformative potential for the broader 

computer vision community, allowing for the development of 

more robust, precise, and efficient systems. This has far-

reaching implications, enhancing the dependability and 

applicability of computer vision in everyday life. 

Figure 1. Different groups of deep learning object detectors 

Typically, an object detection framework encompasses two 

primary tasks: the classification task, which predicts the class 

labels of objects, and the localization task, which predicts the 

objects' locations within an image. The latter is often more 

challenging due to factors such as scale variation, occlusion, 

and viewpoint. Initial object detection methodologies were 

predominantly based on hand-crafted features and a linear 

classifier for object prediction within an image [1]. However, 

with the advent of deep convolutional neural networks (CNN) 

and its widespread applications in many fields [2, 3], object 

detection techniques rooted in deep learning have garnered 

substantial attention from the academic community. 

As illustrated in Figure 1, deep learning-based object 

detection methodologies can be chiefly divided into four 

groups. Depending on the approach to refining object locations 

within an image, deep learning object detectors can be 

bifurcated into multi-stage and one-stage object detection 

techniques. The former first generates a series of proposal 

boxes indicative of object instances using a proposal 

generation network in the initial stage. These proposal features 

are then extracted and fed into subsequent networks for 

repeated object location refinement before final predictions are 

rendered. Conversely, one-stage object detection frameworks 

directly produce final predictions, bypassing object proposal 

generation. Given that multi-stage object detectors generate a 

sparse set of proposal boxes in the initial stage, they do not 

encounter the problem of class imbalance as one-stage object 

detectors do. Moreover, by refining object locations multiple 

times, the final bounding boxes generated by multi-stage 

object detectors are significantly improved compared to the 

predicted boxes generated by one-stage object detectors. 

However, multi-stage object detection frameworks typically 
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possess a more complex structure than their one-stage 

counterparts, necessitating careful design to achieve optimal 

detection performance. Various benchmarks suggest that 

while multi-stage detection methods deliver superior detection 

accuracy, one-stage detection frameworks are characterized by 

simpler architecture and faster processing speed [4, 5]. It is 

noteworthy that two-stage object detection methods, due to 

their efficiency, have received most attention among multi-

stage object detection techniques. This paper predominantly 

follows the design of two-stage object detection. 

 

 
 

Figure 2. The structure of two-stage object detection framework 

 

Deep learning object detection methodologies can be 

further segregated into two primary categories based on how 

they represent objects within an image: anchor box-based 

object detection methods and point-based object detection 

methods. Anchor box-based methods depict objects as 

rectangular bounding boxes on a feature map, while point-

based methods utilize keypoints or anchor points on a feature 

map to signify objects. Anchor box-based object detection 

methods, owing to the convenience of processing rectangular 

boxes, are more straightforward to implement when compared 

to point-based methods. However, they yield merely coarse 

localization of objects, potentially influenced by background 

details and foreground facets with minimal semantic 

information. In the early stages of deep learning object 

detectors, rectangular bounding box representation schemes 

were predominantly employed to produce object proposals. 

With the recent introduction of the FPN architecture and Focal 

Loss, point-based object detection methods have garnered 

substantial attention, resulting in significant advancements [6]. 

It is crucial to note that while point-based schemes are 

generally employed in one-stage object detection pipelines, 

they can be modified to suit multi-stage object detection 

pipelines. 

Numerous techniques have been proposed in recent years to 

augment the detection performance for specific types of object 

detection frameworks, such as one-stage framework, two-

stage framework, anchor box-based framework, or point-

based framework. For instance, RetinaNet proposed a novel 

Focal Loss function to address the class imbalance issue 

prevalent in one-stage object detectors [6]. Concurrently, 

ThunderNet introduced an innovative lightweight structure to 

enhance the inference speed of two-stage object detectors [7]. 

While some original techniques were designed to be utilized 

in diverse types of object detection pipelines, many others 

were introduced based on a particular type of object detection 

pipeline and required modification to be integrated into other 

types of object detection pipelines. Consequently, a technique 

proposed in a one-stage object detector could be employed in 

a two-stage object detector to improve its detection 

performance. Given the more complex structure of multi-stage 

object detection frameworks compared to one-stage 

frameworks, meticulous design is imperative to achieve 

optimal detection accuracy. It is hypothesized that a multi-

stage object detector, with well-designed components, could 

achieve state-of-the-art detection results. 

This paper aims to systematically review recent techniques 

that can be incorporated into a deep learning multi-stage object 

detection framework, particularly a two-stage object detection 

framework. The techniques reviewed in this paper are not 

limited to those originally introduced in multi-stage object 

detectors but also include those that can be modified to be 

applied in multi-stage object detectors. The structure of a 

multi-stage object detection framework is divided into 

different modules, including feature extraction, object 

representations, proposal generation, proposal extraction, 

detection block, post-processing, feature selection, and 

sampling strategy, as illustrated in Figure 2. The initial 

structural designs are discussed in depth, followed by a review 

of recent optimization techniques proposed to boost the 

performance of each module. Furthermore, a performance 

summary of the reviewed techniques is provided to examine 

their strengths and weaknesses. Major unresolved issues in 

each module are also discussed, suggesting potential avenues 

for future research. 

 

1.2 Scope of the survey and contributions 

 

Covering all strategies proposed for the design of an 

effective object detection framework is beyond the scope of 

this paper, given the expansive nature of deep learning object 

detection within the domains of computer science and machine 

learning. Acknowledging the dominance of multi-stage object 

detection methods, as evidenced by their superior detection 

accuracy on standard benchmarks compared to one-stage 

methods, the focus of this review is primarily on recent 

techniques that can be employed to enhance a multi-stage 

object detection framework. The review predominantly 

considers techniques from the past five years, but also includes 
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some earlier works to facilitate a comprehensive 

understanding of the subject matter. Regrettably, due to these 

constraints, not all works could be encompassed within this 

review, and apologies are extended to authors whose works are 

not included. The hope is that this survey will shed light on 

potential future research directions in the design of object 

detection frameworks. 

This paper contributes to the field in several ways: 

It provides a comprehensive overview of the architecture of 

deep learning multi-stage object detection, dissecting the 

architecture into distinct modules according to the learning 

process, and discussing the early structural designs of each 

module. 

It systematically reviews recent optimization techniques 

proposed to refine the architecture of deep learning object 

detectors, aiming for enhanced detection performance. The 

techniques explored in this paper can be leveraged in the 

design of a multi-stage object detection framework. 

Each technique is thoroughly examined, discussing its 

structure in detail to help readers gain a profound 

understanding of the key features of existing strategies. 

A performance summary is provided for the reviewed 

techniques in each module. By comparing the performance of 

various strategies, researchers can discern the strengths and 

weaknesses of current methods. 

Lastly, significant open issues and challenges in each 

module are discussed, offering insights into potential research 

directions. 

 

1.3 Comparison with previous reviews and surveys 

 

Some deep learning object detection surveys and reviews 

have been published in past years. These include surveys on 

the problem of generic object detection [8-10] and category-

specific object detection, such as pedestrian detection [11], 

face detection [12], and text detection [13]. While these 

previous surveys provide a general overview of each model, 

this paper gives specific attention to recent techniques that 

have been proposed to improve the architecture of each 

module in a deep learning generic object detection model. In 

particular, we comprehensively present and discuss existing 

techniques from a network architecture point-of-view. The 

reviewed techniques are grouped into different sections based 

on the structure of a multi-stage object detection framework. 

All methods reviewed in this paper can be exploited to design 

an efficient multi-stage object detector. We hope that this 

survey will provide novel insights and inspirations that guide 

future research directions, especially for designing multi-stage 

object detection frameworks. 

 

 

2. DEEP CNN MULTI-STAGE OBJECT DETECTION 

 

State-of-the-art object detectors mainly follow a multi-stage 

object detection pipeline. In a multi-stage object detection 

pipeline, proposal generation stage and object prediction stage 

are iterated multiple times to produce high-quality predicted 

results. Among multi-stage object detection methods, two-

stage object detection methods, which consist of one proposal 

generation stage and one object prediction stage, have 

attracted most attention because of the speed-accuracy trade-

off. In this paper, we mainly follow the two-stage object 

detection design. Figure 2 illustrates the structure of a two-

stage object detection framework. Based on input images, the 

proposal generation stage generates a set of proposal boxes 

which represent object scales and locations in an image. The 

object prediction stage adopts feature maps and proposal 

boxes generated by the proposal generation stage as inputs and 

produces final predictions. A multi-stage object detection 

method with more than two stages usually iterates the proposal 

generation stage [14, 15] or the object prediction stage [16, 17] 

to produce better predicted results. Based on the structure of 

the two-stage object detection framework, we divide each 

stage into different modules as shown in Table 1 and review 

recent optimization techniques that proposed to improve the 

performance of each module. In addition, other problems that 

occur in both stages are also discussed.

 

Table 1. Categorization of the reviewed strategies for each module 

 
Module Techniques Publications 

Feature Extraction Detection based on multi-layer backbone MS-CNN, Scale-aware Fast R-CNN, Exploit-All-the-Layers 

 Detection based on feature pyramid 
FPN, PANet, Libra R-CNN, AugFPN, BiFPN, A2-FPN, Recursive 

Feature Pyramid 

Object 

Representations 
Rectangular bounding box representations 

ThunderNet, FPN, Faster R-CNN, Metaanchor, Anchor Box 

Optimization, Sparse R-CNN 

 Point representations 

DenseBox, FSAF, Guided Anchoring, FCOS, FoveaBox, SPAD, 

CornerNet, CenterNet, ExtremeNet, Objects as Points, RepPoints, 

VarifocalNet 

Proposal Generation Region proposal networks RPN 

 Cascade RPN Cascade RPN, Iterative RPN 

 Extended RPN BorderRPN 

 Based on point representations GA-RPN, CPN, SC-RPN 

Proposal Extraction RoI Pooling Faster R-CNN 

 RoI Align RoI Align, Grid R-CNN 

 Deformable RoI Pooling Deformable RoI Pooling 

 Discriminative RoI Pooling D2Det 

Detection Block Based on localization sensitive scores Cascade R-CNN, IoU-Net, Learning-to-Rank  

 Based on task-specific structure D2Det, Grid R-CNN, TSD, Double-Head 

Post-processing NMS-based IoU-guided NMS, Soft-NMS, Adaptive-NMS 

 Learning-based Learning NMS, Relation Networks 

 Pooling-based MaxpoolNMS 

Sampling strategy Hard sampling Libra R-CNN, SC-RPN 

 Soft sampling Prime Sample Attention, Adaptive Training Sample Selection 
Note: A work may appear at multiple locations if it proposes optimization techniques in different modules. 
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2.1 Overview 

 

In this section, we aim to present a comprehensive analysis 

of the core components integral to the design of multi-stage 

object detection methods. We will delve into the specifics of 

each component, exploring both traditional and contemporary 

practices and their impacts. Below, we provide a brief outline 

of the major subsections that will be covered: 

Feature extraction: We'll commence with a review of how 

features are extracted from raw data, elaborating on the 

importance of these extracted features in enhancing the 

distinguishing characteristics of various objects. 

Object representations: Next, we'll discuss the different 

techniques utilized to internally represent objects, setting the 

foundation for how objects are differentiated within the system. 

Proposal generation: This subsection will focus on the 

methodologies used to generate a series of proposals or regions 

where potential objects of interest might exist. 

Proposal extraction: Here, we will explore how relevant 

proposals are extracted from the generated regions, focusing 

on those with a higher likelihood of containing the objects of 

interest. 

Detection block: This subsection will dissect the structure 

of the detection block that refines the spatial locations of the 

objects and classifies the proposed regions into distinct object 

classes. 

Post-processing: We will review the strategies employed in 

the final stages of object detection to remove redundant 

detections and provide a more accurate and clean output. 

Sampling strategy: Lastly, we'll discuss the sampling 

strategies used to maintain a balance between positive and 

negative samples in the training data, a critical factor in 

ensuring the efficacy of the object detection method. 

In the following, we briefly elaborate on the architecture of 

each module and introduce optimization strategies that have 

been proposed in recent years. 

 

2.2 Feature extraction 

 

Feature extraction module extracts features from input 

images. Early deep CNN object detectors usually adopt a 

backbone CNN model (e.g., VGG [18], ResNets [19]) to 

generate feature maps and use a single feature layer for 

proposal generation and object prediction tasks. To address the 

problem of object scale variation, various methods exploit 

different feature maps at different layers of the backbone for 

generating proposals and predicting objects [20-22]. With the 

advent of FPN (Feature Pyramid Network) [23], recent 

techniques in feature extraction focus on generating a high-

level semantic feature pyramid [24-29]. These techniques 

combine feature maps at different layers of the backbone by 

an enhanced or extended block. By propagating the strong 

semantic features from deeper layers at lower layers, the 

detection performance of proposal generation and object 

prediction have been substantially improved. In this paper, 

feature extraction module includes the backbone network and 

enhanced/extended modules. 

 

2.3 Object representations 

 

Since an object can be located at any shape, scale, and 

position in an image, and the appearance of objects of the same 

class can be very different in different images, an object 

representation strategy is required for generating initial 

guesses of objects in image. Classical object detection 

methods are usually based on the sliding-window strategy, in 

which a classic classifier is applied on a dense image grid. 

Early deep learning-based object detectors mostly adopt 

rectangular bounding box representation, which places a 

number of rectangular bounding boxes on feature maps, to 

enumerate possible shapes, scales, and positions for target 

objects [7, 23, 30-33]. Recently, state-of-the-art object 

detectors have relied on point representations to represent 

objects. Point representations-based methods directly use 

points on feature maps to depict objects and form bounding 

boxes based on proposal points [34-45]. 

 

2.4 Proposal generation 

 

In multi-stage object detection frameworks, proposal 

generation network produces a set of high-quality object 

proposals based on input feature maps and object 

representations. These sparse object proposals are then used 

by the second stage for producing final predictions. Classical 

object detection methods are based on merging super-pixels 

[46] or sliding windows [47] to extract high-quality proposal 

boxes. With the success of CNN, Ren et al. [30] introduced 

novel region proposal network (RPN) to produce high-quality 

proposals in a fully convolutional way. RPN has been used by 

many modern object detectors as a proposal generation 

network. Recently, various methods have been proposed to 

improve the performance of RPN. Based on RPN, Cascade 

RPN [15] and Iterative RPN [48] proposed a cascade structure 

which performs proposal refinement several times while 

BorderRPN [49] employs point features as an extended 

module to enhance proposal generation network. Another 

approach is based on point representations to generate 

proposals [36, 50, 51]. 

 

2.5 Proposal extraction 

 

In multi-stage object detection frameworks, proposal 

extraction aims to extract fixed-sized proposal feature maps 

based on proposals generated by the proposal generation 

network. Most early two-stage object detectors employ RoI 

(Region of Interest) pooling scheme [52] to extract high-

quality proposal features. To alleviate the misalignment 

problem caused by quantization process in RoI pooling 

scheme, RoI Align [53] proposed to use bilinear interpolation 

in each sub-region of input feature map to generate proposal 

features. Recently, Deformable RoI Pooling [54] and 

Discriminative RoI Pooling [55] have been designed based on 

deformable convolution to add nearby semantic information to 

output proposal features, thus improving the localization 

capability of the detection network. 

 

2.6 Detection block 

 

The detection block aims to produce final predictions based 

on proposal features generated by proposal extraction module. 

Many two-stage object detection frameworks adopt region-

based convolutional neural network (R-CNN) [52] as the 

detection head. Later, R-FCN (Region-based Fully 

Convolutional Networks) [56] employs fully convolutional 

layers to replace fully connected layers in R-CNN to improve 

the efficiency of detection network. Both R-CNN and R-FCN 

share a head for both classification and bounding box 

regression. This leads to misalignment problems between the 
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two branches, which in turn limits the detection performance 

of the detection head. Recently, IoU-Net [57] and Learning-

to-Rank [58] have been proposed to improve classification 

scores for proposals with high localization accuracy to 

prevents them from being suppressed while Cascade R-CNN 

[26] applied R-CNN several times with increasing IoU 

thresholds to produce high-quality detection results. On the 

other hand, Grid R-CNN [55], D2Det [59], TSD [60], and 

Double-Head [61] proposed to design different structures for 

different tasks in the detection head. 

 

2.7 Post-processing 

 

Since anchor or proposal boxes usually overlap with each 

other, the proposal generation and detection network produce 

many duplicate results. Therefore, a method is needed to 

remove these duplicate boxes. Most deep object detectors 

employ GreedyNMS (Greedy non-maximum suppression) as 

duplicate removal method. Recently, Soft-NMS [62], IoU-

guided NMS [57], and Adaptive-NMS [63] have been 

designed based on modifying GreedyNMS algorithm to 

overcome the inherent drawback of GreedyNMS. Different 

from NMS-based methods, MaxpoolNMS [64] applies max 

pooling operations to extract peak locations in the objectness 

score map to obtain a meaningful set of object proposals. 

Another line of research is to design a learnable deep network 

to replace GreedyNMS so that the model can be trained fully 

end-to-end [65-67]. 

 

2.8 Sampling strategy 

 

Most early multi-stage object detection approaches employ 

random sampling schemes to generate training samples. In 

random sampling scheme, positive and negative samples are 

randomly sampled. As a result, training samples generated by 

this scheme are easy to be dominated by easy samples. Recent 

strategies for producing training samples focus on hard 

samples [25] or prime samples [68]. These sampling 

techniques exploit IoU values or classification scores to define 

positive and negative samples, thus focusing the training 

process on hard samples. Alternatively, ATSS [69] defines 

positive and negative samples based on mean and standard 

deviation of IoU values between candidate samples and 

ground truth. Recently, SC-RPN [51] has designed a size-

aware dynamic sampling method to ensure the sampling 

consistency in terms of location, size and quantity between the 

two stages of a two-stage object detection framework. 

 

 

3. PROPOSAL GENERATION STAGE 

 

The proposal generation stage aims to produce a set of high-

quality proposal boxes to represent object scales and locations 

from an input image. In this stage, an input image is fed into a 

deep backbone network to produce feature maps through 

different layers. Based on feature maps generated by the 

backbone, a proposal generation network is employed to 

generate a set of proposal boxes. Early deep CNN object 

detection methods usually exploit a single feature map 

generated by the backbone for producing proposal boxes. 

Recently, various techniques have been proposed to enhance 

semantic information of the backbone feature maps. In this 

paper, the feature extraction module includes the backbone 

network and extended modules. As an object can appear at any 

position and scale in an image, object representation methods 

are designed to produce initial guesses of object locations and 

shapes. Anchor box-based methods, which use a rectangular 

bounding box to represent an object, have led the fashion in 

the past few years. Recently, object detection methods based 

on point representations have emerged and attracted the 

attention of the research community due to their efficiency. As 

the final module in the proposal generation stage, proposal 

generation network uses object representations and input 

feature maps to generate high-quality proposal boxes. Current 

leading methods for proposal generation network are usually 

based on improving the region proposal network. In the 

following, we review recent optimization strategies in each 

module of the proposal generation stage. 

 

3.1 Recent techniques in feature extraction 

 

Deep learning-based object detection methods usually adopt 

a deep convolutional neural network pretrained on an image 

classification task as the backbone network to extract features 

from input images [30. 52]. In recent years, various deep 

architectures have been designed to improve classification 

performance. AlexNet [70] proposed an eight layers network 

with learnable parameters. ReLU activation and dropout layers 

are also adopted in the network to reduce the computational 

cost and prevent overfitting. VGG [18] proposed to use small 

convolution filters (i.e., 3×3 convolution filters) to increase the 

depth of the network. ResNets [19] introduced residual block 

which consists of a series of layers and a shortcut connection 

adding the input and output of the block. This design is very 

efficient to build a deeper network. ResNets is now still one of 

the most widely used backbone architectures for object 

detection models. Recently, various studies have focused on 

designing a light-weight deep architecture based on pointwise 

and depthwise convolutions for reducing computational 

complexity [71-73]. Li et al. [74] proved that using pretrained 

models designed for image classification tasks is not suitable 

for object detection tasks since object detection tasks not only 

need to classify the objects but also exactly localize the 

boundaries of the objects in image. The authors also proposed 

a deep network specially designed for object detection with 

high resolution feature maps to locate multi-scale objects. In 

general, object detection methods based on a single-level 

feature map (Figure 3) have a decline in detection accuracy 

due to scale variation of objects in natural scene images [23]. 

Moreover, the feature maps generated by the backbone usually 

contain high-level semantic information in deep layers and 

low-level semantic information in shallow layers. As a result, 

object detection methods usually apply the detection network 

on deep feature layers. However, due to low resolution in deep 

layers, the structure of objects may be destroyed, especially for 

small objects. This may compromise the detection 

performance of the detection network. In recent years, various 

methods have been proposed to improve the detection 

performance based on feature maps generated by the backbone 

network. According to the way of exploiting the backbone 

feature maps for detecting objects, these methods can be 

roughly divided into two groups: methods based on multi-

layer backbone and methods based on feature pyramid. 

Detection methods based on multi-layer backbone adopt 

different feature maps at different layers of the backbone to 

predict objects while detection methods based on feature 

pyramid construct a high-level semantic feature pyramid to 

produce final predictions. It should be noted that since we 
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focus on the two-stage object detection design, some 

techniques specially proposed for one-stage detection 

framework, such as deconvolution module [75], are not 

reviewed in this paper. 
 

 
 

Figure 3. Object detection based on a single-level feature 

map [30, 52] 
 

3.1.1 Detection methods based on multi-layer backbone 

Multi-layer object detection methods propose to directly 

predict objects from different feature maps at different layers 

of the backbone network (Figure 4) [20-22]. These methods 

exploit features at different layers independently to overcome 

the scale variation problem since different feature layers 

encode information of objects at different scales. Multi-layer 

backbone object detection methods have received less 

attention in recent years. Most multi-layer backbone object 

detectors focus on producing high-level semantic feature maps 

by an optimization backbone network. MS-CNN [20] is the 

first two-stage object detection framework that applies the 

proposal generation network at different output layers of the 

backbone network. To bridge the scale gap between input 

image and convolutional layers, deconvolution layers are 

employed to increase the resolution of feature maps. However, 

RoI pooling scheme is still applied on a single feature map. 

This leads to misalignment between proposal boxes and object 

features, which compromises the detection performance. Li et 

al. [21] designed a scale-aware network which incorporates 

two different subnetworks into a unified architecture to deal 

with the scale variation of objects in image. Each subnetwork 

first uses convolution layers to further extract scale-specific 

feature maps based on feature maps generated by the backbone 

and then generates scale-specific detection results. Yang et al. 

[22] proposed a new approach to perform multi-scale object 

detection which first examines the size of each object proposal 

and then pools the features from a corresponding feature map. 

Three different layers in the VGG16 backbone are adopted to 

pool object features. To ensure the features are discriminative 

enough, a scale-dependent pooling scheme was introduced to 

provides strong supervision to enforce more discriminative 

convolutional filters. 
 

 
 

Figure 4. Object detection based on multi-layer features [20-

22] 

3.1.2 Detection methods based on feature pyramid 

In deep convolutional neural networks, shallow layers 

generally contain weak semantic representations and rich 

geometric information while deep layers have rich semantic 

representations but weak geometric information. Since multi-

layer detection methods adopt features at different layers 

independently without integrating different feature levels, they 

do not achieve good detection results. Recently, with the 

advent of feature pyramid network [23], many methods based 

on feature pyramid backbone have been proposed to generate 

high-level semantic feature maps to improve the detection 

performance. Instead of exploiting different feature layers 

independently, feature pyramid detection methods first build a 

high-level semantic feature pyramid and then adopt each 

feature map in the pyramid to produce predictions. FPN [23] 

is the first framework that combines low-level features with 

high-level features via a top-down pathway and lateral 

connections to generate high-level semantic feature maps at all 

scales of the backbone. Figure 5 (a) illustrates the structure of 

FPN. The top-down pathway includes upsampling operations 

to upsample feature maps from higher pyramid levels to 

increase their spatial resolution and lateral connection 

operations to enhance high-level features with features from 

the bottom-up pathway. In addition, a 3×3 convolution is 

applied on each merged feature map to generate final feature 

maps to reduce the aliasing effect of upsampling operations. 

By using FPN as the feature extraction network, Faster R-

CNN achieves an AP of 33.9 on the COCO minival set. 

Compared with the original Faster R-CNN based on VGG16, 

Faster R-CNN with FPN improves AP by 2.3 points. FPN 

quickly becomes an essential component in the feature 

extraction network in modern object detectors [6, 76, 77]. 

Despite the benefits, the straightforward integration in FPN 

makes it suffer from feature-level imbalance. To be more 

specific, feature fusion by simple operation ignores the 

semantic gap between different feature maps at different levels. 

In addition, semantic feature maps suffer from information 

loss due to 1×1 convolutional layers in lateral connections, 

especially with high-level layers. Various techniques have 

been proposed to overcome the shortcomings of FPN. In 

PANet [24], the authors suggested that low-level features are 

helpful in improving the localization capability of the 

detection network. Based on the idea, they designed a bottom-

up path augmentation (Figure 5 (b)) to enhance entire feature 

pyramid with accurate localization signals existing in low-

level features and shorten information path. The bottom-up 

path augmentation starts from the lowest feature map 

generated by FPN and gradually reaches the highest feature 

map. In each block, a 3×3 convolutional layer with stride 2 is 

first used to reduce the spatial size. Each feature map of FPN 

is then fused with the down-sampled feature map by lateral 

connection. Finally, the fused feature map is fed into a 3×3 

convolutional layer to generate intermediate map for following 

subnetworks. Libra R-CNN [25] proposed to enhance multi-

level feature maps generated by the FPN backbone by using 

integrated balanced semantic feature map (Figure 5 (c)). In this 

method, all feature maps from the backbone are first resized to 

an intermediate size. The balanced semantic feature map is 

obtained by averaging all resized feature maps from different 

layers. The balanced feature map is then refined to be more 

discriminative. Finally, the output feature maps are generated 

by rescaling the refined feature map. Overall, this technique 

will further strengthen the original features and reduce the 

imbalance at feature level which limits the overall detection 
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performance. On the other hand, based on the observation that 

feature map at the highest level of FPN suffers from 

information lost due to channel reduction of the feature map, 

AugFPN [26] proposed a residual feature augmentation subnet 

to enhance feature representations of the highest-level 

backbone feature map (i.e., P5) (Figure 5 (d)). In the residual 

feature augmentation subnet, ratio-invariant adaptive pooling 

based on PSP [78] is first attached to the last feature map of 

the backbone (i.e., C5) to generate different context feature 

maps with different scales. These context feature maps are 

then rescaled and combined by a novel adaptive spatial fusion 

module to produce the final context feature map, which is later 

fused with the last reduced feature map (i.e., M5) to generate 

enhanced feature map. The authors also introduced a 

consistent supervision scheme which applies the same 

supervision signals on the feature maps after lateral connection 

to narrow the semantic gaps between feature maps. Another 

approach is to alleviate unequal contribution of input features 

in multi-scale feature fusion. Tan et al. [27] introduced an 

effective weighted bi-directional feature pyramid network 

(BiFPN) (Figure 5 (e)) with learnable weights to learn the 

contribution of different inputs at different resolutions. Based 

on feature pyramid generated by the EfficientNet backbone 

[79], BiFPN removes feature maps in top-down path with only 

one original input feature map (i.e., P3, P7). In the bottom-up 

path, original input feature maps are added to corresponding 

output feature maps if they are at the same pyramid level. Each 

bidirectional group, which includes top-down and bottom-up 

path, is treated as one feature layer so bidirectional group is 

repeated multiple times to add more high-level feature fusion 

to the feature extraction network. BiFPN also introduced fast 

and efficient normalized fusion algorithm to add an additional 

weight for each input when fusing feature maps at different 

layers. Different from BiFPN, A2-FPN [28] designed an 

attention aggregation pipeline based on FPN to refine multi-

scale feature fusion through attention-guided feature 

aggregation (Figure 5(f)). The proposed pipeline extracts and 

fuses feature pyramid progressively through three modules. 

Multi-level global context module is first designed to replace 

1×1 convolution in FPN to mitigate information loss due to 

channel reductions. Then, to reduce the effects of semantic gap 

between different layers in feature fusion stage, global 

attention module (GAM) is designed based on CARAFE [80] 

to improve the semantic consistency of adjacent feature maps 

before merging. Finally, global attention content-aware 

pooling (GACAP) is introduced in the bottom-up path to 

aggregate more discriminative information for output feature 

maps. Another approach is proposed by Qiao et al. [29]. The 

authors introduced Recursive Feature Pyramid (RFP) based on 

recursive convolutional network (Figure 5(g)) which adds 

feedback connections from output features into bottom-up 

path of the FPN network. The RFP modifies the first block of 

each stage of the ResNet backbone to update bottom-up patch 

with RFP features via atrous spatial pyramid pooling (ASSP) 

[81]. A feature fusion module is designed to update output 

feature maps of the RFP. In addition, all standard 3×3 

convolutional layers in the bottom-up path of FPN are replaced 

by switchable atrous convolution to effectively enlarge the 

field-of-view of filters. 

 

 
 

(a) FPN 

 
 

(b) PANet 

 
 

(c) Libra R-CNN 

 
 

(d) AugFPN 
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(e) BiFPN 

 
 

(f) A2-FPN 

 
 

(g) RFP 

 

Figure 5. Object detection based on high-level semantic feature pyramid: (a) FPN. (b) PANet; (c) Libra R-CNN; (d) AugFPN; 

(e) BiFPN; (f) A2-FPN; (g) RFP 

 

3.1.3 Comparison and analysis 

Current state-of-the-art detectors utilize feature pyramid 

networks due to their robust performance and balance between 

speed and accuracy. Compared to Faster R-CNN with a 

ResNet-101 backbone, Faster R-CNN with FPN shows a slight 

improvement of 0.5 points in Average Precision (AP) on the 

COCO test-dev benchmark. While this increase is minor, it's 

achieved with no significant increase in computational cost. 

However, Libra R-CNN outperforms FPN, achieving 2.5 

points higher AP on the same dataset. This showcases the 

enhanced accuracy of Libra R-CNN, but it should be noted that 

this improvement might come at the expense of increased 

complexity in model architecture and potentially higher 

computational cost. AugFPN, with its residual feature 

augmentation module, furthers the improvement by 1 AP point 

on the COCO validation set when compared to FPN, 

indicating its robustness in detection tasks. However, the 

model might involve more complexity due to the 

augmentation module, adding to the computational burden. 

BiFPN in EfficientDet offers significant enhancements, 

improving AP by 4 points compared to FPN-based ResNet-50 

on the COCO validation set. Additionally, BiFPN requires 3× 

fewer parameters and 4× fewer FLOPs compared to FPN, 

presenting a major leap in computational efficiency. This 

positions it as a powerful choice for object detection tasks, 

particularly when computational resources are limited. By 

refining multi-scale feature fusion through three new modules, 

A2-FPN improves the detection performance by 2.4 points AP 

compared with the feature extraction network in PANet on the 

COCO validation set. However, the increase in computational 

complexity with A2-FPN might limit its applicability in 

resource-constrained settings, hence a lighter variant A2-FPN-

Lite is introduced as a compromise between speed and 

accuracy. DetectoRS and its RPF network show considerable 

promise, especially in localizing occluded objects in images, 

improving AP by 4.2 points over FPN on the COCO validation 

set. The ability to exploit nearby context information to locate 

occluded parts of an object gives RPF a distinct advantage. 

However, the specific mechanism to achieve this might 

increase the model's complexity and computational demand. 

Meanwhile, multi-layer object detection methods, though less 

common, demonstrate potential. For instance, the method by 

Yang et al. [22] reported a significant relative improvement of 

9% over Faster R-CNN on the KITTI test set. These methods, 

however, are deeply reliant on the backbone architecture for 

their performance, which might restrict their adaptability. It's 

worth noting that some feature extraction networks, originally 

introduced for one-stage object detection frameworks for 

efficiency, can also be effectively applied to multi-stage 

frameworks. This demonstrates a level of flexibility in 

deploying these networks, although the specific pros and cons 

will largely depend on the context of the application and the 

specific framework in use. 

 

3.1.4 Open issues 

Object detection methods that employ multi-level backbone 

features have received limited attention in recent years due to 

the inherent inefficiencies in independently predicting objects 

at different layers. Most state-of-the-art object detectors 

currently utilize a feature pyramid approach, prioritizing 

enhancement of the representation capacity of feature 

pyramids so that each feature level contains strong semantic 

information. However, merging feature maps of varying 

resolutions and representations from these pyramids poses a 

significant challenge due to potential loss of semantic 

information. Recent developments, such as A2-FPN [28] and 
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DetectoRS [29], have addressed this issue by designing 

additional networks to mitigate information loss and tackle 

semantic gap problems. These methods have demonstrated 

promising results, but their increased complexity-with the 

addition of extra networks-invariably leads to more parameters 

and hyperparameters. This, in turn, introduces larger 

computational costs and requires more manual adjustments, an 

aspect that may not be feasible in all scenarios, particularly in 

resource-constrained environments. Another approach to 

improving the effectiveness of feature pyramid utilization is 

the use of Neural Architecture Search (NAS) [82] to identify 

the optimal FPN structure [83]. While promising, this 

approach is also computationally intensive, especially during 

the search process. To address these issues, future work could 

explore methods that balance accuracy and computational 

efficiency. For instance, lightweight neural architectures could 

be developed to minimize the parameters while maintaining 

detection performance. Techniques such as network pruning 

and quantization could also be used to optimize existing 

architectures. Furthermore, automated hyperparameter tuning 

algorithms, like Bayesian optimization, could mitigate the 

need for extensive manual tweaks. Ultimately, the objective is 

to develop an efficient method that fully exploits each feature 

level to generate increasingly powerful feature levels without 

exacerbating computational demands. 

 

3.2 Recent techniques in object representations 

 

According to the way of representing objects in the proposal 

generation stage, existing object detection methods can be 

categorized into two groups: anchor box-based methods and 

point-based methods. Anchor box-based methods represent 

each object as a rectangular bounding box on feature maps 

while point-based methods employ points on feature maps to 

depict objects. Early two-stage object detectors usually 

employ a rectangular bounding box representation scheme in 

the proposal generation stage to produce proposal boxes. 

Recently, with the emergence of FPN [23] and Focal loss [6], 

point representations have attracted increasing attention from 

researchers due to their efficiency. It should be noted that 

although point representations are usually employed in one-

stage object detection pipelines, they can be modified to adapt 

to two-stage object detection pipelines to improve the overall 

detection performance [37, 38, 44, 50, 51, 84]. 

 

3.2.1 Rectangular bounding box representations 

Early two-stage object detectors are usually based on 

rectangle bounding boxes (i.e., anchor boxes, proposal boxes, 

and final detection boxes) to represent objects at different 

recognition stages of the detection process [30, 55, 85]. A 

bounding box B={x, y, w, h} is a 4-d representation containing 

the spatial location of an object in image, with (x, y) 

representing the center points and (w, h) representing the width 

and height of object in image. The rectangular bounding box 

is the dominant type of object representation in early deep 

learning-based object detection frameworks, especially in 

two-stage detection methods, due to its convenience and 

efficiency [44]. In the proposal generation stage of two-stage 

object detection pipelines, input rectangular bounding boxes 

are usually called anchor boxes which are hypothesized to 

represent objects at different scales and aspect ratios. For each 

anchor box, features are extracted as object representations 

which are then used to generate proposal boxes by a proposal 

generation network. In general, a set of anchor boxes are 

generated at each location on the feature map by predefined 

scheme [7, 23, 30] or learnt scheme [31-33]. Anchor box 

generation based on predefined scheme is first introduced in 

Faster R-CNN [30], where an anchor box is centered at the 

sliding window and associated with a scale and aspect ratio. 

There are three predefined scales (i.e., 1282, 2562, 5122) and 

three predefined aspect ratios (i.e., 1:1, 1:2, 2:1), resulting nine 

anchor boxes at each position on the feature map in Faster R-

CNN. In the study [23], RPN employs different scales at 

different feature layers to define anchor boxes. For anchor 

shape, three predefined aspect ratios are used, yielding 15 

anchor boxes at each location over the feature pyramid. 

Recently, ThunderNet [7] has used a single scale for each 

feature layer and five aspect ratios (i.e., 1:2, 3:4, 1:1, 4:3, 2:1) 

to generate anchor boxes. 

In the predefined anchoring scheme, the number of anchor 

boxes and the size of each box need to be designed carefully. 

To be more specific, too few anchor boxes may be insufficient 

to cover a large range of objects in various sizes and ratios, 

thus hindering the detection accuracy of the detector. In 

contrast, too many anchor boxes generated at the beginning 

require more parameters, which may lead to overfitting and 

significant computational cost due to a large number of false 

candidates. In addition, the anchor box shapes have to be 

manually tweaked to improve detection accuracy of the 

detector on specific domains. For example, since texts may 

have large aspect ratios compared with generic objects, Liao 

et al. [86] used seven predefined aspect ratios (i.e., 5:1, 3:1, 

2:1, 1:1, 1:2, 1:3, 1:5) for scene text detection. In the study 

[87], the authors used one aspect ratio (i.e., width/height=5) 

for license plate detection since license plates are usually 

rectangular in shape. Wang et al. [88] employed single aspect 

ratio of 0.41 for pedestrian detection as this value is the 

average aspect ratio of pedestrians. To mitigate the issues of 

predefined anchoring scheme, learnt anchoring scheme [31-

33] proposes to generate learnable anchor boxes, where anchor 

shape is learnt during the training process to generate high-

quality anchor boxes to boost the detection performance. 

MetaAnchor [31] introduced an anchor function generator 

which maps any box prior to corresponding anchor function. 

The anchor function generator is formulated as a simple two-

layer network and computed from customized prior boxes. 

Based on neural network weight prediction mechanism, 

anchor function generator could be implemented and 

embedded into existing object detection methods for joint 

optimization. The proposed mechanism is shown to be robust 

to anchor settings as it may cover various kinds of object boxes 

with any shape. However, the method shows minor 

improvements for two-stage anchor box-based object 

detection pipeline and requires customized prior boxes to be 

chosen by handcraft. In addition, it introduces an extra 

network for predicting weights, which leads to increased 

parameters and computational cost. Similar to the MetaAnchor 

scheme, Zhong et al. [32] introduced an anchor optimization 

scheme in which anchor shape is automatically learned during 

the training process. A localization loss is introduced which is 

to minimize the error between the ground truth box and the 

predicted offset relative to the anchor box. The error is then 

backpropagated to the anchor shapes and other parameters in 

the whole network to automatically learn the anchor box. The 

anchor shape is warmed up by soft assignment and online 

clustering scheme. Since the anchor shape is learned during 

training, the optimization scheme is more suitable for the 

specific data and network structure. In addition, the anchor 
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shape initialization needs to be designed carefully to achieve 

the best detection performance. Recently, Sparse R-CNN [33] 

defined a fixed small set of learned candidate boxes to 

represent objects. Each candidate box includes a learnable 

proposal box and a learnable proposal feature. Proposal box is 

a 4-d representation containing initial center coordinates, 

height and width of object while proposal feature is a high-

dimension vector which encodes rich information of object. 

The parameters of proposal boxes and features will be updated 

with the backpropagation algorithm during the training 

process and optimized together with other parameters in the 

whole network. 

Although rectangular bounding box representations are easy 

to implement and facilitate computational process, they 

provide only coarse localization of objects. As a result, the 

feature extraction process in the object prediction stage will 

produce coarse representations of objects. The coarse 

extracted features may be heavily influenced by background 

information and foreground regions that contain little semantic 

information, which leads to inferior detection performance in 

object detection. 

 

3.2.2 Point representations 

To tackle the shortcomings of rectangular bounding box 

representations, various methods have been proposed to 

develop more efficient object representations. Recent state-of-

the-art object detection methods directly employ points on the 

feature maps to represent objects and form bounding boxes 

based on proposal points. For simplicity, we call these 

methods as point representations. Point representations can be 

grouped into two groups: anchor-point representations and 

key-point representations. Anchor-point representations, 

including DenseBox [34], FSAF [35], Guided Anchoring [36], 

FCOS [37], FoveaBox [38], and SPAD [39], employ each 

pixel on a feature map as object representation. The proposal 

generation network first classifies each pixel into foreground 

or background class, and then directly regresses the distances 

from the foreground point to the four sides of the ground truth 

bounding box to generate final prediction. DenseBox [34] 

(Figure 6 (a)) proposed object detection based on FCNs [89]. 

DenseBox directly predicts a 4-d vector and a confident score 

of being an object at each location on a feature map. The 4-d 

vector represents the relative offsets from the top-left and 

bottom-right boundaries of the target bounding box to pixel 

location. To solve shape variations of object, DenseBox 

employs image pyramid by cropping and resizing input images 

to different sizes. Different from DenseBox, Zhu et al. [35] 

introduced a novel feature selective anchor-free module 

(FSAF) (Figure 6 (b)) which takes locations on the feature 

pyramid as inputs and directly feeds these locations into two 

convolutional branches: a classification branch for predicting 

𝐾 class scores for each location and a regression branch for 

producing 4 offsets encoding the distances between the current 

pixel location and the top, left, bottom, and right boundaries of 

the target bounding box. The FSAF module can be inserted 

into an anchor box-based detector with a feature pyramid 

backbone to help learning objects which are hard to be 

modeled by anchor-based mechanism. Another approach, 

Guided Anchoring [36] (Figure 6(c)), predicts each location 

on the feature map by using probability maps generated by an 

anchor location prediction network. At each active location 

where the center of objects is likely to exist, anchor shape 

prediction network is designed to predict the best shape for 

corresponding object. Recently, FCOS [6] directly classified 

each point on a feature map and regresses the target bounding 

box for positive points, thus eliminating complicated problems 

related to anchor bounding boxes. A point is considered as a 

positive point if it falls into any ground truth box and the class 

label of the point is the class label of the ground truth box 

(Figure 6 (d)). If a location falls into multiple ground truth 

bounding boxes, FCOS based on the multi-level features 

generated by FPN to assign an appropriate bounding box. In 

addition, FCOS introduced a novel center-ness branch with 

only one convolution layer to generate a centerness score for a 

positive point based on the distance from the point to the center 

of the corresponding object. This score is then used to 

eliminate low-quality bounding boxes. FCOS achieved state-

of-the-art detection performance with much less design 

complexity and computational cost, which encourages 

researchers to follow the anchor-free mechanism in designing 

object detection pipeline. Similar to FCOS, FoveaBox [38] 

directly predicts the object score and the corresponding 

boundaries for each spatial location on the feature pyramid. 

FoveaBox uses fovea area, which is generated by shrinking 

ground truth box based on a shrunk factor, to define positive 

anchor points (Figure 6 (e)). In SAPD [39], the authors proved 

that the training strategy used in most anchor-point detectors, 

which treats anchor points independently, may lead to 

compromise the detection performance due to different 

contributions of anchor points to the network loss according to 

their spatial location. Based on this, they proposed a soft-

weighted scheme which adds an attention weight for each 

anchor point based on its geometrical relation with the instance 

boundaries. The soft-weighted scheme forces the network to 

focus more on positive points near the center of object instance. 

Alternatively, key-point representations, including 

CornerNet [40], CenterNet [41], ExtremeNet [42], Objects as 

Points [43], RepPoints [44], VarifocalNet [45], use keypoints 

such as center points, corners points, or extreme points to 

represent an object. These methods first predict the locations 

of keypoints of the bounding box and then group those key 

points to form a bounding box. CornerNet [40] proposed to 

represent an object as a pair of corner keypoints covering the 

object (i.e., the top-left corner and bottom-right corner of the 

bounding box) (Figure 7 (a)). The authors also introduced a 

novel corner pooling layer to better localize each type of 

corner of bounding boxes by employing prior knowledge. To 

group corner points that belong to the same object and produce 

a bounding box, the network first predicts an embedding 

vector for each detected corner and then groups corners based 

on the distances between their embeddings. Based on 

CornerNet, CenterNet [41] adds one extra keypoint (i.e., a 

center keypoint) to represent an object (Figure 7 (b)). While 

conner keypoints are used to generate bounding boxes, the 

center keypoint is employed to filter out incorrect bounding 

boxes. A center pooling layer is designed in CenterNet to 

capture rich semantic information within the center of the 

bounding box, thus improving the detection of the center 

keypoint. In addition, a cascade corner pooling layer is 

proposed to add center information to boundary information to 

improve conner localization capability of the network. Instead 

of using conner points to represent objects, ExtremeNet [42] 

defines four extreme points (i.e., top-most, left-most, bottom-

most, right-most) and a center point to represent an object 

(Figure 7 (c)). Unlike conner points, extreme points usually lie 

on object, thus containing strong semantic information. This 

facilitates the extreme point detection performance. 

ExtremeNet also introduced a center grouping algorithm 
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which analyses the geometric structure of extreme points and 

their center to group extreme points and produce bounding box. 

To eliminate the grouping stage in key-point detectors, Zhou 

et al. [43] represented objects by a single point at the center of 

bounding box (Figure 7 (d)). Peaks in the heatmap generated 

by the keypoint estimation network correspond to object 

center point. The keypoint prediction network predicts the 

height and width of bounding boxes covering objects based on 

the keypoint values of the center point. Different from corner 

points and extreme points, RepPoints [44] defined a set of 

adaptive sample points (e.g., 9 points) with the deformable 

convolution [54] to represent an object (Figure 7 (e)). 

RepPoints starts from the center point and produces other 

points via regressing offset values over the center point. For 

refinement object bounding box, RepPoints produces a 2-d 

regression vector (i.e., (∆x; ∆y)) instead of 4-d regression 

vector in most modern object detectors to alleviate the problem 

of scale differences among the bounding box regression 

parameters. For forming bounding boxes, RepPoints designed 

a converting function which produces bounding box based on 

adaptive sample points. Recently, VarifocalNet [45] defined a 

star-shaped bounding box with nine fixed sampling points to 

represent an object (Figure 7 (f)). The star-shaped bounding 

box representation can capture the geometric relations 

between a bounding box and its nearby contextual information. 

This facilitates the regression process which encodes the 

misalignment between the predicted box and the ground truth 

box. 

 

 
 

Figure 6. Object detection based on anchor-point representations: (a) Densebox; (b) FSAF; (c) Guided Anchoring; (d) FCOS; (e) 

FoveaBox 

 

 
 

Figure 7. Key-points representation in object detection: (a) CornerNet; (b) CenterNet; (c) ExtremeNet; (d) Objects as points; (e) 

RepPoints; (f) VarifocalNet 
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Figure 8. The architecture of RPDet [44] 

 

Anchor-point and key-point representations are usually 

used in one-stage object detection frameworks due to their 

efficiency. However, they can be modified to adapt to two-

stage object detection frameworks to improve the overall 

detection performance [33, 37, 38, 44, 50, 51, 84]. For 

example, FCOS [37] proposed to replace the anchor box 

scheme with the anchor point scheme in RPN. The results 

showed that RPN with the anchor-point scheme boosts the 

localization capability of the network by a large margin. In 

RPDet [44], a two-stage object detection approach (Figure 8), 

a set of refined points representing objects are produced by a 

localization subnet in the first stage. Proposal boxes are 

generated based on refined points by using a converting layer. 

These refined points and proposal boxes are then fed into a 

classification subnet at the second stage. Compared with 

baseline detectors based on bounding box representations, 

RPDet significantly improves the detection performance on 

the same dataset. 

 

3.2.3 Comparison and analysis 

Object detection methods utilizing rectangular bounding 

box representations have primarily pivoted towards learnt 

anchoring schemes in recent times. For instance, in the study 

[36], the Faster R-CNN improved detection performance by 

2.7 points AP on the COCO test-dev set, by replacing the 

predefined anchor scheme with a guided one to automatically 

learn anchor shape and location. The benefit of this approach 

is the production of high-quality proposal boxes, increasing 

the efficiency of the training process. Yet, it also introduces 

more complexity to the model. In a similar vein, Zhong et al. 

[32] introduced a learning scheme to learn anchor shapes 

during the training process. The result was consistent 

improvements across different datasets and architectures with 

negligible extra training and inference costs. Notably, this 

learning scheme proved more robust with one-stage baselines 

compared to two-stage ones, due to the efficiency reduction 

caused by the second stage in two-stage baselines. Meanwhile, 

Sparse R-CNN [33], utilizing learnable proposal boxes, 

significantly outperformed Faster R-CNN based on predefined 

anchor boxes. However, its superior performance comes with 

the cost of a more complex network structure and possibly 

higher computational load. 

Recently, the efficiency of point representations, aided by 

FPN and Focal loss, has been a focal point of research. 

Anchor-point representations, particularly recent methods [37-

39], have achieved substantial improvements over anchor box-

based methods. Notably, FCOS [38] outperformed both 

RetinaNet and Faster R-CNN by substantial margins on the 

test-dev split of the MS-COCO benchmark. Yet, these 

methods may potentially be more complex and resource-

intensive than those using box representations. In the domain 

of key-point representations, CornerNet [40], an innovative 

one-stage approach, achieved competitive detection 

performance compared with several anchor box-based two-

stage methods. The ExtremeNet [42] improved on this by 

combining extreme points and center point, achieving a 

modest increase in performance. Recently, VarifocalNet [45], 

which defines nine fixed sampling points to represent an object, 

has surpassed almost all state-of-the-art detectors. This result 

is promising for future research, but again, the complexity and 

computational cost may be a drawback. In comparison, 

anchor-point methods have simpler network architectures, 

which leads to faster training and inference speeds. However, 

key-point methods can offer superior accuracy by encoding 

geometric relations between an object and its nearby 

contextual information, highlighting a trade-off between 

complexity, computational cost, and detection performance in 

the field of object detection methods. 

 

3.2.4 Open issues 

Firstly, the efficiency of point representation strategies has 

led to their adoption in multi-stage object detection pipelines 

in several recent studies [33, 37, 38, 44, 50, 51, 84]. However, 

these strategies have not been explored as extensively in multi-

stage object detectors as in one-stage object detectors. For 

example, FCOS [37] used the anchor-point scheme to replace 

the anchor-box scheme in RPN, which improved the 

localization capability of RPN. Yet, the effects of the anchor-

point scheme on the second stage have not been thoroughly 

investigated. Potential solutions to address this issue could be 

conducting further research specifically focusing on the 

implications of the anchor-point scheme on the second stage 

and modifying the scheme to better suit the second stage based 

on the findings. 

Secondly, the fine localization capabilities of point 

representations have drawn increasing attention. In the study 

[70], the authors identified the main difference between anchor 

box-based and point-based detectors as the sampling strategy 

(Section 5.3). Following this, they proposed an adaptive 

training sample selection strategy that automatically divides 

positive and negative samples based on statistical 

characteristics of the object. This sampling strategy allowed 

RetinaNet [6] with an anchor box representation scheme to 

achieve comparable detection performance with FCOS [37] 

with an anchor-point representation scheme. However, this 

strategy was proposed for one-stage object detectors, leaving 

the same issue for multi-stage object detectors unexplored. In 

response to this, future studies could aim to adapt this strategy 

to multi-stage object detectors and analyze its effect on 

detection performance. 

Thirdly, despite key-point detectors being time-consuming 

and complex models due to their grouping algorithm, they 

have the advantage of superior detection accuracy compared 

to anchor-point detectors. Several studies proposed combining 

anchor-point and key-point representations to encode multiple 

levels of objects features and avoid the time-consuming 

grouping algorithm [90]. However, it is still unclear which 

key-points are beneficial for bounding box regression. To 

address this, an in-depth analysis of the role of each type of 

key-point is necessary. This could involve a comprehensive 

evaluation of the importance of each key-point in bounding 

box regression or the development of a new algorithm that 
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automatically selects the most beneficial key-points. 

 

3.3 Recent techniques in proposal generation 

 

Object proposals are the main results of the first stage in 

two-stage object detection pipelines. Based on object 

representations, proposal generation network takes 

corresponding features generated by the feature extraction 

network as inputs to generate proposals. Proposals are used by 

the second stage to generate final predictions. An ideal 

proposal generation method should generate as few proposals 

as possible while covering all object instances in the input 

image. To generate proposals, early object detection methods 

are usually based on merging super-pixels (e.g., Selective 

Search [46]) and sliding windows (e.g., Edge Boxes [47]). 

Although these approaches have been broadly used as the 

proposal generation methods of choice by many object 

detectors, they exhibit issues and limitations. First, they 

require significant computation to process millions of 

proposals per image. Second, since these methods have no 

learnable parameters, they are external modules independent 

of the detector. To solve these issues, Ren et al. [30] introduced 

novel region proposal network (RPN) which has become the 

paradigm for designing two-stage object detection pipeline. 

Figure 9 (a) illustrates the structure of RPN. It includes a 3×3 

convolution layer followed by two parallel 1×1 convolution 

layers for regression and classification. For each anchor 𝐵 =
{𝑥𝐵 , 𝑦𝐵 , 𝑤𝐵 , ℎ𝐵} , where {𝑥𝐵 , 𝑦𝐵}  is the center point of the 

anchor and {𝑤𝐵 , ℎ𝐵} is the width and height of the anchor, the 

classification branch outputs two predictions: the score of it 

being background and the score of it being foreground. The 

regression branch aims to predict the transformation ∆ from 

the anchor B to the target ground truth bounding box 𝐺 =
{𝑥𝐺 , 𝑦𝐺 , 𝑤𝐺 , ℎ𝐺} represented as follows: 

 

∆𝑥= (𝑥𝐺 − 𝑥𝐵)/𝑤𝐵, ∆𝑦= (𝑦𝐺 − 𝑦𝐵)/ℎ𝐵 (1) 

 

∆𝑤= log (𝑤𝐺/𝑤𝐵), ∆ℎ= log (ℎ𝐺/ℎ𝐵) (2) 

RPN has been used as a proposal generation network in 

many deep learning-based object detectors. However, RPN is 

weak at locating objects with extreme shapes or objects in 

difficult environments because of information loss caused by 

pooling layers in CNN structure and object representations 

with predefined shapes. To tackle the shortcomings of RPN, 

Zhong et al. [48] proposed a cascade architecture in proposal 

generation stage to improve score and location of proposals 

(Figure 9 (b), denoted as Iterative RPN in this paper). The 

proposed cascade structure includes two RPNs. The second 

RPN takes proposals produced by the first RPN as inputs and 

further classifies and regresses to generate high-quality 

proposals. The cascade structure improves the localization 

capability for objects with various sizes. However, since the 

anchor location and shape change after each RPN, this 

structure causes mismatch between anchor boxes and their 

representations. Another approach, Cascade RPN [15] (Figure 

9 (c)) employs one anchor box at each spatial location on a 

feature map and performs box refinement through multi-stage 

refinement scheme. In the first refinement stage, dilated 

convolution layer is used to produce anchor with more 

semantic information. Since only one anchor is defined at each 

location in the first stage, Cascade RPN uses the center of the 

anchor and ground truth box to define positive anchor instead 

of IoU threshold. Based on the regressed box and features 

produced by the first refinement stage, the second refinement 

stage with adaptive convolution layer is used to classify and 

regress each active bounding box to produce final proposals. 

To improve the localization capability of RPN, Qiu et al. [49] 

introduced BorderRPN (Figure 9 (e)) which adds two border 

alignment modules (BAM) into the original RPN. The first 

BAM produces border offsets which are then combined with 

coarse box offsets generated by RPN to enhance bounding box 

locations. The second BAM produces border classification 

scores which replace bounding box scores generated by RPN. 

In both BAM branches, BorderAlign [49] module is adopted 

to extract and exploit border features which are crucial for 

achieving better detection accuracy. 
 

 
 

Figure 9. The structure of proposal generation networks: (a) RPN; (b) Iterative RPN; (c) Cascade RPN; (d) BorderRPN; (e) 

CPN; (f) GA-RPN; (g) SC-RPN 
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By observation that object detectors based on point 

representations usually obtain high recall since they can locate 

objects of different geometries, especially those with rare 

shapes, Corner Proposal Network (CPN) [50] (Figure 9 (d)) 

proposed to use CornerNet [40] as the proposal generation 

network to generate proposals. Based on keypoints generated 

by CornerNet, CPN assigns each valid pair of keypoints as a 

proposal box. These proposal boxes are then classified by the 

second stage of the network. In the study [36], GA-RPN 

(Figure 9 (e)) was developed to generate high-quality proposal 

boxes with learnable shapes. GA-RPN includes two subnets 

for predicting location and shape of proposal boxes. In the 

location prediction subnet, a 1×1 convolution layer is first 

applied to each feature map on the feature pyramid to obtain 

corresponding objectness score map. Each objectness score 

map is then converted to probability values via an element-

wise sigmoid function. The probability maps generated by the 

location prediction subnet indicate possible locations of 

objects. Proposal boxes are generated based on these possible 

locations so that most false boxes are eliminated. In the shape 

prediction subnet, a 1×1 convolutional layer is applied to base 

feature map to generate a two-channel map that contains the 

values to update the width and height of objects by an element-

wise transform layer. GA-RPN is applied to multiple feature 

maps, and parameters are shared across all feature levels. 

Recently, SC-RPN [51] introduced a novel region proposal 

approach (Figure 9 (f)) which aims to tackle the correlation 

issue of classification score and location accuracy in RPN as 

well as the shortcomings of anchor-based representations used 

in RPN. SC-RPN is specially designed for object detectors 

based on point representations. The initial offsets, which 

represent coarse object boundary, are first predicted from input 

feature maps. A feature alignment operation is then carried out 

to produce secondary offsets and classification scores. Final 

offsets are generated by combining initial offsets and 

secondary offsets to form refined bounding box. The 

experimental results showed that SC-RPN is very effective 

when replacing RPN in two-stage object detectors. 

 

3.3.1 Comparison and analysis 

In comparison with the original Region Proposal Network 

(RPN), both Iterative RPN [48] and Cascade RPN [15] present 

significant improvements. Iterative RPN enhances recall @0.7 

by 8.8 points and average recall (AR) by 4.8 points on the 

ImageNet DET val2 set. However, it introduces increased 

complexity due to the iterative proposal refinement process, 

leading to a trade-off between performance and computational 

cost. On the other hand, Cascade RPN, which incorporates 

dilated and adaptive convolution at each refinement stage, 

augments anchor features with more semantic information, 

enhancing the localization capabilities of the network. Despite 

the 13.4 points AR improvement on the COCO 2017 val split 

set, Cascade RPN introduces a higher level of complexity and 

computational cost compared to traditional RPN, making it 

less optimal for resource-constrained applications. Recently, 

SC-RPN [51] integrated point representations into the region 

proposal approach, improving the localization capability of the 

region proposal network and outperforming previous proposal 

generation methods. Specifically, it enhances AR1000 

significantly compared to RPN, Iterative RPN, GA-RPN [34], 

and Cascade RPN on the COCO 2017 val split set. The 

integration of SC-RPN boosts Faster R-CNN detection 

performance by 3.8 points mAP on the COCO 2017 test-dev 

split. However, this technique may have higher computational 

demands due to the additional point representation integration 

process. Despite this, SC-RPN presents a promising research 

direction for generating high-quality object proposals, an area 

which has received relatively less attention recently, thereby 

demonstrating its potential for driving advances in object 

detection tasks. 

 

3.3.2 Open issues 

The quality of the proposal boxes generated by the proposal 

generation network plays a vital role in the overall detection 

performance of two-stage object detection frameworks. 

Despite this, the proposal generation network has somewhat 

been overshadowed by the detection network in recent 

research. Addressing this imbalance, we suggest focusing on 

several key areas: 

Firstly, we need to delve into the distinction in optimization 

targets between classification and regression within the 

proposal generation network. The potential discord between 

these two branches might lead to the generation of substandard 

proposals. To tackle this, an adaptive loss function could be 

developed that can balance the optimization between the two 

tasks. This might involve further research into multi-task 

learning and loss functions that can dynamically adjust their 

weights based on the training progress. 

Secondly, the results of SC-RPN [51] demonstrated that the 

proposal generation network using point representation 

scheme produces proposals with enhanced fitting ability. 

Hence, there is a need to design an optimized proposal 

generation structure grounded in the point representation 

scheme. This could involve the development of algorithms that 

can better capture spatial and semantic relationships between 

different points. Alternatively, the application of advanced 

point cloud processing methods or attention mechanisms 

might further enhance the representational power of the point-

based proposals. These suggested areas of research may 

contribute to the development of high-quality proposal 

generation strategies that can ultimately enhance the overall 

performance of two-stage object detection frameworks. 

 

 

4. OBJECT PREDICTION STAGE 

 

In the object prediction stage, proposal features are first 

extracted by a proposal extraction method based on proposals 

and feature maps generated by the proposal generation stage. 

A detection head is then employed to classify each proposal to 

one of the classes and further regress its bounding box. Since 

multi-stage object detection frameworks usually adopt fully 

connected layers in the detection head, proposal extraction 

method needs to extract fixed-sized feature maps for each 

proposal so that the detection head can share parameters over 

proposals. Many early deep object detectors employ RoI 

pooling scheme as proposal extraction method. However, 

quantization process in RoI pooling scheme causes 

misalignments between proposal and extracted features. 

Recently, RoI Align, Deformable RoI Pooling, and 

Discriminative RoI Pooling have been proposed to alleviate 

this problem. For the detection head, region-based 

convolutional neural network (R-CNN) dominates the field of 

two-stage object detection frameworks. R-CNN shares a head 

for both classification and bounding box regression, which 

causes spatial misalignment between the two branches. 

Various methods have been proposed in recent years to tackle 

this problem. These methods can be divided into two groups: 
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localization sensitive scores-based methods and task-specific 

structure methods. While localization sensitive scores-based 

methods produce a localization sensitive score for each 

proposal to update its classification score, task-specific 

structure methods propose to design different structures for 

different tasks. 

 

4.1 Recent techniques in proposal extraction 

 

Proposal extraction aims to generate proposal features 

based on proposal boxes and feature maps generated by the 

first stage. Proposal features are then fed to the detection 

network to produce final results. Since the detection head in 

multi-stage object detectors usually contains fully connected 

layers, a proposal extraction method needs to be designed to 

extract fixed-sized feature maps for each proposal so that the 

detection head can share parameters over proposals. Various 

object detection methods have been followed RoI Pooling [52] 

and RoI Align [53] scheme, which adopt quantization process, 

bilinear interpolation, and pooling operation to produce fixed-

sized proposals. Recently, Deformable RoI Pooling [54] and 

Discriminative RoI Pooling [55] have been introduced based 

on deformable convolution to generate offsets added to 

proposal features to produce fixed-sized proposal feature maps 

with more nearby semantic information to improve the 

localization capability of the detection network. In the 

following, we analyze in detail these proposal extraction 

methods. 

 

4.1.1 RoI pooling 

RoI Pooling was first introduced in Fast R-CNN [52]. This 

proposal extraction scheme is a special case of spatial pyramid 

pooling [89] with only one pyramid level. RoI Pooling is used 

to reshape input proposals with arbitrary size into output 

proposals with fixed size to overcome the size constraint in 

fully connected (FC) layers in R-CNN subnet. In RoI Pooling 

process, a ℎ × 𝑤  proposal is first divided into ℎ′ × 𝑤′ 
proposal of approximate size ℎ/ℎ′ × 𝑤/𝑤′, where (ℎ′, 𝑤′) is 

the proposal shape required by FC layers. Max pooling is then 

used to copy max values in input sub-regions to output value. 

The number of output channels is equal to the number of input 

channels for RoI Pooling layer. In Faster R-CNN [30], RoI 

Pooling takes two inputs: A feature map generated by the 

feature extraction network and n proposals generated by RPN. 

Because proposals are generated based on input image size, 

RoI Pooling first rescales proposals to feature map size by 

quantitating of coordinates on the feature map. Next, if the size 

of a proposal is larger than the fixed size RoI, max pooling is 

used to copy max values in input sub-regions to output value. 

Otherwise, if the size of a proposal is smaller than the fixed 

size proposal, it is enlarged by replicating some values to fill 

extra spaces. Figure 10 (a) illustrates the RoI Pooling scheme. 

RoI Pooling scheme has been used as proposal extraction 

method in many modern object detectors [91, 92]. However, 

the RoI Pooling scheme is not suitable in some cases, 

especially for detecting small objects. Due to information loss 

through pooling operation in CNN, feature representations of 

small objects become weaker in deeper CNN layers. As a 

result, filling extra space in output proposal with replicated 

values leads to destroying the original structure of small 

objects. In addition, the quantization process in RoI Pooling 

scheme leads to inaccurate representations due to 

misalignments between proposals and extracted features. 

These inaccurate representations prevent the detection 

network from correctly classifying small objects, which leads 

to a decrease in the detection performance of the whole 

network. 

 

 
 

Figure 10. Proposal extraction methods: (a) RoI Pooling; (b) RoI Align; (c) Deformable RoI Pooling; (d) Discriminative RoI 

pooling 

 

4.1.2 RoI align 

To alleviate misalignments between input proposal and 

extracted features due to quantization process in RoI Pooling 

scheme, RoI Align [53] first divides original proposals into 

𝑘 × 𝑘 sub-regions based on the size of the fixed RoI and the 

size of the pooling layer. Next, four sampling points are 

created within each sub-region. Based on sampling points, 

bilinear interpolation is applied in each sub-region to sample 

data for each sub-region. Finally, max pooling or average 

pooling is used to calculate corresponding values in input sub-

regions to output value. Figure 10 (b) illustrates RoI Align 

scheme. Since RoI Align removes quantization process in RoI 

Pooling, it properly aligns the extracted features with the input 

proposal. As a result, RoI Align significantly improves the 

detection performance compared with RoI pooling scheme. 

RoI Align scheme has become standard proposal extraction 

scheme in recent object detectors [93-95]. 

 

4.1.3 Deformable RoI pooling 

Deformable RoI Pooling [54, 96] (Figure 10 (c)) is a novel 
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proposal extraction scheme based on deformable convolution 

[54]. Deformable RoI Pooling adds a fully connected layer 

after the pooled feature map generated by RoI Pooling scheme 

to learn the normalized offsets which are then augmented with 

the RoI shape by element-wise product to generate offset 

values. The offset values are used to add an additional offset 

to each sub-region of the pooled proposal to produce output 

proposal. Deformable RoI Pooling helps to produce proposals 

with more nearby semantic information, thus enhancing the 

localization capability of the detection network, especially for 

non-rigid objects. 

 

4.1.4 Discriminative RoI pooling 

Based on Deformable RoI pooling, D2DET [55] introduced 

Discriminative RoI Pooling, a novel proposal extraction 

scheme (Figure 10 (d)) which adds adaptive weighting to input 

sub-region to produce output proposals with discriminative 

features. First, based on input proposals, RoI Align is applied 

after the input feature map to obtain 𝑘/2 × 𝑘/2 sub-regions, 

where 𝑘 is the output size. These sub-regions are fed into a 

fully connected layer to learn corresponding offsets. At the 

bottom path, RoI Align is also used to produce 2k sub-regions 

from the input feature map. This pooled feature map is then 

augmented with offset values generated by the top path to 

produce output proposal. After generating 4 sampling points 

in each sub-region, an adaptive weighted pooling layer is 

applied to add an adaptive learnable weight for each sampling 

point. Finally, an average pooling operation with stride of 2 is 

used to produce output proposal. With learnable weights for 

each sampling point and the predicted offsets added to each 

sub-region, the output proposal contains discriminative 

information relevant to both the object and its context, which 

further improves the classification capability of the detection 

network. 

 

4.1.5 Performance summary 

Based on Mask R-CNN [53], RoI Align scheme improves 

AP by about 3 points over RoI Pooling scheme on the MS 

COCO minival set. By fixing the misalignment between 

proposals and extracted features, RoI Align scheme has a large 

impact on the subsequent detection network. On the other hand, 

Deformable RoI Pooling scheme produces minor performance 

gains, about 0.3 points mAP@0.5, compared with RoI Pooling 

scheme on the VOC 2007 test images. When using both 

deformable convolution and Deformable RoI Pooling scheme, 

Faster R-CNN achieves significant accuracy improvements, 

especially at the strict mAP@0.7. The results show that 

Deformable RoI Pooling scheme obtains the best performance 

when combined with deformable convolution layers for 

extracting object features. Since the Discriminative RoI 

Pooling scheme is specially designed for the subsequent 

classification network, it produces noticeable performance 

gains. Specifically, by replacing RoI Pooling scheme by 

Discriminative RoI Pooling scheme, Faster R-CNN with FPN 

baseline improves the detection performance from 38 to 39.3 

AP on the COCO minival. 

 

4.1.6 Open issues 

Since proposal extraction module produces fixed-sized 

proposal feature maps for the subsequent detection network, 

extracted proposal feature maps need both precise localization 

and discriminative features so that the classification and 

regression branches in the subsequent detection network 

produce high-quality results. D2Det [55] is the first framework 

that addresses this problem. However, D2Det proposed 

Discriminative RoI Pooling scheme for producing proposal 

maps with more discriminative features to facilitate the 

subsequent classification performance. The regression branch 

is still based on proposal maps generated by RoI Align scheme. 

For this reason, it is necessary to develop an efficient proposal 

extraction method to extract proposal features with both 

precise localization and discriminative features. 

 

4.2 Recent techniques in detection block 

 

Detection block is the final module in two-stage object 

detection pipelines. It serves as the crucial finale in two-stage 

object detection pipelines, converting proposal features 

derived from the proposal extraction mechanism into final 

predictions. In contrast to one-stage object detectors that 

generally use a fully convolutional detection head for 

enhanced processing speed, two-stage counterparts opt for 

detection heads with fully connected layers to prioritize 

detection accuracy. In Fast R-CNN [52], a region-based 

convolutional neural network (R-CNN) (Figure 11 (a)) is 

designed to classify proposals into one of the classes and better 

regress the bounding box for the proposal according to the 

predicted class. R-CNN first takes proposal features generated 

by RoI pooling as inputs. Two fully connected layers with 

ReLU activation followed by two parallel fully connected 

layers are adopted for generating different outputs: a fully 

connected layer with (N+1) units, where N is the total number 

of classes, is used to produce class scores and a fully connected 

layer with 4N units is used to generate regression offsets for 

each positive class. R-CNN shares a head for both 

classification and bounding box regression. We call this 

detection head as the shared detection head in this paper. R-

CNN dominates the field of two-stage object detection 

frameworks as it has been used in many modern object 

detectors. Later, R-FCN [56] proposed to replace the fully 

connected layers in R-CNN by fully convolutional layers to 

further improve the efficiency of the detection network. R-

FCN first generates position-sensitive score maps based on 

input feature maps and then employs a position-sensitive RoI 

pooling layer to calculate the class score and box offsets for 

each proposal. R-FCN achieves competitive accuracy 

compared with Faster R-CNN while improving inference and 

training speed. The shared detection head for classification and 

localization has become a standard component in deep 

learning-based object detectors and has been leading the 

fashion of the object detection community in the past years. 

However, the spatial misalignment between classification and 

regression branches in the shared detection head limits its 

detection performance. To be more specific, for each proposal 

generated by the proposal extraction module, features in 

salient locations contain rich semantic information which 

facilitates the classification performance while border features 

with more location information would improve bounding box 

regression performance. Thus, with the same spatial box, 

different optimization targets between classification and 

regression branches produce low-quality detection results. 

Recently, various methods have been tried to modify R-CNN 

architecture in many aspects to obtain better detection 

performance. These methods can be divided into two groups: 

methods based on localization sensitive scores and methods 

based on task-specific structure. The crux of this approach lies 

in generating a specific score for each proposal based on the 

intersection-over-union (IoU) between the proposal box and 
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its corresponding ground truth box. This score essentially acts 

as a measure of localization accuracy and is used to update the 

classification scores, thereby improving the accuracy of 

proposals and preventing accurate proposals from being 

disregarded in the post-processing stage. By focusing on the 

spatial alignment of the proposal box with the ground truth, 

these methods underscore the importance of accurate 

localization in object detection tasks. Alternatively, task-

specific structure methods propose to design different 

structures for different tasks. These methods directly modify 

current structures in the classification or regression branch of 

the shared detection head or design new structures for 

generating different proposal features for different tasks. 

 

4.2.1 Methods based on localization sensitive scores 

Methods based on localization sensitive scores usually 

adopt IoU values between proposal boxes and the 

corresponding ground truth boxes to update the classification 

scores to alleviate the suppression failure due to the 

misalignment between classification and localization in the 

shared detection head. For this purpose, IoU-Net [57] (Figure 

11 (b)) introduced an IoU predictor branch in the detection 

head which includes 2 FC layers to produce the IoU values 

between detected proposal boxes and their corresponding 

ground truth boxes. The predicted IoU values are used to 

replace classification score in post-processing stage to 

accurately suppress abundant proposal boxes. Classification 

scores of remaining proposals are also updated. Based on the 

IoU predictor branch, IoU-Net also designed an optimization-

based bounding box refinement approach that replaces the 

traditional regression scheme to improve the localization 

accuracy. Similar to IoU-Net, Tan et al. [58] proposed a rank-

NMS subnetwork (Figure 11 (c)) which can be inserted into 

the detection head of two-stage object detectors to produce a 

ranking score for each proposal. Ranking scores are first 

calculated based on proposals and the corresponding ground 

truth bounding boxes. Then, ranking scores are fused with 

classification scores to generate final confident scores which 

are used as reliable criteria for suppressing abundant bounding 

boxes in the post-processing stage. The authors also designed 

a ranking loss to supervise the generation of ranking scores, 

which encourages candidates with high IoU value to rank 

higher. To overcome high-quality object detection challenges, 

Cascade R-CNN [16] proposed a multi-stage object detection 

pipeline that repeats the detection head with increasing IoU 

thresholds to produce high-quality detection results (Figure 11 

(d)). At each stage of the detection head, R-CNN with a 

classifier and a regressor is employed to produce predictions 

based on previous bounding boxes and corresponding IoU 

thresholds. The IoU threshold is increased through each stage 

so that the resampling progressively improves bounding box 

quality, thus producing precise object bounding box at the 

final detection stage. 

 

4.2.2 Methods based on task-specific structure 

Methods based on task-specific structure try to separate 

classification and regression branches in the detection head to 

mitigate the potential conflicts between the two subtasks. For 

this purpose, Grid R-CNN [59] proposed a grid guided 

mechanism based on fully convolutional network (FCN) [89] 

for high-quality localization. Based on the shared detection 

head mechanism in two-stage object detectors, Grid R-CNN 

replaces the traditional regression branch by a grid prediction 

branch for localization task (Figure 11 (e)). The grid prediction 

branch employs a fully convolutional network to produce a 

probability heatmap which can be used to locate grid points 

representing object bounding boxes. In addition, precise object 

bounding boxes are obtained through a feature information 

fusion based on grid points. Similar to Grid R-CNN, D2Det 

[55] proposed a two-stage detection pipeline that separates the 

classification and regression into two branches. D2Det 

replaces the traditional regression branch by a dense local 

regression branch which produces multiple offsets for each 

proposal based on a fully convolutional network (Figure 11 

(f)). At each location of the candidate proposal, the dense 

regression branch produces offsets representing the distances 

from the location to the top-left and bottom-right corners of 

the ground-truth bounding box. To alleviate weak box 

representations due to background features, a binary overlap 

prediction is designed to eliminate local features that belong 

to background regions. Recently, Song et al. [60] proposed a 

task-aware spatial disentanglement module (TSD) to alleviate 

the inherent misalignment between classification and 

regression in the shared detection head scheme (Figure 11 (g)). 

Based on proposals generated by a proposal extraction layer, 

TSD first employs pointwise deformation and proposal-wise 

translation mechanism to produce disentangled proposals. 

Then, classification-specific feature map and localization-

specific feature map are generated based on disentangled 

proposals. Finally, these task-specific feature maps are fed into 

two parallel branches with three FC layers for classification 

and regression tasks. By using different feature maps for 

different tasks, TSD enables each task to adaptively learn the 

optimal feature without hurting each other, thus improving the 

overall detection performance. Wu et al. [61] proved that a 

fully connected head produces a more accurate classification 

score while a convolution head generates more accurate 

bounding box regression. Based on this, they proposed a 

double-head method which splits the detection head into a 

fully connected head (fc-head) and a convolution head (conv-

head) (Figure 11 (h)). The fc-head includes three FC layers for 

classification task. The conv-head contains k residual blocks 

followed by an average pooling layer for bounding box 

regression task. Both heads adopt proposals produced by a RoI 

Align layer to generate final predictions. 

 

4.2.3 Comparison and performance summary 

Table 2 shows the comparison and performance summary. 

IoU-Net [57] is the first framework that explores the 

misalignment between the two branches in the shared head 

structure. By introducing an extra branch in the detection head 

to predict the IoU values which are used as the localization 

confidence scores, IoU-Net with ResNet101-FPN improves 

2.1 points AP on the MS-COCO minival set compared to 

Faster R-CNN with the same baseline. Similar to IoU-Net, by 

adding a rank-NMS subnetwork in the detection head to 

update classification scores, Learning-to-Rank [58] improves 

about 3.3 points AP on the Pascal VOC 2007 compared with 

Faster R-CNN with the same baseline. Compared with 

Cascade R-CNN [16], Learning-to-Rank achieves a noticeable 

improvement at strict IoU value. On the other hand, Grid R-

CNN [59], which replaces the traditional regression branch by 

a grid prediction branch for localization task, achieves 3.6 

points higher AP than FPN on the Pascal VOC dataset. 

Recently, D2Det [55] with dense local regression branch 

outperformed Grid R-CNN by 5.4 points AP on the MS COCO 

test-dev set. One approach, TSD [60] reported improvements 

of 13.2 points and 4.9 points AP on the COCO test-dev set 

1603



 

compared with Faster R-CNN and Grid R-CNN with the same 

FPN baseline. 

 

4.2.4 Open issues 

Since IoU-Net explored the shortcomings of R-CNN, 

various studies have tried to modify the detection head 

structure in different aspects to improve its performance. 

While methods based on localization sensitive scores employ 

IoU values generated by an additional branch to update 

classification scores, methods based on task-specific structure 

directly modify current detection head to implement different 

subtasks. Although these methods achieve certain 

improvements, we argue that there is a room for developing 

more profound solutions to alleviate the constraint, such as an 

appropriate method that combines both localization sensitive 

scores and task-specific structure. 

 

 
 

Figure 11. The structure of the detection head: (a) R-CNN; (b) IoU-Net; (c) Learning-to-Rank; (d) Cascade R-CNN; (e) Grid R-

CNN; (f) D2Det; (g) TSD; (h) Double-Head 

 

Table 2. Comparison and performance summary 

 
Method Improvement Points (AP) Benchmark Set Comparison Baseline 

IoU-Net [57] 2.1 MS-COCO minival set Faster R-CNN 

Learning-to-Rank [58] 3.3 Pascal VOC 2007 Faster R-CNN 

Grid R-CNN [59] 3.6 Pascal VOC 2007 FPN 

D2Det [55] 5.4 MS-COCO minival set Grid R-CNN 

TSD [60] 13.2 against Faster R-CNN, 4.9 against Grid R-CNN MS-COCO minival set Faster R-CNN, Grid R-CNN 
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5. OTHER PROBLEMS 

 

5.1 Recent techniques in post-processing 

 

In two-stage object detection frameworks, anchor box and 

proposal are fed into the proposal generation and detection 

network to determine whether the anchor box or proposal is 

associated to any ground truth class. This mechanism may 

produce many duplicate predictions since anchor boxes or 

proposals usually overlap with each other. As a result, a 

method is required to filter out duplicate predictions. Most 

early deep object detectors heavily rely on GreedyNMS 

algorithm as a post-processing stage to remove duplicate 

results. For example, Faster R-CNN employs GreedyNMS in 

both proposal generation module and detection head to 

suppress duplicate results (Figure 12). GreedyNMS starts with 

a list of proposal boxes 𝐵 = {𝑏1, 𝑏2, . . , 𝑏𝑖} with corresponding 

scores 𝑆 = {𝑠1, 𝑠2, . . , 𝑠𝑖} . A proposal box 𝑏𝑀  with the 

maximum score 𝑀 is first appended to the set of final proposal 

box 𝐹. This proposal box is then removed from 𝐵. Next, all 

proposal boxes that overlap with 𝑏𝑀  and have IoU values 

larger than a threshold (e.g., 0.5) are also removed from 𝐵. 

This process is repeated until 𝐵  is empty to generate final 

proposal boxes 𝐹 = {𝑓1, 𝑓2, . . , 𝑓𝑛} . GreedyNMS works well 

with the assumption that multiple objects rarely occupy the 

same location in an image. However, in many scenarios, 

especially in crowded or dense scenes, objects may heavily 

overlap with each other, thus some objects are very likely to 

be mistakenly suppressed by GreedyNMS, thus reducing the 

precision of the network. In some cases, we may increase the 

overlap threshold to reduce mistakenly suppressed objects. 

However, this may bring in plenty of false positive results, 

which also reduces the precision of the network. Recently, 

various studies have tried to modify GreedyNMS in many 

aspects to tackle the inherit drawback of GreedyNMS and 

obtain better detection performance. Instead of removing 

overlapped bounding box based on IoU threshold, Soft-NMS 

[62] updates bounding box scores at each iteration based on a 

continuous penalty function which reduces bounding box 

scores for high overlapped boxes and maintains bounding box 

scores for low overlapped boxes. This scheme decays the 

confident scores of overlapped bounding boxes rather than 

directly removing them, thus eliminating the mistakenly 

suppressed problems. Similar to Soft-NMS, IoU-guided NMS 

[57] proposed to rank detected bounding boxes by the 

predicted IoU values generated by the IoU predictor branch in 

the detection head instead of classification scores. After 

removing abundant proposal boxes, IoU-guided NMS updates 

classification scores for remaining boxes. IoU-guided NMS 

resolves the misalignment between classification confidence 

and localization accuracy since it keeps proposals with high 

localization accuracy. However, IoU-guided NMS can only be 

applied in the second stage of two-stage object detectors. 

Based on GreedyNMS or Soft-NMS, Adaptive-NMS [63] 

proposed to replace the fixed IoU threshold value by an 

adaptive threshold value for detecting pedestrians in crowded 

scenes. With the dynamic threshold value, overlapped 

bounding boxes are preserved in crowed regions and 

suppressed in sparse regions. To identify the density of each 

bounding box, an extra convolutional subnet is designed to 

produce a density map. The density map is also used to set 

different IoU threshold values for different bounding boxes. 

Adaptive-NMS requires an extra structure for predicting 

density and adaptive threshold, which takes more parameters 

and computational cost. Different from NMS-based methods, 

MaxpoolNMS [64] introduced a novel approach to suppress 

duplicate proposals in the proposal generation stage. The 

proposed approach is based on a novel multi-scale multi-

channel max-pooling strategy which avoids computing the 

IoU between detected proposals and ground truth boxes, thus 

significantly improving the speed compared with GreedyNMS. 

After max-pooling operations, proposals are sorted by their 

scores, and a set of proposals with high scores are fed into the 

object prediction stage. 

Another line of research is to design a learnable deep 

network to replace GreedyNMS. In Learning NMS [65], Gnet 

is designed to replace GreedyNMS to re-score all detected 

proposals based on proposal boxes and their scores. Gnet 

includes several blocks which first take features of detections 

as inputs and then produce updated features based on their 

neighboring features. The last block in Gnet generates a new 

detection score for each detection. With repeated blocks in the 

structure, Gnet performs a rescoring task which decreases the 

score of proposals that cover object that has been detected 

already. Similar to Gnet, Relation networks [66] introduced a 

light-weight relation network to replace the traditional NMS 

method. In relation to network, duplicate removal can be seen 

as a two-class classification problem. The network takes a set 

of detected proposal boxes as inputs and outputs a binary 

classification score for each proposal box which represents 

duplicate probability of the proposal. By employing relation 

module, relation network is an end-to-end learning method 

with information from different sources such as bounding 

boxes or classification scores. 

 

 
 

Figure 12. Faster R-CNN with GreedyNMS as a post-

processing stage 

 

5.2 Recent techniques in sampling strategy 

 

During the training process, two-stage object detectors need 

to define positive and negative samples from the training 

samples to train each subtask in each stage of the network. The 

way of defining positive and negative samples is a crucial 

problem for training the network. Most early deep learning-

based object detectors adopt random sampling as a sampling 

strategy. In Faster R-CNN [30], a mini-batch which consists 

of 128 positive examples and 128 negative examples is 

randomly sampled to train RPN. If the number of positive 

examples is less than 128, the mini batch is padded with 

random negative examples. Here, an example is considered as 

positive example if it has the highest IoU with a ground truth 

box or has an IoU higher than 0.7 with any ground truth box. 

An example with IoU lower than 0.3 for all ground-truth boxes 

is assigned as negative example. Although random sampling 

is simple and easy to implement, it is not an effective strategy 

to generate training samples since selected samples are easy to 
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be dominated by easy samples. Recently, it has been found that 

focusing on hard samples (samples that bring higher loss 

values) is an effective strategy to improve the training results 

of object detectors. Based on this idea, OHEM [97] and Focal 

Loss [6] proposed a new strategy and loss function to focus the 

training process on hard samples. OHEM and Focal Loss 

alleviate sampling problems in one-stage object detectors. 

However, these methods show little improvement when 

extended to two-stage object detectors since easy samples are 

filtered by the second stage. In this section, we focus on recent 

sampling strategies proposed to improve the two-stage object 

detection training process. 

For the purpose of solving sample imbalance problem in 

training object detectors, Libra R-CNN [25] introduced a 

novel sampling method based on the IoU values of examples. 

In the IoU-based sampling method, the sampling interval is 

first divided into K bins based on IoU values. Then, negative 

examples are sampled equally within each bin to promote the 

selected probability of hard negatives which have high IoU 

values. Compared with random sampling method proposed in 

Faster R-CNN, IoU-based sampling method improves AP by 

0.9 points on the COCO 2017 val split set. Prime Sample 

Attention (PSA) [68] is an innovative approach to object 

detection that concentrates the training process on a specific 

subset of training samples, referred to as prime samples. These 

prime samples are characterized by their high Intersection over 

Union (IoU) values for positive samples and large foreground 

classification scores for negative samples, indicating that they 

provide substantial information for the detection process. The 

technical process of generating prime samples involves two 

distinct ranking systems. The first one, called the IoU-HLR 

scheme, sorts positive samples based on their IoU values. A 

high IoU score represents a substantial overlap between the 

ground truth and the predicted bounding box, indicating a 

better detection. The second ranking system, Score-HLR 

scheme, is employed for negative samples. In this scheme, 

samples are ranked based on their classification scores, where 

a large score implies that the negative sample has a high 

likelihood of being misclassified as a foreground object. This 

score provides a measure of potential confusion or 

misclassification, which is invaluable for improving the 

model's precision. Following the ranking process, the top 

samples in each ranked list, those with the highest IoU or 

classification scores, are selected as prime samples. To further 

improve the training process, PSA introduces a soft sampling 

strategy, which includes positive sample reweighting and 

negative sample reweighting. The strategy assigns different 

loss weights to prime samples based on their significance. 

Higher importance is assigned to those prime samples that are 

difficult to detect or classify, providing them with more 

attention during the training process. This approach ensures 

that the model learns more from challenging examples, 

thereby enhancing its overall detection accuracy and 

robustness. Another approach is to automatically produce 

positive and negative samples based on statistical 

characteristics of an object. For this purpose, Zhang et al. [69] 

proposed a novel sampling strategy called adaptive training 

sample selection (ATSS). The ATSS first defines a set of 

candidate positive samples for each object based on the center 

distance between samples and ground truth. The IoU threshold 

value for the ground truth is obtained based on mean and 

standard deviation of IoU values between candidate samples 

and ground truth. Finally, candidates are divided into positive 

and negative samples based on the IoU threshold value. More 

recently, motivated by the observation that the problem of 

sampling inconsistency between the two stages in two-stage 

object detectors limits their detection performance, SC-RPN 

[51] designed a size-aware dynamic sampling method to 

ensure the sampling consistency between the two stages while 

producing training samples. The Size-Aware Dynamic 

Sampling (SADS) method proposed in SC-RPN offers a two-

fold approach to object detection. It involves two integral 

modules: a Positive Region Assigner (PRA) and a Size-Aware 

Threshold Assigner (SATA). PRA employs an anchor-free 

sampling strategy for the first stage of training. Anchor-free 

strategies do not predefine a set of anchor boxes, but instead 

allow the model to predict bounding boxes and their associated 

class labels directly. This approach tends to provide more 

flexibility and can help the model to better adapt to the varied 

scale and aspect ratio of objects. SATA, on the other hand, 

uses an anchor-based sampling strategy for the second stage. 

In this context, predefined anchors, typically in various shapes 

and sizes, serve as references for proposal generation. This 

anchor-based approach provides a set of starting points for 

prediction, which can help in tackling complex scenes with 

overlapping objects. What makes this strategy dynamic is the 

way it assigns different samples to different feature maps 

based on their sizes. For instance, smaller objects are assigned 

to higher resolution feature maps, while larger objects are 

assigned to lower resolution maps. This size-aware approach 

ensures that objects of all sizes are effectively detected. 

Moreover, SATA assigns different overlapping threshold 

values to different ground truth boxes. Overlapping thresholds 

help to determine whether a proposal should be considered a 

positive or negative example during the training process. 

Adjusting these thresholds based on the size of the ground 

truth boxes can further improve detection performance. This 

strategy ensures consistency between the two stages of the 

training process in terms of the location, size, and quantity of 

samples. The consistent application of these techniques allows 

for a more comprehensive and effective learning process. 

 

 

6. CONCLUSIONS 

 

This paper presents an exhaustive review of recent progress 

in deep learning multi-stage object detection, with a 

concentrated focus on the evolution of network architecture 

designs. The analysis reveals a significant shift towards 

anchor-free detectors and end-to-end trainable frameworks, 

reflecting the continuous pursuit of more efficient and precise 

models within the field. This trajectory—tracing from 

groundbreaking detectors such as R-CNN and Faster R-CNN 

to contemporary models like RetinaNet—has been 

meticulously explored. The progressive adaptation and 

enhancement of the R-CNN architecture by subsequent 

models were observed, with each iteration addressing specific 

shortcomings of its precursors. For example, Faster R-CNN 

enhanced the original R-CNN by integrating a Region 

Proposal Network (RPN) for proposal region generation, 

thereby significantly accelerating the detection process. In a 

similar vein, RetinaNet tackled the class imbalance issue 

intrinsic to one-stage detectors, leading to improved detection 

accuracy. 

In reviewing a diverse range of optimization strategies for 

each module of multi-stage object detection frameworks, it 

was noted that each approach possesses its unique advantages 

and setbacks. Certain methods offer computational efficiency 
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but may not attain peak accuracy, while others prioritize 

accuracy, often resulting in extended training and inference 

times. Despite these advancements, substantial open 

challenges persist in object detection, such as efficiently 

training models on extensive datasets, creating frameworks 

that can adeptly manage objects of varied scales, and 

enhancing detection performance for small objects. Although 

various solutions have been proposed to address these 

challenges, ample room for enhancement remains. 

In the foreseeable future, we anticipate the continued trend 

towards anchor-free detectors and end-to-end trainable 

frameworks, as these models have exhibited encouraging 

results. It is the aspiration that this survey will serve as an 

insightful reference for researchers and practitioners in the 

development of innovative object detection models. Moreover, 

it is hoped that this work will inspire further research on the 

identified challenges, propelling the boundaries of what is 

currently achievable in the domain of generic object detection. 
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