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The goal of this paper is to estimate the percentage structure of electricity generation 

by type of technology in Mexico for the period 1992-2016. Modern portfolio theory 

and the capital asset pricing model of Sharpe and Litner were used. Results show that 

using only portfolio theory is not possible to find non-negative percentages in all the 

technologies. When a risk-free asset is included, there is a region where all technologies 

have a positive participation in electricity generation. The efficient frontier is found at 

20% for wind technology share and for the rest of technologies, shares are almost 

equally – distributed among them. 
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1. INTRODUCTION

One of the programs for electricity generation forecast by 

the Centro Nacional de Energía (CENACE-National Center 

for Energy Control) based on cost structure by technology type 

and existing capacity is constituted by the optimization model 

based on the branch and bound algorithm (Branch and Bound). 

The PLEXOS option of this algorithm is solved by linear 

programming (LP), that is to say, without the existence of 

integrity conditions over the variables [1]. 

Taking into account installed capacity, in 2017 structure 

according to electricity generation technology behaved as 

follows: for combined-cycle (CC) 50%; for thermoelectric 

power (TCC) 19.4%; for carboelectric power (CAR) 9.3%; of 

hydroelectric power (HIDRO) 9.7%; of nuclear generation 

(NUC) 3.3%; of wind power (EOLO) 3.2% and, of geothermal 

and biofuel technology 4.9%. For 2032, CENACE's energy 

mix is estimated as follows: of combined cycle 41.9%; of 

conventional thermoelectric power 10.1%; of carboelectric 

power 3.2%; of hydroelectricity 11.4%; geothermal energy 

1.5%; of nuclear power 4.4%; of wind power 14.6%, and the 

remaining being a combination of geothermal, solar 

photovoltaic, biomass and efficient cogeneration. 

Purpose of this work is to contrast cost structure per 

forecasted technology for the year 2032 using the least-cost 

method (currently used by CENACE) with option of mean-

variance approach for Mexico. To this effect, the efficient 

frontier of asset portfolio will be generated according to the 

return-risk pair. This description is due to the approach goal 

which is based on obtaining the efficient technology portfolio 

implying to expose society to the risk minimum level 

necessary related to electricity generation. 

2. STATE OF THE ART

At international level and especially during the last decade, 

it is possible to find a significant number of releases on the 

same topic [2-11]. 

Nevertheless, in Mexico, just four papers with the same 

subject are known. Auwerbach's work reveals that portfolio's 

return (the set of percentages assigned to each type of energy) 

for 2010 (foreseen with 2002 data) under the lower cost 

concept of electricity generation (commonly used by the 

Comisión Federal de Electricidad) which, theoretically 

speaking, is far from belonging to the group of efficient 

portfolios and a cost of 4.8 dollar cents/kWh was estimated. 

Optimal portfolio (based on mean-variance approach) offers a 

considerable improvement. Without risk of increase, this 

portfolio decreases to 3.6-dollar cents/kWh (1/0.28), a 

reduction of 25%- or 1.2-dollar cents/kWh [12]. 

Beltran [13] reports that, in a forecast (carried out in 2008) 

of a portfolio by technology type of electricity levelized cost 

(for the year 2017) of Mexican authorities on these issues, 

based on the lower cost method, electricity generation system 

will depend 60% on natural gas-fueled combined cycle power 

plants to satisfy electricity demand in the country. Instinctively, 

it points out that this percentage represents a remarkably high 

reliance on fossil fuels source and, therefore, a high level of 

accompanying risk is implied. On the other hand, general 

expected return has a generation cost of 76.66 $/MWh and a 

portfolio risk of 0.22. The optimal portfolio with a cost level 

equal to that of the objective shows a possibility of having the 

same cost profile as the portfolio objective, but they achieve a 

lower level of risk exposure. In this case the risk factor is 

reduced from 0.22 to 0.124.  
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Gómez-Ríos [14] shows that geothermal and hydroelectric 

plants are key technologies to reduce risk due to fuel price 

volatility. Wind energy is risky in terms of completed capacity. 

Nuclear and coal plants are stable concerning capacity and 

operating costs. Thermal and gas technologies are the most 

vulnerable to variability in fuel prices. 

Gómez-Ríos and Juárez-Luna [15] estimate total levelized 

cost of generation with Externalities (CTNGE from Spanish 

acronym of Costo Total Nivelado de Generación con 

Externalidades - Total Levelized Cost of Generation with 

Externalities) of three base-load technologies: coal 

thermoelectric, combined cycle and nuclear power plant. 

Monte Carlo simulation is used to forecast probability 

densities of the CTNGE.  

Portfolio theory is used to find technologies mix providing 

the least risky CTNGE and with the least average. Nuclear 

plant is found to have the lowest CTNGE. Being the coal-fired 

thermoelectric the technology with the extensive and riskiest 

CTNGE. In electricity generation, analysis suggests that it 

would be most desirable to leave out coal-fired thermoelectric 

plant and focus on two technologies: combined cycle and 

nuclear power plant, assigning a higher participation to the 

latter. One of this work limitations is that CTNGE's probability 

densities estimated through Monte Carlo simulation depend on 

used data. Echeverría et al. [16] also point out it would be more 

convenient to choose nuclear technology for electricity 

generation based on actual options methodological criteria. 

 

 

3. METHODOLOGY 

 

In finance, investors use portfolio theory to minimize the 

risk and maximize the return of their portfolio by 

diversification. Some theories can be used in electricity 

generation planning to evaluate the addition of each new 

alternative on the basis of its contribution to the overall risk 

and cost of the generation mix and not on its stand – alone cost 

[5]. 

There are electricity generation technologies showing high 

correlations, according to their fuel and/or operation and 

maintenance costs among them (more substitutes) such as CC 

gas plants as well as those of fossil fuel and coal; likewise, 

other technologies with almost nil correlations (more 

complementary) can be identified, such as those using fossil 

fuels with those operating based on nuclear energy or with 

solar and wind technologies. Besides, there is also a possibility 

of technologies with a negative correlation, such as it is the 

case between Biomass and fuel derivatives [12]. 

These considerations are the basis for implementing 

optimization processes through theories involving mean-

variance use. Having this information, one of the most 

interesting questions in the electricity sector area is the 

following: what changes may be feasible in the energy mix of 

a country or region allowing to win in one of both dimensions 

(risk-return) of optimal portfolio without harming the other? 

Of course, among all efficient portfolios, the optimal choice 

depends on preferences of the energy policy consultant [17]. 

 

3.1 Set of efficient portfolios when all values are at risk 

 

On the Markowitz's portfolios optimization theory 

formalism, the main elements are a set of m assets. From each 

one of them arises a series in time of T data (measured in 

investment units); in the case of investment portfolios, they 

correspond to assets' closing prices. Thus, from which we 

obtain returns T-1, following Eq. (1): 

 

𝑟𝑡 = (𝑃𝑡 − 𝑃𝑡−1)/𝑃𝑡−1 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) (1) 

 

These returns T-1 form a series in time having those same 

elements number. 

 

3.2 Portfolios optimization problem 

 

Markowitz's attainment was to relate standard deviation 

with the risk, giving to the latter the task of assigning a 

quantitative measure. The problem of reducing the risk of a 

portfolio, given an expected return value, can be 

mathematically written as an optimization problem with m-

dimensional constraints that is given by: 

 

𝑚𝑖𝑛𝑥𝑝
𝐹(𝑥𝑝) (2) 

 

𝑠. 𝑡.  𝐸(𝑥𝑝) = 𝐸𝑝 (3) 

 

∑ 𝑥𝑖

𝑚

𝑖=1

= 1 (4) 

 

Solution to this problem is 𝑥𝑝
∗ , in such a way that it complies 

with being the minimum of all values of objective function 𝐹 

and additionally with the constraints that 𝐸(𝑥𝑝
∗ ) = 𝐸𝑝  and 

∑ 𝑥𝑖
∗𝑚

𝑖=1 = 1. 

We can change the optimization problem with m - 

dimensional constraints to a problem with no constraints m + 

2 - dimensional, using the Lagrange multipliers: 

 

𝑚𝑖𝑛(𝑥𝑝,𝜆1,𝜆2)𝐿: = 𝐹(𝑥𝑝) − 𝛾1𝑔1(𝑥𝑝) − 𝛾2𝑔2(𝑥𝑝) (5) 

 

where, 𝑔1 and 𝑔2 are defined using problem constrains: 

 

𝑔1(𝑥𝑝): = 𝐸(𝑥𝑝) − 𝐸𝑝 (6) 

 

𝑔2(𝑥𝑝): = ∑(𝑥𝑝)𝑖 − 1

𝑚

𝑖=1

 (7) 

 

3.3 Solving the problem with no constrains 

 

Conditions necessary to find a stationary point for the 

problem with no constrains are given by: 

 

𝛻(𝑥,𝜆1,𝜆2)𝐿 = 0 (8) 

 

The ∇(x,λ1,λ2)  operator means that we will perform m+2 

partial derivatives of L, we will accommodate them as 

components of a column vector and we equalize them to a 

column vector with zeros as components:  

 
𝜕

𝜕𝑥1

𝐿 = 0 ⋯
𝜕

𝜕𝑥𝑚

𝐿 = 0 
𝜕

𝜕𝜆1

𝐿 = 0,
𝜕

𝜕𝜆2

𝐿 = 0 (9) 

 

To find the stationary point  (𝑥𝑝
∗ , 𝜆1

∗ , 𝜆2
∗ )  is necessary to 

solve the algebraic equations system resulting from the 

solution of previous partial derivatives, which can be explicitly 

written as follows: 
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0 = ∑ 𝑥𝑗𝜎𝑖𝑗 − 𝛾1𝐸𝑖 − 𝛾2 · 1, 𝑖 = 1, … 𝑚

𝑚

𝑗=1

 (10) 

  
 

0 = 𝐸 − ∑ 𝑥𝑖𝐸𝑖

𝑚

𝑖=1

 (11) 

 

0 = 1 − ∑ 𝑥𝑖

𝑚

𝑖=1

 (12) 

 

Please note that we have omitted bars and asterisks from our 

previous notation so that (𝑥𝑝
∗)𝑗 = 𝑥𝑗 , 𝛾1

∗ = 𝛾1 y 𝛾2
∗ = 𝛾2. 

Here we can see that there are m+2 equations with m+2 

unknowns instead of a system of partial differential equations. 

For convenience we will go to the matrix form of the problem:  

 

(𝜎𝑥𝑇)𝑖 − (𝛾1𝐸)𝑖 − (𝛾21)𝑖 = 0, 𝑖 = 1, . . . , 𝑚 (13) 

 

0 = 𝐸 − 𝑥𝑇𝐸 (14) 

 

0 = 1 − 1𝑇𝑥 (15) 

 

The weights vector (column) 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚)𝑇  is the 

vector that contains the percentages (which will be a main part 

of the optimization problem together with the Lagrange 

multipliers 𝜆1  and 𝜆2.  We also specify that 𝑥𝑇 =
(𝑥1, 𝑥2, . . . , 𝑥𝑚) is a row or line vector of m inputs with the 

same components as 𝑥. Here 𝐸 = (𝜇1, . . . , 𝜇𝑚)𝑇 is the column 

vector containing the averages or means of historical data. On 

the other hand, 1 = (1, . . . ,1)𝑇  is the column vector of m 

components that only has entries with value 1. 

Making use of matrix notation to find the solution to the 

equations system:  

 

σ𝑥 − 𝛾1𝐸 − 𝛾21 = 0 (16) 

 

where, 0𝑇 = (0, … ,0)𝑇 is a column vector with zeros in all its 

inputs (components). We define the inverse matrix of 𝜎 as the 

one having the 𝑣𝑖𝑗  components: 

 

[𝜎−1]𝑖𝑗 = 𝑣𝑖𝑗 (17) 

 

Analytically speaking (meaning, beyond computers field) 

for the inverse matrix of σ, to exist, sufficient condition that 

must be met is that determinant must be different to zero. 

Therefore, by multiplying Eq. (16) by the inverse matrix we 

have: 

 

𝜎−1𝜎𝑥 − 𝛾1𝜎−1𝐸 − 𝛾2𝜎−11 = 𝜎−10 (18) 

 

note that 𝜎−1𝜎 = 1𝑚×𝑚 , where 1𝑚×𝑚  is the identity matrix 

that has ones on the diagonal and zeros in all the remaining 

entries. By multiplying inverse matrix by a vector, we obtain 

another same dimension vector as the initial one. And finally, 

we observe the simple multiplication 𝜎−10 = 0  on the 

equation's right side. 

Finally, the result of the above equation is: 

 

𝑥 − 𝛾1𝜎−1𝐸 − 𝛾2𝜎−11 = 0 (19) 

 

note that if 𝛾1 and 𝛾2 were known, then we would immediately 

have the solution values since vector 𝐸  and matrix 𝜎−1 are 

known or calculable from the problem data. Therefore, our 

task from now on is to find 𝛾1 and 𝛾2. 

We can write for the k-th component of Eq. (19) as: 

 

𝑥𝑘 = 𝛾1 ∑ 𝑣𝑘𝑗𝐸𝑗

𝑚

𝑗=1

+ 𝛾2 ∑ 𝑣𝑘𝑗

𝑚

𝑗=1

, 𝑘 = 1, … 𝑚 (20) 

 

Multiplying the previous equation by 𝐸𝑘  and adding on 𝑘 

we have: 
 

∑ 𝑥𝑘𝐸𝑘

𝑚

1

= 𝛾1 ∑ ∑ 𝑣𝑘𝑗𝐸𝑗𝐸𝑘

𝑚

1

𝑚

1

+ 𝛾2 ∑ ∑ 𝑣𝑘𝑗𝐸𝑘

𝑚

1

𝑚

1

 (21) 

 

which in matrix notation is: 
 

𝑥𝑇𝐸 = 𝛾1𝐸𝑇𝜎−1𝐸 + 𝛾21𝑇𝜎−1𝐸 (22) 
 

on this equation's right side we will use the definition of the 

return expected value of a portfolio in its matrix form, 𝑥𝑇𝐸 =

𝐸𝑝, where 𝐸𝑝 is a problem's data, thus: 

 

𝐸𝑝 = 𝛾1𝐴 + 𝛾2𝐵 (23) 
 

where two of the three Merton scalars have been defined: 

 

𝐴 = 𝐸𝑇𝜎−1𝐸 , 𝐵 = 1𝑇𝜎−1𝐸 (24) 
 

which can be calculated from the variance-covariance inverse 

matrix and from the means vector; therefore, they are values 

that can be considered problem's data. On the other hand, if we 

carry out the contraction operation, that is the sum of all the 

vector components 𝑥𝑘, we obtain: 
 

∑ 𝑥𝑘

𝑚

1

= 𝛾1 ∑ ∑ 𝑣𝑘𝑗𝐸𝑗

𝑚

1

𝑚

1

+ 𝛾2 ∑ ∑ 𝑣𝑘𝑗𝐸𝑘

𝑚

1

𝑚

1

 (25) 

 

This also has its matrix form, represented by: 
 

1𝑇𝑥 = 𝛾1𝐵 + 𝛾2𝐶 (26) 
 

where we can see that the third scalar, obtained from Merton 

is: 
 

𝐶 ≡ ∑ ∑ 𝑣𝑘𝑗

𝑚

1

𝑚

1

 (27) 

 

Left side of this Eq. (26) equals 1 as it is the budget 

constraint to which the problem is subject, and therefore: 
 

1 = 𝛾1𝐵 + 𝛾2𝐶 (28) 
 

Thus, a system of two equations with two unknowns is 

formed (𝛾1, 𝛾2) whose solution is: 
 

𝛾1 =
(𝐸𝐶 − 𝐵)

𝐷
, 𝛾2 =

(𝐴 − 𝐸𝐵)

𝐷
 (29) 

 

This solution can be seen immediately if we use Cramer's 

formula and if, besides, for this solution to exist, we ask that 

the discriminant 𝐵𝐶 − 𝐴2 = 𝐷 ≠ 0.  
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Once obtained (𝛾1, 𝛾2) we substitute in 1 system to obtain 

the solution: 
 

𝑥𝑘 =
𝐸 ∑ 𝑣𝑘𝑗(𝐶𝐸𝑗 − 𝐴)𝑚

1 + ∑ 𝑣𝑘𝑗(𝐵 − 𝐴𝐸𝑗)𝑚
1

𝐷
 

𝑘 = 1, … , 𝑚 

(30) 

 

3.4 Efficient frontier 

 

Graphically, the efficient frontier is described by all those 

points on plane 𝜎 − 𝐸 where for a certain given value of 𝐸𝑝 

we find minimum 𝜎𝑝 that a linear combination with weights 

𝑥𝑝 can give. 

To obtain the geometric place in 𝑅2  with axis of the 

abscissae equal to the risk 𝜎 and the ordinates axis equal to 

portfolio return 𝐸𝑝 , we construct an expression that relates 

these two quantities multiplying (10) by 𝑥𝑖 and adding of 𝑖 =
1, … , 𝑚: 

 

∑ ∑
𝑥𝑖𝑥𝑗𝜎𝑖𝑗 = 𝛾1 ∑ 𝑥𝑖𝐸𝑖

𝑚

1

+ 𝛾2 ∑ 𝑥𝑖

𝑚

1

𝑖 = 1, … 𝑚

𝑚

𝑗=1

𝑚

𝑖=1

 (31) 

 

Left side of this expression is the portfolio variance 

definition, that is to say, 

𝜎2(𝑥𝑝), while on the right side we obtain  𝛾1  multiplying 

by 𝐸𝑝 which is the expected value of the portfolio return and 

𝛾2, the budgets’ equation which is 1. From which we obtain: 
 

𝜎2(𝑥𝑝) −
1

𝐶
=

𝐶

𝐷
(𝐸𝑝 −

𝐴

𝐶
)

2

 (32) 

 

If C and D are greater than zero, then the right side of Eq. 

(32) will always be positive since it is written in terms of 

(𝐸𝑝 −
𝐴

𝐶
)

2

≥ 0 . When 𝐸𝑝 =
𝐴

𝐶
 this term will be zero and 

therefore 𝜎2(𝑥𝑝) =
1

𝐶
. 

We define 𝐸 ≡
𝐴

𝐶
 as the minimum expected value of a 

portfolio that has the minimum variance 𝜎2 ≡
1

𝐶
.  

Defining 𝑥𝑘  so that it is the proportion of the minimum 

variance portfolio invested in the asset 𝑘𝑡ℎ, then it is necessary 

to redefine: 
 

𝑥𝑘 =
∑ 𝑣𝑘𝑗

𝑚
1

𝐶
, 𝑘 = 1, … , 𝑚 (33) 

 

However, it is usual to present the frontier in the standard 

deviation plane of the mean instead of the mean-variance plane, 

so its geometric representation is represented will remain as: 
 

𝜎2

1
𝐶

−
(𝐸 −

𝐴
𝐶

)
2

𝐷
𝐶

= 1 (34) 

 

According to analytical geometry, this equation represents 

a hyperbola that meets and confirms conditions of an efficient 

portfolio with minimum variance in 𝐸 ≡
𝐴

𝐶
 and a minimum 

variance of 𝜎2 ≡
1

𝐶
. 

 

 

3.5 Non-negative weights 

 

According to literature [18], both the optimal theory model 

and the capital assets pricing model [19] indicate that 

portfolios generated with positive investment percentages will 

have a characteristic of being efficient within the mean-

variance relationship. 

However, these types of portfolios (all the positive weights) 

are not so common to obtain, especially if data from assets' 

historical series are used. In the best-case scenario, their results 

indicate that, only it is possible to identify a single segment of 

the efficient frontier where all are no-negative weights. 

Written parametrically, Markowitz can be transcribed as 

follows: 

 

𝑚𝑎𝑥 {𝑡𝐸′𝑥 −
1

2
𝑥′𝜎𝑥|1′𝑥 = 1} (35) 

 

where, 𝑡 is a scalar parameter, 𝑥 is the portfolio's n-vector of 

weights, and 1′𝑥 = 1 is the budget constraint. Solution to this 

problem in terms of parameter 𝑡 for 𝑥 and 𝑡 is: 

 

𝑥(𝑡) =
𝜎−11

𝐶
+ 𝑡 [𝜎−1 (𝐸𝑝 −

1𝐴

𝐶
)] (36) 

 

𝜆(𝑡) = −
1

𝐶
+

𝑡𝐴

𝐶
 (37) 

 

where, A, B and C are the Merton scalars from the previous 

section. Now let us define: 

 

ℎ0 =
𝜎−11

𝐶
 (38) 

 

ℎ1 = 𝜎−1 (𝐸𝑝 −
1𝐴

𝐶
) (39) 

 

So, portfolio weights can be expressed as: 

 

𝑥(𝑡) = ℎ𝑜 + 𝑡ℎ1 (40) 

 

It is clearly seen from this equation if we observe each 

component separately, then: 

 

𝑥𝑖(𝑡) = (ℎ𝑜)𝑖 + 𝑡(ℎ1)𝑖 , 𝑖 = 1, . . . , 𝑚 (41) 

 

that if ℎ1𝑖 > 0, then 𝑥𝑖(𝑡) increases as 𝑡 raises and it will be 

positive since 𝑡 ≥ (ℎ0)𝑖/(ℎ1)𝑖. 
It is possible to determine a maximum dimension and a 

minimum dimension for t's values in such a way that we can 

guarantee existence of positive weights: 

 

𝑡𝑙 = 𝑚𝑎𝑥{−(ℎ0)𝑖/(ℎ1)𝑖| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑤𝑖𝑡ℎ (ℎ1)𝑖 > 0} (42) 

 

𝑡𝑢 = 𝑚𝑖𝑛{−(ℎ0)𝑖/(ℎ1)𝑖| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑤𝑖𝑡ℎ (ℎ1)𝑖 < 0} (43) 

 

From where it is not difficult to conclude that: 

 

𝑥𝑖(𝑡) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑤𝑖𝑡ℎ (ℎ1)𝑖 > 0 

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡𝑙 
(44) 

 

𝑥𝑖(𝑡) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑤𝑖𝑡ℎ (ℎ1)𝑖 < 0 

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≤ 𝑡𝑢 
(45) 
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note that for 𝑥(𝑡) to be positive in all its components for some 

𝑡 it is necessary that: 

 

(ℎ𝑜)𝑖 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑠𝑜 𝑡ℎ𝑎𝑡 (ℎ1)𝑖 = 0 (46) 

 

This implies that 𝑥(𝑡) > 0 alone and if 𝑡𝑙 ≤ 𝑡 ≤ 𝑡𝑢 and the 

above constraint is complied with literature [18]. From here it 

is easy to obtain a strong conclusion that if 𝑡𝑙 > 𝑡𝑢 there are 

no positive components of 𝑥(𝑡). 
 

3.6 Used information 

 

Total levelized annual cost includes three areas: a) cost per 

investment; b) cost per fuel and c) cost per operation and 

maintenance (includes cost for water consumption). From 

1992 to 2011, information was provided by Taboada González 

et al. [20]. This information is in Mexican pesos and it was 

developed with information from COPAR (Spanish acronym 

of Costs and Reference Parameters for Investment Project 

Formulation in the Electrical Sector). From 2012 to 2016, the 

same Taboada procedure was followed except that information 

was stated in dollars, so the peso-dollar exchange rate was 

applied to convert to pesos the annual averages obtained from 

each generation technology. The calculation is based on the 

COPAR's 2012 and 2015 documents. 

 

 

4. RESULTS 

 

4.1 Results using levelized the cost inverse and optimal 

portfolio theory with annual information from 1992 to 

2011 

 

It is important to remember that criterion for finding all 

positive weights is met when 𝑡𝑙 > 𝑡𝑢. in the case of the range 

of the analyzed sample, the result was that 𝑡𝑙 < 𝑡𝑢 (0.35 is not 

lower than 0.11) so it is not possible to find an efficient 

portfolio having only non-negative values (Refer to Appendix 

1 for an extended review of the calculations to maximize and 

minimize the risk of the investment portfolio in electricity 

assets in this study). Results are shown in Table 1. 

From Table 1, it can be seen that only a value of 𝑡 = 0.2345 

has been taken for the test of formula in the third column. The 

first column is the ℎ𝑜 vector,  the second column is the 

ℎ1 vector, the third column is the x(t) vector evaluated at 

t=0.2345, fourth, fifth and sixth columns are −(ℎ0)𝑖/(ℎ1)𝑖; 
however, to solve certain problems, in excel we have redefined 

some cells with the NA value according to the ℎ1 sign in the 

second column, to obtain the MAX (maximum) and MIN 

(minimum) values correctly. 

Therefore, once we are convinced that by simply using 

Markowitz's Theory it is not possible to obtain all positive 

values, we proceed with calculation of the efficient frontier. 

Whence it follows that portfolio presents the minimum risk 

when 𝐸 = 6.8%  and the risk is 𝜎 = 9.2% . Likewise, we 

obtain that x vector has the weights for this return and risk: 

 

𝑥 = {
−24.5%, 60.8%, 24.4%,

−22.3%, 10.1%, 16.8%, 34.8%
} (47) 

 

Since we do not have a logical interpretation for a negative 

weight in this application, we must look for an option to solve 

this problem. Nevertheless, the same theory presents several 

options. One of them is to consider that one of the assets can 

be deemed as a risk-free asset. 

 

4.2 Results using wind technology as a risk-free technology 

 

Assuming that wind technology can be modeled as a risk-

free technology [3, 16], which implies assuming that 

correlation between variations of electricity generation 

through clean sources related to the remaining is equal to zero, 

it is possible to find a range for the risk-return pair where all 

weights are positive, as can be seen in Table 2. 

Results in Table 2 and Figure 1, indicate that there is a 

region where risk-free technology takes values of the expected 

value between 0.04 and 0.06 and the investment weights are 

all positive. For the remainder of the spectrum, there is at least 

one negative value in the series of x vector.  

In the region of values all positive for x vector, we highlight 

when the 0.06 value is taken, in this scenario, wind technology 

(risk-free by assumption) finds a 0.20 value and for the 

remainder of technologies, the value is distributed nearly 

equally between them at a 0.13 value. 

This would be the scenario more consistent with the 

Mexican reality according to installed capacity of each 

technology, but even so, it is quite contrasting with structure 

programmed by CENACE for both 2016 and its forecast for 

the year 2032. This relationship generates the following 

presentation of the efficient frontier. 

 

 
 

Figure 1. Efficient frontier considering a risk-free asset 
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Table 1. Criterion to find positive weights in model with risky assets 

 
𝒉𝒐 𝒉𝟏 𝒙(𝒕) = 𝒉𝒐 + 𝒕𝒉𝟏 −(𝒉𝟎)𝒊/(𝒉𝟏)𝒊  −(𝒉𝟎)𝒊/(𝒉𝟏)𝒊  −(𝒉𝟎)𝒊/(𝒉𝟏)𝒊  −(𝒉𝟎)𝒊/(𝒉𝟏)𝒊  

-0.2 2.23 0.27 0.10 0.1 0.10 NA 

0.6 -0.68 0.44 0.88 NA 0.88 0.88 

0.2 -1.30 -0.06 0.18 NA 0.18 0.18 

-0.2 0.62 -0.07 0.35 0.35 0.35 NA 

0.1 -0.85 -0.10 0.11 NA 0.11 0.11 

0.1 1.42 0.50 -0.11 -0.11 -0.11 NA 

0.34 -1.43 0.01 0.24 NA 0.24 0.24 

- - - MAX= 0.35 MIN= 0.11 
Source: Own elaboration based on experiment’s results 

 

Table 2. Percentages with non-negative weights in the model that includes a risk-free technology 

 
E Riskless S Risky S CC TCC CAR NUC HIDRO GEO EOLO 

0.01 0.036 0.471 -0.088 -0.088 -0.088 -0.088 -0.088 -0.088 1.53 

0.02 0.018 0.418 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 1.265 

0.03 0 0.365 0 0 0 0 0 0 1 

0.04 0.018 0.314 0.044 0.044 0.044 0.044 0.044 0.044 0.735 

0.05 0.036 0.263 0.088 0.088 0.088 0.088 0.088 0.088 0.47 

0.06 0.054 0.215 0.133 0.133 0.133 0.133 0.133 0.133 0.204 

0.07 0.072 0.172 0.177 0.177 0.177 0.177 0.177 0.177 -0.061 

0.08 0.091 0.138 0.221 0.221 0.221 0.221 0.221 0.221 -0.326 

0.09 0.109 0.12 0.265 0.265 0.265 0.265 0.265 0.265 -0.591 

0.1 0.127 0.127 0.309 0.309 0.309 0.309 0.309 0.309 -0.856 
Source: Own elaboration based on experiment’s results. 

 

 

 

5. DISCUSSION 

 

To discuss the results of the research, it will be necessary to 

refer to Table 3, which presents the evidence derived from the 

numerical experiments in three scenarios: 

Scenario A: Portfolio optimization with a CAPM approach 

(Wind technology as the risk-free asset) using CENACE's 

energy mix projection for the year 2017. 

Scenario B: Portfolio optimization with a CAPM approach 

(Wind technology as the risk-free asset) using CENACE's 

energy mix projection for the year 2032. 

Scenario C: Portfolio optimization with a CAPM approach 

(Wind technology as the risk-free asset) using a self-calculated 

distribution of CENACE's energy mix. 

 

Table 3. Portfolio optimization scenarios using the CAPM model 

 
Scenario E σ CC TCC CAR NUC HIDRO GEO EOLO 

A 10.8 12.56 50.20 19.40 9.30 3.30 9.70 4.90 3.20 

B 14.90 12.59 41.90 10.1 3.20 4.40 11.40 1.56 14.6 

C 6.0 5.4 13.30 13.30 13.30 13.30 13.30 13.30 20.4 
Source: Own elaboration based on experiment’s results. 

 

Going deeper into the proposed analysis, it can be observed 

that for the year 2017 and taking into account installed 

capacity, structure per electricity generation technology 

behaved as follows: 50.20% for combined-cycle (CC); 19.4% 

for thermoelectric power (TCC); 9.3% for carboelectric power 

(CAR); 9.7% of hydroelectric power (HIDRO); 3.3% of 

nuclear generation (NUC); 3.2% of wind power (EOLO) and; 

4.9% of geothermal technology and biofuel. For this 

combination, return on portfolio was 10.8% with an associated 

risk of 12.56%.  

In this same vein, for the year 2032, CENACE's energy mix 

is forecasted as follows: 41.9% of combined cycle; 10.1% of 

conventional thermoelectric power; 3.2% of carboelectric 

power; 11.4% of hydroelectricity; 1.56% geothermal; 4.4% 

nuclear; 14.6% of wind power and, the remainder, a 

combination of geothermal, solar photovoltaic, biomass and 

efficient cogeneration. With this combination, return on 

portfolio rises to 14.9% but with an associated risk of 12.59%. 

It is noted that for a same level of risk associated to the energy 

mix, profitability maximization (or cost decrease) is lower. 

However, for scenario C, it is possible to identify that the 

proposed energy combination is feasible in relation to the 

future projections made by CENACE, the risk-return levels are 

acceptable, and it also weighs a 250% increase in clean energy 

generation compared to scenarios A and B. The 

aforementioned would help preserve Mexico's energy 

sovereignty while striving to reduce pollution levels in the 

environment. 

 

 

6. CONCLUSIONS 

 

In this study, historical series of electricity levelized costs 

were obtained for seven technologies, including investment 

costs, fuel costs, and operation and maintenance costs for the 

years from 1992 to 2016. These series were transformed into 

the inverse of cost to apply optimal portfolio theory and the 

capital asset pricing model. With the Markowitz mean-

variance model, an optimal portfolio solution could not be 

found where values assigned to participation weighting in 

electricity generation were all positive; therefore, obtaining 
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the efficient frontier lacks a significant interpretation in terms 

of analyzed context. When the model considering a risk-free 

asset is used, a region where weights are all positive is found 

and, consequently, it is possible to obtain the efficient frontier 

for the various technologies, however, this solution distributes 

almost in the same proportion (0.13) the weight for six of the 

technologies used and estimates the clean technology 

participation at 0.20. 

It is important to emphasize that main finding of this 

research is the fact of having carried out the analytical 

development of the portfolio frontier applied to the case of real 

assets. However, one of the main limitations related to 

international literature was failure to include inequality 

constraints additional to those essential in Markowitz's 

approach. Additional constraints taking into account forecast 

of risk future values based on probability distributions 

(Montecarlo techniques) and/or GARCH* (*From English 

acronym of Generalized Autoregressive Condition 

Heteroscedastic) estimation techniques representing research 

future avenues.  
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APPENDIX 

 

To perform the optimization calculations from the 

Markowitz approach, a database is used that includes 

electricity levelized costs for each type of energy, as shown in 

Table A1. 

The inverse prices are then calculated to be theoretically 

consistent with the optimization in the sense of Markowitz and 

obtain a proper interpretation of the numerical experiment 
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results, refer to Table A2. 

Table A3 displays the annual returns for each asset type, 

which serve as the foundation for portfolio optimization in the 

ongoing study. 

 

Table A1. Time series of electricity levelized costs 

 
Year TCC CC CAR NUC GEO HIDRO EOLO 

1992 290.64 137.63 177 195.81 175.93 178 545.69 

1993 382.3 134 166 171.7 164 177 466.16 

1994 413.24 144 171 186.06 164.55 199 550.31 

1995 669.32 185.69 229.84 354.06 300.61 297 919.16 

1996 794.23 218.15 261 457.73 396.56 407 905.28 

1997 806.03 210 289 472.41 425.51 469 812.19 

1998 869.83 235 329 444.45 312.39 541 841.98 

1999 899.83 280 362 513.36 359.63 612 706.87 

2000 989 305 396 536 367.05 661 662.61 

2001 1078 330 430 559.53 374.47 709 595.15 

2002 853.7 347.75 470 564.49 383.59 670 613.49 

2003 1047 414 586 732.82 491 866 652.42 

2004 1157.18 495 602 488 518.29 919 605.78 

2005 1306 593 641 500 555 989 584.62 

2006 1561 702 584 539.46 594 1059 596.63 

2007 1621 722 688.23 647.41 642.01 1219 618.36 

2008 1860 843 798 787.36 898 1304 805.1 

2009 2497 1058.26 1162.81 1743.25 1186 1711 836.1 

2010 2468 1098 1065 1229 1181.21 1635 830.03 

2011 1827.56 794 662 1187.21 1180.8 1214.24 1032.67 
Source: Own elaboration based on CENACE's official reports. 

 

Table A2. Time series of inverse levelized electricity costs 

 
Year TCC CC CAR NUC GEO HIDRO EOLO 

1992 0.0034 0.0073 0.0056 0.0051 0.0057 0.0056 0.0018 

1993 0.0026 0.0075 0.0060 0.0058 0.0061 0.0056 0.0021 

1994 0.0024 0.0069 0.0058 0.0054 0.0061 0.0050 0.0018 

1995 0.0015 0.0054 0.0044 0.0028 0.0033 0.0034 0.0011 

1996 0.0013 0.0046 0.0038 0.0022 0.0025 0.0025 0.0011 

1997 0.0012 0.0048 0.0035 0.0021 0.0024 0.0021 0.0012 

1998 0.0011 0.0043 0.0030 0.0022 0.0032 0.0018 0.0012 

1999 0.0011 0.0036 0.0028 0.0019 0.0028 0.0016 0.0014 

2000 0.0010 0.0033 0.0025 0.0019 0.0027 0.0015 0.0015 

2001 0.0009 0.0030 0.0023 0.0018 0.0027 0.0014 0.0017 

2002 0.0012 0.0029 0.0021 0.0018 0.0026 0.0015 0.0016 

2003 0.0010 0.0024 0.0017 0.0014 0.0020 0.0012 0.0015 

2004 0.0009 0.0020 0.0017 0.0020 0.0019 0.0011 0.0017 

2005 0.0008 0.0017 0.0016 0.0020 0.0018 0.0010 0.0017 

2006 0.0006 0.0014 0.0017 0.0019 0.0017 0.0009 0.0017 

2007 0.0006 0.0014 0.0015 0.0015 0.0016 0.0008 0.0016 

2008 0.0005 0.0012 0.0013 0.0013 0.0011 0.0008 0.0012 

2009 0.0004 0.0009 0.0009 0.0006 0.0008 0.0006 0.0012 

2010 0.0004 0.0009 0.0009 0.0008 0.0008 0.0006 0.0012 

2011 0.0005 0.0013 0.0015 0.0008 0.0008 0.0008 0.0010 
Source: Own elaboration based on experiment’s results. 

 

Table A3. Returns of inverse levelized electricity costs 

 
Year TCC CC CAR NUC GEO HIDRO EOLO 

1992 - - - - - - - 

1993 -0.2398 0.0271 0.0663 0.1404 0.0727 0.0056 0.1706 

1994 -0.0749 -0.0694 -0.0292 -0.0772 -0.0033 -0.1106 -0.1529 

1995 -0.3826 -0.2245 -0.2560 -0.4745 -0.4526 -0.3300 -0.4013 

1996 -0.1573 -0.1488 -0.1194 -0.2265 -0.2420 -0.2703 0.0153 

1997 -0.0146 0.0388 -0.0969 -0.0311 -0.0680 -0.1322 0.1146 

1998 -0.0733 -0.1064 -0.1216 0.0629 0.3621 -0.1331 -0.0354 

1999 -0.0333 -0.1607 -0.0912 -0.1342 -0.1314 -0.1160 0.1911 

2000 -0.0902 -0.0820 -0.0859 -0.0422 -0.0202 -0.0741 0.0668 

2001 -0.0826 -0.0758 -0.0791 -0.0421 -0.0198 -0.0677 0.1133 

2002 0.2627 -0.0510 -0.0851 -0.0088 -0.0238 0.0582 -0.0299 

2003 -0.1846 -0.1600 -0.1980 -0.2297 -0.2188 -0.2263 -0.0597 

2004 -0.0952 -0.1636 -0.0266 0.5017 -0.0527 -0.0577 0.0770 

2005 -0.1140 -0.1653 -0.0608 -0.0240 -0.0661 -0.0708 0.0362 
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2006 -0.1634 -0.1553 0.0976 -0.0731 -0.0657 -0.0661 -0.0201 

2007 -0.0370 -0.0277 -0.1514 -0.1667 -0.0748 -0.1313 -0.0351 

2008 -0.1285 -0.1435 -0.1376 -0.1777 -0.2851 -0.0652 -0.2319 

2009 -0.2551 -0.2034 -0.3137 -0.5483 -0.2428 -0.2379 -0.0371 

2010 0.0118 -0.0362 0.0918 0.4184 0.0041 0.0465 0.0073 

2011 0.3504 0.3829 0.6088 0.0352 0.0003 0.3465 -0.1962 
Source: Own elaboration based on experiment’s results. 

 

Based on the calculated returns, portfolio risk (𝜎) and return 

(𝐸) vectors are formed: 

 
𝐸 = {−7.9%, −8.0%, −5.2%, −5.8%, −8.0%, −8.6%, −2.1%}  
 

𝜎 = {16.6%, 13.4%, 19.1%, 24.9%, 16.8%, 14.5%, 14.5%} 

 

The mentioned vectors, along with the variance-covariance 

matrix, were used to conduct various numerical experiments 

reported in the discussion of the study, applying the 

Markowitz framework and extending it to the Capital Asset 

Pricing Model (CAPM). 
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