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Modern enterprises increasingly employ Internet of Things (IoT) devices across various 

sectors to enhance service provision, with applications spanning from healthcare to 

academia. However, the widespread adoption of IoT technology introduces significant 

security vulnerabilities. Particularly, these devices are susceptible to cyber-attacks, 

notably those orchestrated by botnets. The challenge of addressing this security issue is 

further compounded by the devices' memory and energy constraints, which limit the 

implementation of robust security measures. The present study introduces a Deep 

Learning Techniques (DLT) based approach, termed Detection of Intrusions in IoT using 

Residual Networks (DIIOTRNs), to preemptively identify IoT botnet attacks. These 

attacks typically undergo several stages prior to execution, providing an opportunity for 

early detection. The proposed DIIOTRNs framework integrates Convolution Neural 

Networks (CNNs) and Long Short-Term Memories (LSTMs) to effectively detect 

potential threats. The framework was subjected to empirical testing and demonstrated 

promising results, achieving accuracy levels exceeding 90%. Thus, the DIIOTRNs 

approach offers a promising solution to the pressing issue of IoT security, particularly in 

the context of botnet attacks. Further research is warranted to refine and optimize this 

framework for broad adoption across the IoT landscape. 
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1. INTRODUCTION

The proliferation of computer network applications has 

significantly influenced socio-economic development, with 

impact areas including international trade, healthcare, and 

military operations. This highlights the paramount importance 

of network security, which is continually threatened by both 

internal and external factors. Intrusion Detection Systems 

(IDSs) [1] have been employed since the 1980s [2] as a 

potential countermeasure. IDSs operate by detecting threats 

through the analysis of network data patterns [3]. Denial of 

Service attacks (DoSs), for instance, manipulate harmful 

traffic to obstruct or limit legitimate users' access to network 

resources [4]. Other disruptive elements include malware [5], 

utilized by attackers to compromise system stability. IDSs 

serve as potential solutions to mitigate the impacts of such 

attacks. Figure 1 illustrates an IDS model. 

Data collection from systems and networks is conducted by 

IDSs for threat analysis [6]. Upon threat detection, corrective 

action is initiated and all significant network events are logged 

by the IDS [7]. Autonomous anomaly detection systems 

identify irregularities by progressively uncovering aberrant 

system properties [8]. Their effectiveness lies in the ability to 

discern abnormal behaviors within networks. 

Machine Learning Techniques (MLTs) can augment IDSs 

by detecting attacks without human intervention. MLTs 

consist of an array of techniques that automatically recognize 

patterns and anticipate future trends [9]. Although diverse, all 

MLTs fundamentally operate by selecting optimal features. 

For example, MLTs can monitor packet sizes and distributions 

to discern intrusions. However, network managers often face 

challenges in managing intrusion reports when IDSs identify 

false attacks. Therefore, the enhancement of IDSs to improve 

detection accuracy and reduce False Alarm Rates (FARs) 

remains a critical area of research [10]. 

Figure 1. Mode of IDS 

The problem is further exacerbated when IDSs rely on 

known attack signatures, leaving them incapable of identifying 

unknown attack types. To address this, autonomous IDSs 

employing MLTs as classifiers have been developed. Yet, 

these solutions also present drawbacks, such as limited 

throughput and high False Detection Rates (FDRs). 

Following this introduction, botnets are discussed in Section 
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3. A review of related literature is presented in Section 4, 

followed by a description of the research methodology in 

Section 5. Section 6 presents the key findings from the 

experiments, while Section 7 evaluates the proposed scheme. 

Finally, Section 8 concludes the research. 

 

1.1 Definition of the problem 

 

The proliferation of Internet of Things (IoT) devices has 

been paralleled by an escalating susceptibility to cyber-attacks, 

attributable to the sophisticated nature of malware, most 

notably, IoT botnets. The constantly evolving nature of botnets 

renders them elusive to traditional and signature-based 

anomaly detection methods. While numerous Machine 

Learning Techniques (MLTs) have been proposed for 

detecting IoT botnets, a conspicuous gap in predicting 

potential vulnerabilities persists. 

 

1.2 IoT botnets 

 

IoT devices, which are anticipated to establish 

approximately 83 billion connections by 2024, are integral to 

data-dependent innovations, amassing extensive volumes of 

data and enabling a myriad of tasks across various sectors, 

including academia, residential applications, and healthcare. 

Despite the benefits of continuous connectivity and 

accessibility, IoT devices offer an opportunistic platform for 

hackers to execute attacks such as Distributed Denial of 

Services (DDoSs). IoT botnets, which refer to a network of 

infected computers known as bots under the control of an 

administrator or "botmaster" [11], pose a significant threat to 

the use of IoT devices. Various types of malware specifically 

designed for IoT devices have been deployed, with IoT botnets 

being the primary targets [12]. Notable examples of botnets 

include Bashlight, Mirai, and Torii. 

Botnets operate in several stages, as illustrated in Figure 2, 

each stage marked by various destructive actions [13]. Initially, 

attackers exploit vulnerabilities in IoT devices to install bots, 

which are then used for malicious purposes. While awaiting 

further instructions and simultaneously scanning for new 

vulnerable devices, the bots maintain contact with the 

botmaster, facilitating the expansion of the botnet. 

 

 
 

Figure 2. Stages of botnet 

The focus of attack detection is generally on identifying 

attack behaviors that occur post-command initiation, when the 

attackers instruct the IoT botnets to commence the attack. 

Moreover, the implementation of IoT security measures 

contributes to increased power and memory demands. Given 

the vulnerability of IoT devices to botnet attacks, the 

development of robust defense strategies and procedures is 

essential. The process of creating botnets involves multiple 

stages, each necessitating a unique detection method. An 

examination of the detection strategies employed at each stage 

is crucial, given the diverse activities involved. There is a lack 

of research on early detection of IoT botnets despite the fact 

that early botnet stages evolve over time into more complex 

stages where rapid attack operations occur. Recent activities 

of Mirai versions have escalated [14], underscoring the 

importance of detecting IoT botnets. This work contributes to 

the existing body of knowledge on IoT botnet detection by 

analyzing the behavior of IoT malware using dataset examples. 

If implemented, the proposed methodology could significantly 

enhance a system's ability to detect IoT botnets. 

 

 

2. REVIEW OF LITERATURE 

 
This section delves into the taxonomies of IoT botnet 

detection, providing a synopsis and critique of recent research 

in the field. Convolutional Neural Networks (CNNs), a type of 

Deep Learning Technique (DLT), are designed to 

automatically extract and learn features from inputs [15]. 

Traditionally leveraged for visual information analysis, CNNs 

have been co-opted into cybersecurity to accurately identify 

malicious behaviors. For instance, the CNN model has been 

deployed to detect Denial-of-Service (DoS) attacks and 

intrusions. Long Short-Term Memory units (LSTMs) address 

the issue of vanishing gradients through the employment of 

specialized units known as "memory cells," which represent 

long-term memory [16]. Several studies have utilized LSTMs 

for various botnet detection tasks. A comprehensive literature 

review encompassing the stages of botnet formation and 

detection was undertaken [13]. The study provided an insight 

into IoT botnet detection. IoT botnet frameworks were 

established in the research conducted by Stephens et al. [17], 

providing a foundation for future exploration and potential 

solutions. Machine Learning Techniques (MLTs) and DLTs 

have been employed to identify botnets in various studies. 

MLTs were used to categorize benign and malicious behaviors, 

employing a combination of Decision Trees (DTs), K Nearest 

Neighbors (KNNs), Random Forests (RFs), and Support 

Vector Machines (SVMs) for processing tasks [18]. Deep 

Learning Techniques such as FastGRNN, LSTMs, and GRU 

were evaluated by Giaretta et al. [19], focusing on the 

identification of infected and compromised devices. Machine 

Learning Techniques were devised to detect IoT devices 

affected by botnets [20]. Using an IoT dataset embedded with 

botnet attacks (Bashlite and Mirai) from various IoT devices, 

the study proposed a botnet detection model that utilized 

CNNs, achieving an F1-score of 91%. Jung et al. [21] 

proposed a Deep Learning Technique based on CNNs, 

incorporating a data-processing component. Energy usage was 

standardized and segmented to enhance the accuracy of CNNs. 

The model categorized the processed data into four classes, 

including a botnet class. Cross-device evaluation on three 

common types of IoT devices yielded a cross-test accuracy of 

90%. The leave-one-out examination demonstrated an 
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accuracy greater than 90%, and the overall assessment boasted 

an accuracy rate of 96.5%. Furthermore, an examination of 

IoT botnets using MLTs such as Decision Trees (DTs), 

Association Rule Mining (ARM), Naive Bayes (NBs), and 

Artificial Neural Networks (ANNs) on the UNSW-NB15 

dataset was conducted by Koroniotis et al. [22]. The study's 

results indicated that Decision Trees improved detection 

procedures by 93%, as evidenced by the accuracy and false 

alarm rate. 

 

 

3. PROPOSED DIIOTRNS SCHEME  

 

AIs (Artificial intelligences), MLTs, and DLTs can all be 

used in cybersecurity to build powerful tools that detect and 

stop hostile behaviours in networks. MLTs may be used to 

analyze, detect, and comprehend complicated patterns in data, 

as well as forecast future outcomes. Models learn as they 

proceed and use this knowledge to improve their capacity to 

both recognize and foresee probable appearance of 

forthcoming cyber attacks. The benefits of DLTs over 

traditional MLTs include their higher performances in a 

number of settings, notably while learning from massive 

security datasets. This work’s proposed DIIOTRNs is based 

on CNNs and LSTMs for detecting botnets from IoTs devices. 

The proposed model can significantly improve IoT botnet 

detection abilities of systems when implemented. CNNs are 

discriminative layered DLTs which use one or more 

convolution and pooling layers as arrays to create multilayer 

NNs (Neural Networks) [23]. The convolution layers often 

share weights, and pooling layer samples to produce some sort 

of translational invariant feature outputs. The proposed 

scheme is based on CNNs and executed on IoT botnet dataset 

and depicted as Figure 3. 
 

 
 

Figure 3. DIIOTRNs scheme 

 

DIIOTRN is executed on the IoT Botnet dataset following 

the processes of data pre-processing/preparation where data is 

cleaned and labels are encoded. This is subsequently followed 

by CNNs based feature extractions where numerical columns 

are standardized and features are selected based error or loss 

rates while learning from data. The final stages are 

classifications of botnet data packets. The suggested schema 

was evaluated in terms of precision, recall and f1-measure 

values along with a confusion matrix. The dataset, 

preprocesses, feature selections and classifications of 

DIIOTRNs are detailed below. 

 

3.1 Dataset 

 

A multivariate sequential dataset including actual traffic 

data from nine commercial IoT devices infected with 

BASHLITE and Mirai was utilised in the investigation and 

downloaded from Kaggle.com the internet [24]. IoT related 

malware behave differently from others, minimal dataset sizes 

and qualities of dataset have a substantial influence on 

functions of DLTs. Figure 4 displays a sample of the dataset. 

 

 
 

Figure 4. Data set sample 

 

3.2 DIIOTRN’s preprocessing 

 

Label encoding is the process of converting labels into 

numeric representations that machines can read. MLTs can 

then better predict the functioning of such labels where data 

gets labeled while training for clarity of data. It is a significant 

structured dataset supervised learning pre-processing step. As 

an example: In some dataset, assume Height. After applying 

label encoding, the Height column is changed into where 0 

represents tall, 1 represents medium, and 2 represents low 

height. Figure 5 depicts dummy encoding of labels by 

DIIOTRNs. 

 

 
 

Figure 5. Dummy label encoding 

 

3.3 DIIOTRN’s feature extractions/selections 

 

When developing predictive models, feature selection 

procedures entail reducing input variable counts for improving 

model performances while simultaneously reducing costs in 

models. In statistically based feature selection approaches, 

relationships of input variables with target variables are 

evaluated, and input variables with strongest associations are 

selected. These approaches execute quickly and efficiently in 

spite of the fact that they are statistical measures that are 

dependent on t input and output data types. Figure 6 displays 

feature extractions and selections.  

 

 
 

Figure 6. Feature selections and extractions 

 

3.4 DIIOTRNs classification 

 

CNNs are multilayer neural networks which are that are 

discriminative DLTs and are made up of one or more 

convolution and pooling layers [23]. Convolution layers often 

share a large number of weights with pooling layer samples to 

produce some sort of translational invariant features. CNNs 

feature fewer parameters than other connected networks with 

same hidden unit counts, making training easier. CNN 

architecture incorporates biologically inspired MLPs (multi 
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layer Perceptrons) [25]. The term "receptive field" alludes to 

the small number of visual sub-regions to which these cells are 

sensitive. These fields are arranged to occupy the whole visual 

field, allowing the cell to function as a local filter throughout 

the entire input area. CNN's architecture includes convolution, 

max pooling, and fully linked layers. The convolution layer is 

made up of neurons placed in a rectilinear grid, as opposed to 

preceding layers, which were made up of neurons arranged in 

a rectangular grid. The rectangular grid neurons are linked 

together by a network of weights known as filter banks, which 

receive inputs from preceding rectangular units. In order to 

generate convolution layers, the weights for the rectangular 

units must remain constant for each rectangular grid of 

neurons. Each grid utilises a separate filter bank in systems 

where the convolution layer is made up of many grids. A 

pooling layer comes after each convolution layer, merging 

subsets of the rectangular block formed by the convolution 

layer by taking subsamples to provide an output of the block. 

In order to pool the neurons in the blocks, one can compute 

their maximum, average, or learn a linear summing algorithm. 

Some blocks move more than a row or column, which provide 

an input to nearby pooling units. As a result, the system’s 

dimensions are reduced [26]. In the last phase of, convolution 

and max-pooling layers are non-linearly stacked to generate a 

completely connected layer. The connection that makes 

training a set of weights for a filter bank straightforward in the 

last phase of the neural network, convolution and max-pooling 

layers are non-linearly stacked to generate a completely 

connected layer which makes it simple to train a set of weights 

for filter banks. ResNets address the problem of performance 

degradations related to DNNs (deep neural networks) with 

their deeper explorations of networks. Utilizing the strength of 

voluminous data by building DNNs that try to approximate 

functions f(x) and map inputs, x to their corresponding labels, 

y. According to the Universal Approximation Theorem, every 

function across a domain may be closely approximated by a 

feedforward network with a single layer if the layer contains 

enough neurons or hidden units. However, in real-world 

applications, deeper L-layer neural networks with fewer 

hidden units per layer are able to approximate functions that 

exponentially more hidden units are needed to calculate in 

shallower levels. As the signal advances further into the layers, 

the actual strength of DLTs comes in their capacity to capture 

abstract characteristics. However, the well-known 

vanishing/exploding gradients and performance deterioration 

problem frequently affects deeper neural networks. The 

accuracy reaches a saturation point as network depths rise, 

after which it starts declining. Analyses on higher error rates 

of CNNs revealed that they were caused by 

vanishing/exploding gradients. Researchers at Microsoft 

Research proposed ResNets (Residual Networks) in 2015, a 

novel architecture, to overcome this issue where residual 

Blocks created in this design. Residual blocks are stacks of 

layers configured in way where layer outputs get added to 

subsequent layers down the stack. Non-linearity gets applied 

after combining outputs of equivalent layers. The bye passes 

are named shortcuts or skip-connections which are used in this 

work and depicted in Figure 7. By skipping a few intermediary 

levels and producing leftover blocks, skip connections link the 

activations of one layer to the succeeding layers. These 

discarded blocks are piled to form ResNets. The goal of this 

network is for networks to fit residual mappings rather than for 

layers to learn the underlying mapping. Regularization will 

skip any layer that reduces architectural performance if this 

type of skip link is included. As a result, training highly DNNs 

is achievable without running into problems with vanishing or 

growing gradients. These skip connections, like LSTMs, make 

use of parametric gates. 

 
 

Figure 7. Skip connections 

 

The gates determine how much information passes through 

skip connections and based on dimensions two kinds of 

residual blockscan exist namely Identical residual blocks and 

Convolution residual blockswhich are depicted in Figure 8. 

 

 
 

Figure 8. Residual blocks 

 

The outputs of shortcut paths and main paths are both 

identical residual blocks with same dimensions. This is 

achieved when the input of each convolution layer in the main 

route is padded such that the output and input dimensions 

remain consistent. In skip-connections of convolution residual 

blocks, a convolution layer is used to enlarge the output of the 

shortcut path to the same dimension as the main path. To 

regulate the output loudness, the layer may also employ 

different filter sizes, such as padding, strides, and 11 filters. 

The fundamental purpose of the convolution layer is to apply 

a learnt linear function that lowers the dimension of the input. 

Non-linear functions are not used. However, this design did 

not give more precision. It makes no use of non-linear 

functions. However, this design did not provide more accuracy 

than the ResNet architecture. Use a multi-layered network 

design inspired by VGG-19 (50), to which the shortcut 

connection is later added. The design is then transformed into 

a residual network via these short-cut links. A residual 

network is created by stacking many residual blocks together. 

To slow down performance, the residual blocks build an 

identity mapping to previous network activations. Deep neural 

networks have a degradation concern. 

 

 

4. RESULTS AND DISCUSSION 

 

Results for each step of the planned DIIOTRNs programme 

are presented as shown in Figure 9. The experimental setup for 

the suggested model in this study was developed in Python 

version 3.9.0, a sophisticated language for data science with a 

number of helpful modules and a leading programming 

language for embedded systems, such as IoT devices. The 

dataset used was obtained from 9 IoT devices and training sets 

of each device recorded typical network traffic patterns. Each 

device's test data was made up of all the malicious data as well 

as the remaining third of benign data. The dataset can also be 

utilized for multi-class classifications as it encompasses 10 
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classes of assaults plus a class of "benign." Malicious data can 

be separated into 10 attacks undertaken by 2 botnets. Network 

packets separated into distinct classes are listed in Table 1. 

 

 
 

Figure 9. DIIOTRNs label encoding 

 

Table 1. Dataset instances 

 
Data Class Number of Instances 

benign 62154 

gafgyt_combo 61380 

gafgyt_junk 30898 

gafgyt_scan 29297 

gafgyt_tcp 104510 

gafgyt_udp 104011 

mirai_ack 60554 

mirai_scan 96781 

mirai_syn 65746 

mirai_udp 156248 

mirai_udpplain 56681 

 

4.1 DIIOTRNs preprocessing 

 

Label encoding is the primary component of the dataset 

preparation procedure in this work. MLTs typically involve 

working with datasets that include numerous labels in one or 

more columns. These designations may be written in words or 

represented by numbers. Figure 10 depicts label encoding. 

 

 
 

Figure 10. DIIOTRN’s normalizations 

 

 
 

Figure 11. Training data for neural nets 

 

4.2 DIIOTRN’s feature extractions/selections 

 

The features are divided into four types, which summarize 

traffics between hosts and protocols in communications.  

• Traffic generated by same IP addresses (Type 1): 

Count, mean, and variation of host MAC and IP-Packets (3). 

• Traffic generated by same IP and MAC addresses 

(Type 2): Mean, variance, magnitude, radius, covariance, and 

correlation of channel packets (7). 

• Traffics between same sources and destinations 

(Type 3): Packet Jitter in a Network Packet count, mean, and 

variation of packet jitter in a channel (3). 

• TCP/UDP communications between same sources 

and destinations (Type 4): Mean, variance, magnitude, radius, 

covariance, and correlation of socket packets (7). 

Before training, the numerical columns were shuffled, 

standardized, and normalized, and the dataset's records is 

shown in Figure 11. 

 

4.3 DIIOTRN’s classification 

 

To estimate DLT performance for predictive modeling 

problems, divide the dataset into training and test datasets. 

This study employed the train test split technique to divide the 

dataset into training and test data in a 70:20 ratio with 10% for 

validations. Figure 12 and Figure 13 depict data trained for 

neural nets. 

The suggested hybrid model has several layers, including 

inputs, CNNs, LSTMs, flat/ dense/output layers. The first 

layer's CNNs got input from 128, 64 neurons, whereas the 

second layer's LSTMs received input from 32, 16 neurons. The 

dense layers had 128, 64 neurons as they result in high levels 

of accuracy, these two layers were integrated in the model. In 

the flatten layer, the vector is flattened into a one-dimensional 

vector that may be utilized in the dense layer. 

 

 
 

Figure 12. DIIOTRN’s Deep residual_CNN model 

 

 
 

Figure 13. Trained class instances 

 

 
 

Figure 14. Confusion matrix of DIIOTRN’s deep residual 

CNN model 
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To avoid model’s over fits, the model includes a dropout 

layer with a rate of 0.2, which is done by randomly removing 

certain neurons from the final layer. The output is created in 

the dense layer using the ReLU activation algorithm. The 

researcher built the model using a categorical cross-entropy 

loss function for multiclass classification and a binary 

categorical cross-entropy loss function for binary 

classification. Figure 14 displays a snapshot of Trained class 

instances.  

 

 

5. EVALUATION METRICS 

 

A confusion matrix based on four assessment indicators was 

used to evaluate the model: The letter TP (True Positive) 

denotes that the proposed model correctly predicts the positive 

class; the letter TN (True Negative) denotes that the proposed 

model correctly predicts the negative class; the letter FP (False 

Positive) denotes that the proposed model incorrectly predicts 

the positive class; and the letter FN denotes (False Negative) 

that the proposed model incorrectly predicts the negative class. 

The confusion matrix of DIIOTRN's Deep residual CNN 

model is shown in Figure 15. Based on these measures, the 

precisions, recalls, and F1-scores shown below were evaluated: 

Precision: Precision measures the number of positive class 

predictions, which are truly from the positive class. It is 

formulated as given,  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (1) 

 

Recall: Recall provides the measure of the number of 

positive class predictions obtained out of all the positive 

examples present in the dataset. It is expressed as below, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (2) 

 

F1-Score: F1-Score yields a single score, which helps 

balancing both the issues of precision and recall in one number. 

It is expressed as below, 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

Accuracy: Accuracy refers to the ratio of examples, which 

were rightly classified. In exact terms, it is the ratio between 

the sum of the number of true positives and true negatives, 

andthe number of examples present in the dataset. It is 

formulated as given, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

CNNs may significantly reduce the amount of parameters, 

which improves model learning efficiency. Furthermore, 

LSTMs have their own memory and can produce rather 

accurate classifications. As a result, the Cross CNN LSTMs 

design employs CNN layers to extract features from input data 

and combines them with LSTMs to facilitate prediction. We 

can see from the preceding data that the suggested Cross CNN 

LSTMs model has a high detection rate. Figure 16 depicts the 

results of CNNs. 

Table 2 shows the experimental findings of DIIOTRNs 

running 20 and 50 epochs. The findings and measures for 

precisions, recalls, and F1-scores for binary and multiclass 

classifications are shown in the table below. Traffic was 

classified in binary as malicious and legitimate.  

 

Table 2. DIIOTRNs performance metric values for 20 and 50 epochs runs 

 

Class 
precision recall f1-score support 

20 Epochs 50 Epochs 20 Epochs 50 Epochs 20 Epochs 50 Epochs 20 Epochs 50 Epochs 

benign 1.00 1.00 1.00 1.00 1.00 1.00 4033 3967 

mirai_udp 1.00 1.00 1.00 1.00 1.00 1.00 4092 3963 

gafgyt_combo 1.00 1.00 1.00 1.00 1.00 1.00 3952 4087 

gafgyt_junk 1.00 1.00 1.00 1.00 1.00 1.00 3990 4041 

gafgyt_scan 0.50 0.00 0.00 1.00 1.00 1.00 4073 4013 

gafgyt_tcp 0.49 1.00 0.65 0.50 1.00 0.67 3877 4064 

gafgyt_udp 1.00 1.00 1.00 1.00 1.00 1.00 3835 3981 

mirai_ack 1.00 1.00 1.00 1.00 1.00 1.00 4123 3980 

mirai_scan 1.00 1.00 1.00 1.00 1.00 1.00 3970 4038 

mirai_syn 1.00 1.00 1.00 1.00 1.00 1.00 3997 3952 

mirai_udpplain 1.00 1.00 1.00 1.00 1.00 1.00 4058 3914 
 

 
 

Figure 15. Output of residual CNN model 
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Figure 16. DIIOTRNs performances in classifications 

 

The accuracy for a 20 epochs run was 0.91 (support 44000). 

The macro and weighted average for precision and recall was 

0.91 while for f1-score it was 0.88 with the same support. The 

total batches were 1375 with a step loss of loss: 0.1303. The 

test accuracy was 0.906659. For a 50 epoch run accuracy was 

increased by 1%. Accuracy was 0.91 (support 44000) while 

macro/weighted averages for precision recall and f1-score 

were 0.88, 0.91 and 0.88 respectively. The loss and test 

accuracy values did not differ much and were 0.1309 and 

0.9084 respectively. Hence the suggested scheme achieved an 

accuracy score above 90% in general. The binary classification 

for the two classes, legitimate and malicious, had 91% 

accuracy. Figure 16 demonstrates the new proposed model’s 

accuracy and learning from losses in detecting propagations of 

botnet in IoT networks.  

 

 

6. CONCLUSION 

 

IoTs are being utilised to improve services in a range of 

commercial sectors. These applications cover a wide range of 

topics, including health and education. The devices facilitate 

and accelerate cybersecurity attacks, particularly when botnets 

are involved. Thankfully, botnets go through many processes 

before launching attacks, which might be used to detect these 

attacks early on. This paper suggested and implemented 

DIIOTRNs, a DLT-based technique for detecting IoT botnet 

attacks. The proposed model in this paper includes a 0.2 

dropout layer to prevent model overfitting, which is achieved 

by randomly eliminating neurons from the final layer. The 

ReLU activation technique is used to generate the dense layer 

output. The researcher created models for multiclass and 

binary classifications using a categorical cross-entropy loss 

function and binary categorical cross-entropy, respectively. 

Furthermore, the model was trained for 50 epochs before being 

stopped after 20 epochs because the loss did not improve. An 

Adam optimiser and the Reduce LR On Plateau function were 

used to alter the learning rate. Technical empirical experiments 

were performed on a prototype supplied in this paper to 

investigate the behaviour of IoT malwares. This prototype 

offers a clear knowledge of the early stages of creating an IoT 

botnet. While it makes more sense to focus on the early stages, 

when the botnet is established and spreads over time, most 

previous research tended to focus on the late stage, which 

occurs quickly, providing substantial challenges in 

recognizing IoT botnets and blocking DDoS attacks. 

Furthermore, the scientists created multiclass classification 

algorithms for spotting IoT botnets using a real IoT dataset and 

a fusion model based on DLTs known as Cross CNN LSTMs. 

Numerous tests were carried out, and a comparison was 

conducted between the proposed methodology and previous 

works that used both standard MLTs and specific DLTs. The 

primary goal of this study was to investigate IoT botnet 

malware and understand its behaviour by monitoring and 

collecting network data. In order to investigate IoT botnet 

proliferation, this experiment focused on scanning, brute-

forcing, downloading, and installing malware binaries on IoT 

devices. A novel paradigm for recognizing IoT botnets was 

proposed, and implemented using a dataset and assessed with 

several performance criteria of F1-score, accuracy, and recall. 

The results of the studies indicate that the recommended model 

is precise and reaches accuracy levels of above 90%. However, 

limitations arise from dataset representativeness, model 

robustness against adversarial attacks, and real-time 

implementation challenges. Additionally, scalability concerns 

and resource constraints in resource-limited IoT devices need 

to be addressed for practical deployment. Future improvement 

in DIIOTRNs can focus on diversifying datasets and 

incorporating adversarial defense mechanisms for better 

generalization and resilience against attacks, while optimizing 

for real-time deployment and scalability in resource-limited 

IoT environments. 
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