
Deep Learning-Based Detection of IoT Botnet Attacks: An Exploration of Residual

Networks

Manikandan Govindaraji1* , Ramachandran Periyasamy2 , Vidyaathulasiraman3

1 Department of Master of Computer Applications, Priyadarshini Engineering College Vaniyambadi, Tamil Nadu 635751, India
2 Department of Information Technology, KG College of Arts and Science, Coimbatore, Tamil Nadu 641035, India
3 Department of Computer Science, Government Arts and Science College for Women, Bargur, Tamil Nadu 635104, India

Corresponding Author Email: drmanikandang@priyadarshini.net.in

https://doi.org/10.18280/ijsse.130414 ABSTRACT

Received: 6 March 2023

Revised: 31 July 2023

Accepted: 11 August 2023

Available online: 28 September 2023

Modern enterprises increasingly employ Internet of Things (IoT) devices across various

sectors to enhance service provision, with applications spanning from healthcare to

academia. However, the widespread adoption of IoT technology introduces significant

security vulnerabilities. Particularly, these devices are susceptible to cyber-attacks,

notably those orchestrated by botnets. The challenge of addressing this security issue is

further compounded by the devices' memory and energy constraints, which limit the

implementation of robust security measures. The present study introduces a Deep

Learning Techniques (DLT) based approach, termed Detection of Intrusions in IoT using

Residual Networks (DIIOTRNs), to preemptively identify IoT botnet attacks. These

attacks typically undergo several stages prior to execution, providing an opportunity for

early detection. The proposed DIIOTRNs framework integrates Convolution Neural

Networks (CNNs) and Long Short-Term Memories (LSTMs) to effectively detect

potential threats. The framework was subjected to empirical testing and demonstrated

promising results, achieving accuracy levels exceeding 90%. Thus, the DIIOTRNs

approach offers a promising solution to the pressing issue of IoT security, particularly in

the context of botnet attacks. Further research is warranted to refine and optimize this

framework for broad adoption across the IoT landscape.

Keywords:

deep learning techniques, intrusion detection

systems, convolution neural networks, long

short-term memories, machine learning

techniques, IoTs (internet of things), IoT

botnets, IoT botnet detections, anomaly

detections

1. INTRODUCTION

The proliferation of computer network applications has

significantly influenced socio-economic development, with

impact areas including international trade, healthcare, and

military operations. This highlights the paramount importance

of network security, which is continually threatened by both

internal and external factors. Intrusion Detection Systems

(IDSs) [1] have been employed since the 1980s [2] as a

potential countermeasure. IDSs operate by detecting threats

through the analysis of network data patterns [3]. Denial of

Service attacks (DoSs), for instance, manipulate harmful

traffic to obstruct or limit legitimate users' access to network

resources [4]. Other disruptive elements include malware [5],

utilized by attackers to compromise system stability. IDSs

serve as potential solutions to mitigate the impacts of such

attacks. Figure 1 illustrates an IDS model.

Data collection from systems and networks is conducted by

IDSs for threat analysis [6]. Upon threat detection, corrective

action is initiated and all significant network events are logged

by the IDS [7]. Autonomous anomaly detection systems

identify irregularities by progressively uncovering aberrant

system properties [8]. Their effectiveness lies in the ability to

discern abnormal behaviors within networks.

Machine Learning Techniques (MLTs) can augment IDSs

by detecting attacks without human intervention. MLTs

consist of an array of techniques that automatically recognize

patterns and anticipate future trends [9]. Although diverse, all

MLTs fundamentally operate by selecting optimal features.

For example, MLTs can monitor packet sizes and distributions

to discern intrusions. However, network managers often face

challenges in managing intrusion reports when IDSs identify

false attacks. Therefore, the enhancement of IDSs to improve

detection accuracy and reduce False Alarm Rates (FARs)

remains a critical area of research [10].

Figure 1. Mode of IDS

The problem is further exacerbated when IDSs rely on

known attack signatures, leaving them incapable of identifying

unknown attack types. To address this, autonomous IDSs

employing MLTs as classifiers have been developed. Yet,

these solutions also present drawbacks, such as limited

throughput and high False Detection Rates (FDRs).

Following this introduction, botnets are discussed in Section

International Journal of Safety and Security Engineering
Vol. 13, No. 4, August, 2023, pp. 715-722

Journal homepage: http://iieta.org/journals/ijsse

715

https://orcid.org/0000-0002-4049-7571
https://orcid.org/0009-0005-5318-1903
https://orcid.org/0000-0002-0097-2921
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.130414&domain=pdf

3. A review of related literature is presented in Section 4,

followed by a description of the research methodology in

Section 5. Section 6 presents the key findings from the

experiments, while Section 7 evaluates the proposed scheme.

Finally, Section 8 concludes the research.

1.1 Definition of the problem

The proliferation of Internet of Things (IoT) devices has

been paralleled by an escalating susceptibility to cyber-attacks,

attributable to the sophisticated nature of malware, most

notably, IoT botnets. The constantly evolving nature of botnets

renders them elusive to traditional and signature-based

anomaly detection methods. While numerous Machine

Learning Techniques (MLTs) have been proposed for

detecting IoT botnets, a conspicuous gap in predicting

potential vulnerabilities persists.

1.2 IoT botnets

IoT devices, which are anticipated to establish

approximately 83 billion connections by 2024, are integral to

data-dependent innovations, amassing extensive volumes of

data and enabling a myriad of tasks across various sectors,

including academia, residential applications, and healthcare.

Despite the benefits of continuous connectivity and

accessibility, IoT devices offer an opportunistic platform for

hackers to execute attacks such as Distributed Denial of

Services (DDoSs). IoT botnets, which refer to a network of

infected computers known as bots under the control of an

administrator or "botmaster" [11], pose a significant threat to

the use of IoT devices. Various types of malware specifically

designed for IoT devices have been deployed, with IoT botnets

being the primary targets [12]. Notable examples of botnets

include Bashlight, Mirai, and Torii.

Botnets operate in several stages, as illustrated in Figure 2,

each stage marked by various destructive actions [13]. Initially,

attackers exploit vulnerabilities in IoT devices to install bots,

which are then used for malicious purposes. While awaiting

further instructions and simultaneously scanning for new

vulnerable devices, the bots maintain contact with the

botmaster, facilitating the expansion of the botnet.

Figure 2. Stages of botnet

The focus of attack detection is generally on identifying

attack behaviors that occur post-command initiation, when the

attackers instruct the IoT botnets to commence the attack.

Moreover, the implementation of IoT security measures

contributes to increased power and memory demands. Given

the vulnerability of IoT devices to botnet attacks, the

development of robust defense strategies and procedures is

essential. The process of creating botnets involves multiple

stages, each necessitating a unique detection method. An

examination of the detection strategies employed at each stage

is crucial, given the diverse activities involved. There is a lack

of research on early detection of IoT botnets despite the fact

that early botnet stages evolve over time into more complex

stages where rapid attack operations occur. Recent activities

of Mirai versions have escalated [14], underscoring the

importance of detecting IoT botnets. This work contributes to

the existing body of knowledge on IoT botnet detection by

analyzing the behavior of IoT malware using dataset examples.

If implemented, the proposed methodology could significantly

enhance a system's ability to detect IoT botnets.

2. REVIEW OF LITERATURE

This section delves into the taxonomies of IoT botnet

detection, providing a synopsis and critique of recent research

in the field. Convolutional Neural Networks (CNNs), a type of

Deep Learning Technique (DLT), are designed to

automatically extract and learn features from inputs [15].

Traditionally leveraged for visual information analysis, CNNs

have been co-opted into cybersecurity to accurately identify

malicious behaviors. For instance, the CNN model has been

deployed to detect Denial-of-Service (DoS) attacks and

intrusions. Long Short-Term Memory units (LSTMs) address

the issue of vanishing gradients through the employment of

specialized units known as "memory cells," which represent

long-term memory [16]. Several studies have utilized LSTMs

for various botnet detection tasks. A comprehensive literature

review encompassing the stages of botnet formation and

detection was undertaken [13]. The study provided an insight

into IoT botnet detection. IoT botnet frameworks were

established in the research conducted by Stephens et al. [17],

providing a foundation for future exploration and potential

solutions. Machine Learning Techniques (MLTs) and DLTs

have been employed to identify botnets in various studies.

MLTs were used to categorize benign and malicious behaviors,

employing a combination of Decision Trees (DTs), K Nearest

Neighbors (KNNs), Random Forests (RFs), and Support

Vector Machines (SVMs) for processing tasks [18]. Deep

Learning Techniques such as FastGRNN, LSTMs, and GRU

were evaluated by Giaretta et al. [19], focusing on the

identification of infected and compromised devices. Machine

Learning Techniques were devised to detect IoT devices

affected by botnets [20]. Using an IoT dataset embedded with

botnet attacks (Bashlite and Mirai) from various IoT devices,

the study proposed a botnet detection model that utilized

CNNs, achieving an F1-score of 91%. Jung et al. [21]

proposed a Deep Learning Technique based on CNNs,

incorporating a data-processing component. Energy usage was

standardized and segmented to enhance the accuracy of CNNs.

The model categorized the processed data into four classes,

including a botnet class. Cross-device evaluation on three

common types of IoT devices yielded a cross-test accuracy of

90%. The leave-one-out examination demonstrated an

716

accuracy greater than 90%, and the overall assessment boasted

an accuracy rate of 96.5%. Furthermore, an examination of

IoT botnets using MLTs such as Decision Trees (DTs),

Association Rule Mining (ARM), Naive Bayes (NBs), and

Artificial Neural Networks (ANNs) on the UNSW-NB15

dataset was conducted by Koroniotis et al. [22]. The study's

results indicated that Decision Trees improved detection

procedures by 93%, as evidenced by the accuracy and false

alarm rate.

3. PROPOSED DIIOTRNS SCHEME

AIs (Artificial intelligences), MLTs, and DLTs can all be

used in cybersecurity to build powerful tools that detect and

stop hostile behaviours in networks. MLTs may be used to

analyze, detect, and comprehend complicated patterns in data,

as well as forecast future outcomes. Models learn as they

proceed and use this knowledge to improve their capacity to

both recognize and foresee probable appearance of

forthcoming cyber attacks. The benefits of DLTs over

traditional MLTs include their higher performances in a

number of settings, notably while learning from massive

security datasets. This work’s proposed DIIOTRNs is based

on CNNs and LSTMs for detecting botnets from IoTs devices.

The proposed model can significantly improve IoT botnet

detection abilities of systems when implemented. CNNs are

discriminative layered DLTs which use one or more

convolution and pooling layers as arrays to create multilayer

NNs (Neural Networks) [23]. The convolution layers often

share weights, and pooling layer samples to produce some sort

of translational invariant feature outputs. The proposed

scheme is based on CNNs and executed on IoT botnet dataset

and depicted as Figure 3.

Figure 3. DIIOTRNs scheme

DIIOTRN is executed on the IoT Botnet dataset following

the processes of data pre-processing/preparation where data is

cleaned and labels are encoded. This is subsequently followed

by CNNs based feature extractions where numerical columns

are standardized and features are selected based error or loss

rates while learning from data. The final stages are

classifications of botnet data packets. The suggested schema

was evaluated in terms of precision, recall and f1-measure

values along with a confusion matrix. The dataset,

preprocesses, feature selections and classifications of

DIIOTRNs are detailed below.

3.1 Dataset

A multivariate sequential dataset including actual traffic

data from nine commercial IoT devices infected with

BASHLITE and Mirai was utilised in the investigation and

downloaded from Kaggle.com the internet [24]. IoT related

malware behave differently from others, minimal dataset sizes

and qualities of dataset have a substantial influence on

functions of DLTs. Figure 4 displays a sample of the dataset.

Figure 4. Data set sample

3.2 DIIOTRN’s preprocessing

Label encoding is the process of converting labels into

numeric representations that machines can read. MLTs can

then better predict the functioning of such labels where data

gets labeled while training for clarity of data. It is a significant

structured dataset supervised learning pre-processing step. As

an example: In some dataset, assume Height. After applying

label encoding, the Height column is changed into where 0

represents tall, 1 represents medium, and 2 represents low

height. Figure 5 depicts dummy encoding of labels by

DIIOTRNs.

Figure 5. Dummy label encoding

3.3 DIIOTRN’s feature extractions/selections

When developing predictive models, feature selection

procedures entail reducing input variable counts for improving

model performances while simultaneously reducing costs in

models. In statistically based feature selection approaches,

relationships of input variables with target variables are

evaluated, and input variables with strongest associations are

selected. These approaches execute quickly and efficiently in

spite of the fact that they are statistical measures that are

dependent on t input and output data types. Figure 6 displays

feature extractions and selections.

Figure 6. Feature selections and extractions

3.4 DIIOTRNs classification

CNNs are multilayer neural networks which are that are

discriminative DLTs and are made up of one or more

convolution and pooling layers [23]. Convolution layers often

share a large number of weights with pooling layer samples to

produce some sort of translational invariant features. CNNs

feature fewer parameters than other connected networks with

same hidden unit counts, making training easier. CNN

architecture incorporates biologically inspired MLPs (multi

717

layer Perceptrons) [25]. The term "receptive field" alludes to

the small number of visual sub-regions to which these cells are

sensitive. These fields are arranged to occupy the whole visual

field, allowing the cell to function as a local filter throughout

the entire input area. CNN's architecture includes convolution,

max pooling, and fully linked layers. The convolution layer is

made up of neurons placed in a rectilinear grid, as opposed to

preceding layers, which were made up of neurons arranged in

a rectangular grid. The rectangular grid neurons are linked

together by a network of weights known as filter banks, which

receive inputs from preceding rectangular units. In order to

generate convolution layers, the weights for the rectangular

units must remain constant for each rectangular grid of

neurons. Each grid utilises a separate filter bank in systems

where the convolution layer is made up of many grids. A

pooling layer comes after each convolution layer, merging

subsets of the rectangular block formed by the convolution

layer by taking subsamples to provide an output of the block.

In order to pool the neurons in the blocks, one can compute

their maximum, average, or learn a linear summing algorithm.

Some blocks move more than a row or column, which provide

an input to nearby pooling units. As a result, the system’s

dimensions are reduced [26]. In the last phase of, convolution

and max-pooling layers are non-linearly stacked to generate a

completely connected layer. The connection that makes

training a set of weights for a filter bank straightforward in the

last phase of the neural network, convolution and max-pooling

layers are non-linearly stacked to generate a completely

connected layer which makes it simple to train a set of weights

for filter banks. ResNets address the problem of performance

degradations related to DNNs (deep neural networks) with

their deeper explorations of networks. Utilizing the strength of

voluminous data by building DNNs that try to approximate

functions f(x) and map inputs, x to their corresponding labels,

y. According to the Universal Approximation Theorem, every

function across a domain may be closely approximated by a

feedforward network with a single layer if the layer contains

enough neurons or hidden units. However, in real-world

applications, deeper L-layer neural networks with fewer

hidden units per layer are able to approximate functions that

exponentially more hidden units are needed to calculate in

shallower levels. As the signal advances further into the layers,

the actual strength of DLTs comes in their capacity to capture

abstract characteristics. However, the well-known

vanishing/exploding gradients and performance deterioration

problem frequently affects deeper neural networks. The

accuracy reaches a saturation point as network depths rise,

after which it starts declining. Analyses on higher error rates

of CNNs revealed that they were caused by

vanishing/exploding gradients. Researchers at Microsoft

Research proposed ResNets (Residual Networks) in 2015, a

novel architecture, to overcome this issue where residual

Blocks created in this design. Residual blocks are stacks of

layers configured in way where layer outputs get added to

subsequent layers down the stack. Non-linearity gets applied

after combining outputs of equivalent layers. The bye passes

are named shortcuts or skip-connections which are used in this

work and depicted in Figure 7. By skipping a few intermediary

levels and producing leftover blocks, skip connections link the

activations of one layer to the succeeding layers. These

discarded blocks are piled to form ResNets. The goal of this

network is for networks to fit residual mappings rather than for

layers to learn the underlying mapping. Regularization will

skip any layer that reduces architectural performance if this

type of skip link is included. As a result, training highly DNNs

is achievable without running into problems with vanishing or

growing gradients. These skip connections, like LSTMs, make

use of parametric gates.

Figure 7. Skip connections

The gates determine how much information passes through

skip connections and based on dimensions two kinds of

residual blockscan exist namely Identical residual blocks and

Convolution residual blockswhich are depicted in Figure 8.

Figure 8. Residual blocks

The outputs of shortcut paths and main paths are both

identical residual blocks with same dimensions. This is

achieved when the input of each convolution layer in the main

route is padded such that the output and input dimensions

remain consistent. In skip-connections of convolution residual

blocks, a convolution layer is used to enlarge the output of the

shortcut path to the same dimension as the main path. To

regulate the output loudness, the layer may also employ

different filter sizes, such as padding, strides, and 11 filters.

The fundamental purpose of the convolution layer is to apply

a learnt linear function that lowers the dimension of the input.

Non-linear functions are not used. However, this design did

not give more precision. It makes no use of non-linear

functions. However, this design did not provide more accuracy

than the ResNet architecture. Use a multi-layered network

design inspired by VGG-19 (50), to which the shortcut

connection is later added. The design is then transformed into

a residual network via these short-cut links. A residual

network is created by stacking many residual blocks together.

To slow down performance, the residual blocks build an

identity mapping to previous network activations. Deep neural

networks have a degradation concern.

4. RESULTS AND DISCUSSION

Results for each step of the planned DIIOTRNs programme

are presented as shown in Figure 9. The experimental setup for

the suggested model in this study was developed in Python

version 3.9.0, a sophisticated language for data science with a

number of helpful modules and a leading programming

language for embedded systems, such as IoT devices. The

dataset used was obtained from 9 IoT devices and training sets

of each device recorded typical network traffic patterns. Each

device's test data was made up of all the malicious data as well

as the remaining third of benign data. The dataset can also be

utilized for multi-class classifications as it encompasses 10

718

https://media.geeksforgeeks.org/wp-content/uploads/20200424011510/Residual-Block.PNG

classes of assaults plus a class of "benign." Malicious data can

be separated into 10 attacks undertaken by 2 botnets. Network

packets separated into distinct classes are listed in Table 1.

Figure 9. DIIOTRNs label encoding

Table 1. Dataset instances

Data Class Number of Instances

benign 62154

gafgyt_combo 61380

gafgyt_junk 30898

gafgyt_scan 29297

gafgyt_tcp 104510

gafgyt_udp 104011

mirai_ack 60554

mirai_scan 96781

mirai_syn 65746

mirai_udp 156248

mirai_udpplain 56681

4.1 DIIOTRNs preprocessing

Label encoding is the primary component of the dataset

preparation procedure in this work. MLTs typically involve

working with datasets that include numerous labels in one or

more columns. These designations may be written in words or

represented by numbers. Figure 10 depicts label encoding.

Figure 10. DIIOTRN’s normalizations

Figure 11. Training data for neural nets

4.2 DIIOTRN’s feature extractions/selections

The features are divided into four types, which summarize

traffics between hosts and protocols in communications.

• Traffic generated by same IP addresses (Type 1):

Count, mean, and variation of host MAC and IP-Packets (3).

• Traffic generated by same IP and MAC addresses

(Type 2): Mean, variance, magnitude, radius, covariance, and

correlation of channel packets (7).

• Traffics between same sources and destinations

(Type 3): Packet Jitter in a Network Packet count, mean, and

variation of packet jitter in a channel (3).

• TCP/UDP communications between same sources

and destinations (Type 4): Mean, variance, magnitude, radius,

covariance, and correlation of socket packets (7).

Before training, the numerical columns were shuffled,

standardized, and normalized, and the dataset's records is

shown in Figure 11.

4.3 DIIOTRN’s classification

To estimate DLT performance for predictive modeling

problems, divide the dataset into training and test datasets.

This study employed the train test split technique to divide the

dataset into training and test data in a 70:20 ratio with 10% for

validations. Figure 12 and Figure 13 depict data trained for

neural nets.

The suggested hybrid model has several layers, including

inputs, CNNs, LSTMs, flat/ dense/output layers. The first

layer's CNNs got input from 128, 64 neurons, whereas the

second layer's LSTMs received input from 32, 16 neurons. The

dense layers had 128, 64 neurons as they result in high levels

of accuracy, these two layers were integrated in the model. In

the flatten layer, the vector is flattened into a one-dimensional

vector that may be utilized in the dense layer.

Figure 12. DIIOTRN’s Deep residual_CNN model

Figure 13. Trained class instances

Figure 14. Confusion matrix of DIIOTRN’s deep residual

CNN model

719

To avoid model’s over fits, the model includes a dropout

layer with a rate of 0.2, which is done by randomly removing

certain neurons from the final layer. The output is created in

the dense layer using the ReLU activation algorithm. The

researcher built the model using a categorical cross-entropy

loss function for multiclass classification and a binary

categorical cross-entropy loss function for binary

classification. Figure 14 displays a snapshot of Trained class

instances.

5. EVALUATION METRICS

A confusion matrix based on four assessment indicators was

used to evaluate the model: The letter TP (True Positive)

denotes that the proposed model correctly predicts the positive

class; the letter TN (True Negative) denotes that the proposed

model correctly predicts the negative class; the letter FP (False

Positive) denotes that the proposed model incorrectly predicts

the positive class; and the letter FN denotes (False Negative)

that the proposed model incorrectly predicts the negative class.

The confusion matrix of DIIOTRN's Deep residual CNN

model is shown in Figure 15. Based on these measures, the

precisions, recalls, and F1-scores shown below were evaluated:

Precision: Precision measures the number of positive class

predictions, which are truly from the positive class. It is

formulated as given,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (1)

Recall: Recall provides the measure of the number of

positive class predictions obtained out of all the positive

examples present in the dataset. It is expressed as below,

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (2)

F1-Score: F1-Score yields a single score, which helps

balancing both the issues of precision and recall in one number.

It is expressed as below,

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

Accuracy: Accuracy refers to the ratio of examples, which

were rightly classified. In exact terms, it is the ratio between

the sum of the number of true positives and true negatives,

andthe number of examples present in the dataset. It is

formulated as given,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4)

CNNs may significantly reduce the amount of parameters,

which improves model learning efficiency. Furthermore,

LSTMs have their own memory and can produce rather

accurate classifications. As a result, the Cross CNN LSTMs

design employs CNN layers to extract features from input data

and combines them with LSTMs to facilitate prediction. We

can see from the preceding data that the suggested Cross CNN

LSTMs model has a high detection rate. Figure 16 depicts the

results of CNNs.

Table 2 shows the experimental findings of DIIOTRNs

running 20 and 50 epochs. The findings and measures for

precisions, recalls, and F1-scores for binary and multiclass

classifications are shown in the table below. Traffic was

classified in binary as malicious and legitimate.

Table 2. DIIOTRNs performance metric values for 20 and 50 epochs runs

Class
precision recall f1-score support

20 Epochs 50 Epochs 20 Epochs 50 Epochs 20 Epochs 50 Epochs 20 Epochs 50 Epochs

benign 1.00 1.00 1.00 1.00 1.00 1.00 4033 3967

mirai_udp 1.00 1.00 1.00 1.00 1.00 1.00 4092 3963

gafgyt_combo 1.00 1.00 1.00 1.00 1.00 1.00 3952 4087

gafgyt_junk 1.00 1.00 1.00 1.00 1.00 1.00 3990 4041

gafgyt_scan 0.50 0.00 0.00 1.00 1.00 1.00 4073 4013

gafgyt_tcp 0.49 1.00 0.65 0.50 1.00 0.67 3877 4064

gafgyt_udp 1.00 1.00 1.00 1.00 1.00 1.00 3835 3981

mirai_ack 1.00 1.00 1.00 1.00 1.00 1.00 4123 3980

mirai_scan 1.00 1.00 1.00 1.00 1.00 1.00 3970 4038

mirai_syn 1.00 1.00 1.00 1.00 1.00 1.00 3997 3952

mirai_udpplain 1.00 1.00 1.00 1.00 1.00 1.00 4058 3914

Figure 15. Output of residual CNN model

720

Figure 16. DIIOTRNs performances in classifications

The accuracy for a 20 epochs run was 0.91 (support 44000).

The macro and weighted average for precision and recall was

0.91 while for f1-score it was 0.88 with the same support. The

total batches were 1375 with a step loss of loss: 0.1303. The

test accuracy was 0.906659. For a 50 epoch run accuracy was

increased by 1%. Accuracy was 0.91 (support 44000) while

macro/weighted averages for precision recall and f1-score

were 0.88, 0.91 and 0.88 respectively. The loss and test

accuracy values did not differ much and were 0.1309 and

0.9084 respectively. Hence the suggested scheme achieved an

accuracy score above 90% in general. The binary classification

for the two classes, legitimate and malicious, had 91%

accuracy. Figure 16 demonstrates the new proposed model’s

accuracy and learning from losses in detecting propagations of

botnet in IoT networks.

6. CONCLUSION

IoTs are being utilised to improve services in a range of

commercial sectors. These applications cover a wide range of

topics, including health and education. The devices facilitate

and accelerate cybersecurity attacks, particularly when botnets

are involved. Thankfully, botnets go through many processes

before launching attacks, which might be used to detect these

attacks early on. This paper suggested and implemented

DIIOTRNs, a DLT-based technique for detecting IoT botnet

attacks. The proposed model in this paper includes a 0.2

dropout layer to prevent model overfitting, which is achieved

by randomly eliminating neurons from the final layer. The

ReLU activation technique is used to generate the dense layer

output. The researcher created models for multiclass and

binary classifications using a categorical cross-entropy loss

function and binary categorical cross-entropy, respectively.

Furthermore, the model was trained for 50 epochs before being

stopped after 20 epochs because the loss did not improve. An

Adam optimiser and the Reduce LR On Plateau function were

used to alter the learning rate. Technical empirical experiments

were performed on a prototype supplied in this paper to

investigate the behaviour of IoT malwares. This prototype

offers a clear knowledge of the early stages of creating an IoT

botnet. While it makes more sense to focus on the early stages,

when the botnet is established and spreads over time, most

previous research tended to focus on the late stage, which

occurs quickly, providing substantial challenges in

recognizing IoT botnets and blocking DDoS attacks.

Furthermore, the scientists created multiclass classification

algorithms for spotting IoT botnets using a real IoT dataset and

a fusion model based on DLTs known as Cross CNN LSTMs.

Numerous tests were carried out, and a comparison was

conducted between the proposed methodology and previous

works that used both standard MLTs and specific DLTs. The

primary goal of this study was to investigate IoT botnet

malware and understand its behaviour by monitoring and

collecting network data. In order to investigate IoT botnet

proliferation, this experiment focused on scanning, brute-

forcing, downloading, and installing malware binaries on IoT

devices. A novel paradigm for recognizing IoT botnets was

proposed, and implemented using a dataset and assessed with

several performance criteria of F1-score, accuracy, and recall.

The results of the studies indicate that the recommended model

is precise and reaches accuracy levels of above 90%. However,

limitations arise from dataset representativeness, model

robustness against adversarial attacks, and real-time

implementation challenges. Additionally, scalability concerns

and resource constraints in resource-limited IoT devices need

to be addressed for practical deployment. Future improvement

in DIIOTRNs can focus on diversifying datasets and

incorporating adversarial defense mechanisms for better

generalization and resilience against attacks, while optimizing

for real-time deployment and scalability in resource-limited

IoT environments.

REFERENCES

[1] Chand, N., Mishra, P., Krishna, C.R., Pilli, E.S., Govil,

M.C. (2016). A comparative analysis of SVM and its

stacking with other classification algorithm for intrusion

detection. 2016 International Conference on Advances in

Computing, Communication, & Automation (ICACCA)

(Spring), pp. 1-6.

https://doi.org/10.1109/ICACCA.2016.7578859

[2] SANS Institute. (2016). The history and evolution of

intrusion detection. Available:

https://www.sans.org/reading-

room/whitepapers/detection/history- evolution-

intrusion-detection-344, accessed on Feb. 20, 2016.

[3] Jonnalagadda, S.K., I., R.P.R. (2013). A literature survey

and comprehensive study of intrusion detection.

International Journal of Computer Applications, 81(16):

40-47. https://doi.org/10.5120/14210-2458

[4] Mitchell, R., Chen, I.R. (2014). A survey of intrusion

detection techniques for cyber-physical systems. ACM

721

Computing Surveys, 46(4): 1-29.

https://doi.org/10.1145/2542049

[5] Internet of Things: How much are we exposed to cyber

threats? Infosec Resources.

https://resources.infosecinstitute.com/topics/iot-

security/internet-things-much-exposed-cyber-threats/,

accessed on Dec. 10, 2015.

[6] Hampshire. IoT connections to reach 83 billion by 2024,

driven by maturing industrial use cases.

https://www.juniperresearch.com/press/iot-connections-

to-reach-83-bn-by-2024, accessed on Apr. 7, 2022.

[7] What it is Network intrusion detection system?

http://www.combofix.org/what-it-is-network-intrusion-

detection-system.php, accessed on Dec. 10, 2015.

[8] Denning, D.E. (1987). An intrusion-detection model.

IEEE Transactions on Software Engineering, SE-13(2):

222-232. https://doi.org/10.1109/TSE.1987.232894

[9] Alpaydın, E. (2010). Introduction To Machine learning.

https://www.lri.fr/~xlzhang/KAUST/CS229_slides/chap

ter18_RL.pdf, accessed on Jan. 20, 2015.

[10] Masduki, B.W., Ramli, K., Saputra, F.A., Sugiarto, D.

(2015). Study on implementation of machine learning

methods combination for improving attacks detection

accuracy on Intrusion Detection System (IDS). 2015

International Conference on Quality in Research (QiR),

Lombok, Indonesia, pp. 56-64.

https://doi.org/10.1109/QiR.2015.7374895

[11] Alzahrani, H., Abulkhair, M., Alkayal, E. (2020). A

multi-class neural network model for rapid detection of

IoT botnet attacks. International Journal of Advanced

Computer Science and Applications (IJACSA), 11(7):

688-696.

https://doi.org/10.14569/IJACSA.2020.0110783

[12] TrendMicro. Into the Battlefield: A Security Guide to

IoT Botnets. 2019. https://www.trendmicro.com/vinfo/

us/security/news/internet-of-things/into-the-battlefield-

a-security-guide-to-iot-botnets, accessed on March 5,

2021.

[13] Wazzan, M., Algazzawi, D., Bamasaq, O., Albeshri, A.,

Cheng, L. (2021). Internet of Things botnet detection

approaches: Analysis and recommendations for future

research. Applied Sciences, 11: 5713.

https://doi.org/10.3390/app11125713

[14] CSDE. International Botnet and Iot Security Guide 2020.

https://securingdigitaleconomy.org/wp-

content/uploads/2019/11/CSDE_Botnet-

Report_2020_FINAL.pdf, accessed on April 7, 2022.

[15] Li, Y.M., Xu, Y.Y., Liu, Z., Hou, H.X., Zheng, Y.S., Xin,

Y.; Zhao, Y.F., Cui, L.Z. (2019). Robust detection for

network intrusion of industrial IoT based on multi-CNN

fusion. Measurement, 154(2): 107450.

https://doi.org/10.1016/j.measurement.2019.107450

[16] Abuhamad, M., Abuhmed, T., Mohaisen, D., Nyang,

D.H. (2020). AUToSen: Deep-learning-based implicit

continuous authentication using smartphone sensors.

IEEE Internet of Things Journal, 7(6): 5008-5020.

https://doi.org/10.1109/JIOT.2020.2975779

[17] Stephens, B., Shaghaghi, A., Doss, R., Kanhere, S.S.

(2021). Detecting internet of things bots: A comparative

study. IEEE Access, 9: 160391-160401.

https://doi.org/10.1109/ACCESS.2021.3130714

[18] Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H.,

Nõmm, S. (2020). MedBIoT: Generation of an IoT

botnet dataset in a medium- sized IoT network. In

ICISSP; ResearchGate: Berlin, Germany, pp. 207-218.

https://doi.org/10.5220/0009187802070218

[19] Giaretta, L., Lekssays, A., Carminati, B., Ferrari, E.,

Girdzijauskas, Š. (2021). LiMNet: Early-Stage Detection

of IoT Botnets with Lightweight Memory Networks. In:

Bertino, E., Shulman, H., Waidner, M. (eds) Computer

Security – ESORICS 2021. ESORICS 2021. Lecture

Notes in Computer Science(), vol 12972. Springer, Cham.

https://doi.org/10.1007/978-3-030-88418-5_29

[20] Kim, J., Shim, M., Hong, S., Shin, Y., Choi, E. (2020).

Intelligent detection of IoT botnets using machine

learning and deep learning. Applied Sciences, 10(19):

7009. https://doi.org/10.3390/app10197009

[21] Jung, W., Zhao, H.Y., Sun, M.L., Zhou, G. (2020). IoT

botnet detection via power consumption modeling. Smart

Health, 15: 100103.

https://doi.org/10.1016/j.smhl.2019.100103

[22] Koroniotis, N., Moustafa, N., Sitnikova, E., Slay, J.

(2017). Towards developing network forensic

mechanism for botnet activities in the IoT based on

machine learning techniques. In Proceedings of the

International Conference on Mobile Networks and

Management, Melbourne, Australia, pp. 30-44.

https://doi.org/10.48550/arXiv.1711.02825

[23] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning.

Nature, 521: 436-444.

https://doi.org/10.1038/nature14539

[24] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y.,

Breitenbacher, D., Shabtai, A., Elovici, Y. (2018). N-

BaIoT: Network-based detection of IoT botnet attacks

using deep autoencoders. IEEE Pervasive Computing,

17(3): 12-22.

https://doi.org/10.1109/MPRV.2018.03367731

[25] Dalto, M. (2014). Deep neural networks for time series

prediction with applications in ultra-short-term wind

forecasting.

http://www.fer.unizg.hr/_download/repository/KDI-

Djalto.pdf, accessed on Feb 19, 2015.

[26] LeCun, Y. (2012). Learning Invariant Feature

Hierarchies. In: Fusiello, A., Murino, V., Cucchiara, R.

(eds) Computer Vision – ECCV 2012. Workshops and

Demonstrations. ECCV 2012. Lecture Notes in

Computer Science, vol 7583. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-33863-

2_51

722

