
Multi-Modal Deep Learning for Effective Malicious Webpage Detection

Alaa Eddine Belfedhal

EEDIS Laboratory, Ecole Superieure en Informatique de Sidi Bel Abbes, Sidi Bel Abbes 2200, Algeria

Corresponding Author Email: a.belfedhal@esi-sba.dz

https://doi.org/10.18280/ria.370422 ABSTRACT

Received: 20 March 2023

Revised: 17 May 2023

Accepted: 23 May 2023

Available online: 31 August 2023

The pervasive threat of malicious webpages, which can lead to financial loss, data breaches,

and malware infections, underscores the need for effective detection methods. Conventional

techniques for detecting malicious web content primarily rely on URL-based features or

features extracted from various webpage components, employing a single feature vector

input into a machine learning model for classifying webpages as benign or malicious.

However, these approaches insufficiently address the complexities inherent in malicious

webpages. To overcome this limitation, a novel Multi-Modal Deep Learning method for

malicious webpage detection is proposed in this study. Three types of automatically

extracted features, specifically those derived from the URL, the JavaScript code, and the

webpage text, are leveraged. Each feature type is processed by a distinct deep learning

model, facilitating a comprehensive analysis of the webpage. The proposed method

demonstrates a high degree of effectiveness, achieving an accuracy rate of 97.90% and a

false negative rate of a mere 2%. The results highlight the advantages of utilizing multi-

modal features and deep learning techniques for detecting malicious webpages. By

considering various aspects of web content, the proposed method offers improved accuracy

and a more comprehensive understanding of malicious activities, thereby enhancing web

user security and effectively mitigating the risks associated with malicious webpages.

Keywords:

BERT, BiLSTM, FastText, malicious web

page detection, multi-modal deep learning,

word embedding

1. INTRODUCTION

The Internet has revolutionized access to a plethora of

valuable services, including e-banking, e-commerce, e-

learning, and social media, all of which can be reached with a

single click through websites. However, the growth of the

internet has concurrently led to an increase in the prevalence

of malicious websites, which are designed to disseminate

malware, steal personal information, and engage in various

nefarious activities. Consequently, the development of

effective malicious webpage detection methods has become

crucial.

In essence, a malicious webpage is characterized by the

presence of unwanted and hazardous content, which can be

utilized to launch a range of attacks and engage in diverse

malicious behaviors such as phishing [1], SPAM, drive-by-

downloads [2], advanced persistent threats (APT) [3], and

deceptive sites [4], among others.

To disseminate malicious URLs, attackers typically employ

social engineering tactics to deceive users through email

SPAMs, SMSs, social networks, forums, pop-ups, and other

means. Malicious webpages exploit browser and user

vulnerabilities to gain unauthorized access and execute their

malicious activities [5]. The growing sophistication of these

threats underscores the importance of developing reliable and

effective countermeasures to protect users and their data.

Traditionally, machine learning techniques have been used

to detect malicious webpages, but these methods have

limitations when it comes to identifying new attacks. To

overcome these limitations, recent research has focused on

using deep learning techniques for this task. Most of these

research approaches have used either URL-only-based

features or a combination of URL, and content features

represented as a single vector which is used by a deep learning

model to perform classification. Despite the promising

outcomes of this type of approaches, they are not without their

shortcomings.

One of the key challenges lies in the diverse range of

complexities exhibited by malicious webpages. They are

crafted by cybercriminals to employ various tactics, such as

obfuscation, polymorphism, and dynamic content generation.

These intricate techniques make it difficult to extract

meaningful features solely from the URL or content of the

webpage. Consequently, approaches that solely rely on URL-

based or combined URL-content feature vectors may fail to

capture the entire spectrum of malicious behaviors, rendering

them susceptible to sophisticated and advanced attacks.

Moreover, the dynamic nature of modern webpages further

exacerbates the detection challenge. Web content can change

dynamically based on user interactions or external factors,

making it essential to monitor and analyze the behavior of web

elements in real-time. Traditional approaches that rely on

static feature vectors may struggle to adapt to these dynamic

alterations, leading to a decreased effectiveness in detecting

malicious activities.

To address these limitations, presented in this paper is a

Multi-Modal Deep Learning method for detecting malicious

webpages. The proposed method uses a combination of URL,

JavaScript code, and content textual features extracted from

webpages to train three different deep neural networks which

allows a comprehensive analysis of webpages, enabling a

more accurate identification of malicious content. The

Revue d'Intelligence Artificielle
Vol. 37, No. 4, August, 2023, pp. 1005-1013

Journal homepage: http://iieta.org/journals/ria

1005

https://orcid.org/0000-0002-6305-5274
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370422&domain=pdf

networks are to use a dataset of both benign and malicious

webpages [6], and the outputs of the three models are

combined using the average of probabilities to obtain a final

output. For the three modalities, features are extracted

automatically by the models to avoid using manually

engineered features because most of the time, it’s very

difficult-even for an expert in the area-to know all the useful

features and to also choose the subset of best features, for it’s

quite time and effort consuming.

So, the key contributions of this paper are twofold. First, a

multi-modal approach is presented that combines multiple

sources of information, allowing for a holistic examination of

the characteristics exhibited by malicious webpages. Second,

deep learning models are leveraged to process each feature

type, capturing intricate patterns and behaviors that are crucial

for effective detection.

To evaluate the proposed approach, we used standard

metrics such as accuracy, precision, and recall. We also

compared the approach with other ML and DL methods. The

effectiveness of the proposed method is demonstrated through

experimental results, with a high accuracy rate of 97.90%

achieved and a minimal false negative rate of only 2%. These

findings highlight the benefits of utilizing multi-modal

features and deep learning techniques, providing a robust and

reliable solution for detecting malicious webpages.

The rest of the article is organized as follows: in the next

section, we will present the literature related to the field of

malicious webpage detection. Then, we will describe our

proposed method in detail. In addition, we will show the

experimental results and analysis. Finally, we will conclude

the article and suggest future work.

2. RELATED WORK

Malicious webpages are a serious problem that threats the

cyber security of millions of Web users around the globe.

Therefore, over the last decades, a great deal of research has

been done to address this issue [5]. The relevant research

approaches can be divided mainly into two categories:

blacklist-based approaches and machine learning-based

approaches.

2.1 Blacklists-based approaches

One of the earliest solutions was to use blacklists [2].

Blacklists are lists of URLs that have been identified as

malicious or potentially harmful. These lists are created and

maintained by security vendors, researchers, and other

organizations that specialize in identifying and analyzing web

threats. A good example of URLs blacklist is “Google Safe

Browsing Service” [4], which provides an API to check

whether or not a URL is safe by searching it in Google Black

list. To expand the capabilities of the blacklist approach, Sun

et al. [2] proposed a system called “AutoBLG” that updates

automatically a blacklist by searching for new malicious URLs

using statistical similarity filters and IP addresses.

The main advantage of blacklists is that they are easy to

operate and maintain. However, their major weakness is that

they are only effective in blocking websites that have already

been identified as malicious. New threats or previously

unknown websites can still slip through the cracks [7].

2.2 Machine Learning-based approaches

To overcome the limitations of blacklists, researchers have

suggested using Machine Learning (ML) techniques. Since the

problems of detecting whether a website is malicious or not is

a binary classification problem, ML has the ability to detect

new malicious URL webpages, which were previously unseen

[8]. ML approaches can be categorized according to the used

type of features: URL based, content based or hybrid

approaches (a combination of URL and content features).

2.2.1 URL-based approaches

The simplest way of using ML in order to solve the problem

in question is to use features extracted from the URLs

associated with webpages. These features can be statistical like:

the length of the URL, lengths of different parts of the URL,

number of alphabet letters, the number of digits, number of

special characters, etc. [9-11] or lexical like: n-grams, tokens

and Bag-of-Words [12, 13].

For instance, Selvaganapathy et al. [3] laid out an approach

based on Deep Belief Network (DBN) for malicious URL

detection and classification. For a given URL, the URL string

and host information were converted into a numerical vector

using a token-based method. The vector was then fed into the

DBN for dimensionality reduction, and finally, a Deep Neural

Network was applied for URLs classification.

Chatterjee and Namin [10] used Deep Reinforcement

Learning with a set of 14 features extracted from the URL.

They applied the “Q-learning” [14] algorithm to Ebbu2017

dataset [15] and reported a detection accuracy of 90.1%. Le et

al. [12] proposed URLNet, an end-to-end deep learning system

for URL classification. This system is based on Convolutional

Neural Networks (CNN) and words’ and characters’

embedding to extract features directly from the URL string.

Authors tested their proposition on a large dataset of 10

million URLs collected from VirusTotal.

Daeef et al. [1] made the case for using N-grams as

extracted lexical features from the URL string. Authors tested

three different Machine Learning models, namely: J48,

Support Vector Machine, and Logistic Regression. The best

reported results were obtained using J48 classifier with 93%

of detection accuracy.

More recently, Yuan et al. [16] presented a Neural Network

Model using a feature extraction mechanism that converts the

URL string into a grayscale image to obtain “visual”

characteristics, and use word and character embedding to

obtain “semantic” features from the same URL. They used a

modified Recurrent Neural Network (RNN) called

“Independent Recurrent Neural Network” (IndRNN) with an

attention mechanism to combine visual and semantic features

for malicious URLs detection.

The advantage of using URL features is that the method

does not require a lot of resources. However, its biggest issue

is that it is useless when dealing with compromised websites

and servers [5]. For this reason, researchers have suggested

using content-based features (HTML, CSS, JavaScript, images,

text, …) instead of URLs [17].

2.2.2 Content-based approaches

One example of content based approaches is the work

presented by Wang et al. [18]. Authors proposed using auto-

encoders to learn important features from JavaScript code of a

webpage, the learned features are then fed to a logistic

regression model for classification. Authors experimented

1006

with a dataset of 27, 000 webpages, and reported an accuracy

of 95%.

Saxe et al. [19] proposed to extract tokens from HTML

content using regular expressions. The extracted tokens are

then used as features by a Deep Neural Network for malicious

content detection. This system achieved a 97.5% accuracy rate.

Alex and Rajkumar [20] combined two optimization

algorithms (namely, Spider Monkey Optimization and Bird

Swarm Optimization) with a Deep Belief Network for

malicious JavaScript code detection. They utilized a set of

manually engineered features like function calls, and

conditional statements to create their dataset. Authors reported

an accuracy of 94.4% with False Positive Rate (FPR) of 8.1%.

Another interesting work by McGahagan et al. [17] consists

on using 26 content-based features extracted from both HTML

and JavaScript code. Authors began with 1,865 features and

used feature transformation techniques to reduce this number

to 26. They trained eight different machine learning models on

a built dataset of 5,931 malicious and 34,778 benign websites.

The best results of accuracy at the rate of 91% were obtained

by the Random Forest classifier.

2.2.3 Hybrid approaches

Since relying on one type of features can’t give the best

possible results, some researchers argue in favor of using a

combination of features to better describe the webpage nature.

As an example, Chiew et al. [8] used 48 features extracted

from the URL string and the HTML code. These features are

then fed into a “Hybrid Ensemble Feature Selection” method

to reduce the number of features to only 10 features. They used

a dataset of 10,000 phishing/legitimate webpages, and

experimented with many machine learning algorithms (Naive

Bayes, SVM, …). Authors reported that best performances

were made by the Random Forest algorithm with 94.27% of

classification accuracy.

Yang et al. [21] proposed a multidimensional phishing

detection system in which features are extracted from the URL

string, the HTML code and the webpage text content. The

proposed system works in two stages. In stage one, a deep

learning model is used to extract features from the URL string,

and, in stage two, different multisource features are

concatenated to form a one vector that was fed into a XGBoost

(eXtreme Gradient Boosting) model for classification.

Li et al. [22] used a “stacking model” on a training dataset

of 53,103 phishing/legitimate websites, with a total of 20

features extracted from the HTML code and the URL string.

The used model combines Gradient Boosting Decision Tree,

XGBoost and LightGBM [23] in multiple layers to enhance

performance. Both previously mentioned research works

detect only phishing webpage (not all possible malicious

webpages like drive-by-download).

2.3 Discussion

Blacklists and machine learning-based approaches are two

common methods for detecting malicious webpages.

Blacklists involve maintaining lists of known malicious

websites or URLs and rely on predefined patterns to identify

and block malicious content. They offer simplicity, fast

response times, and low false positive rates. However,

blacklists have limitations, such as being reactive and unable

to detect new threats, requiring continuous maintenance, and

being susceptible to evasion techniques.

In contrast, machine learning-based approaches leverage

algorithms and models trained on large datasets to

automatically learn and detect malicious webpages. These

approaches can utilize different types of features, including

URL features, content features, or hybrid features combining

both URL and content information. URL features provide

quick processing and are useful for blocking known malicious

domains. Content features analyze webpage content to capture

behavior and intent, offering more comprehensive analysis

and adaptability to evolving threats. Hybrid features combine

the strengths of both URL and content analysis, resulting in

robust and accurate detection.

In this work, we propose to use three types of features, yet,

unlike other research approaches that combine all features

directly into a single vector, we implemented multimodality to

distinguish each type of features, as well as deep learning to

automatically extract and select the best set of features.

3. PROPOSED METHODOLOGY

As mentioned above, the most important idea behind our

approach is that all elements of a webpage can give an insight

regarding its maliciousness, therefore, we used three types of

features in our framework for webpage classification, namely:

the URL string, the text content and the JavaScript code. We

excluded third-party information features (e.g., WHOIS and

search engines information) because this requires access to a

third party service which can be inaccessible and can take a lot

of time to be evoked. Also, instead of extracting features

manually, we used a combination of three deep learning

methods (CNN-LSTM, FastText-BiLSTM and BERT-MLP)

to automatically find the useful features from data. The

problem with most of the manually extracted features-based

approaches is that badly chosen features can lead to over-

fitting, noise, and a decrease in the accuracy of the detection.

Figure 1. Multi-modal proposed system

1007

3.1 Overview

Our system (as shown in Figure 1) used Multi-Modal Deep

Learning (MMDL) and was composed of three different

models with three types (modalities) of features. MMDL is a

subfield of Deep Learning that focuses on the integration of

multiple modalities of data, such as text, images, audio, video,

etc. The goal of Multi-Modal Deep Learning is to develop

models that can understand and make predictions based on

multiple types of data.

One of the key challenges in multi-modal Deep Learning is

the integration of different types of data, which may have

different characteristics and may be processed by different

types of neural networks. To address this challenge, various

methods have been proposed in the literature, such as late

fusion, early fusion, and multi-task learning [24]. In our case,

we used late fusion which is a method through which different

modalities of data are processed separately by their own neural

networks and the results are then combined at a later stage.

The three types of used features are: The URL string, the

JavaScript code and the webpage text content. To train the

whole model, we began by training one model for each

modality. Below are the details of each model.

3.2 CNN-LSTM model on URL string

A CNN-LSTM model is a type of deep neural network

architecture that combines Convolutional Neural Networks

(CNNs) and Long Short-Term Memory (LSTM) networks.

CNNs are typically used for image and signal processing tasks

and are good at extracting spatial features, while LSTMs are

commonly used for sequential data tasks and are good at

modeling temporal dependencies. By combining these two

architectures, a CNN-LSTM model can effectively capture

both spatial and temporal features in data [25].

In our case, a CNN-LSTM model is advantageous for

malicious URL detection as it combines the pattern extraction

capability of CNNs with the sequential modeling ability of

LSTMs. CNNs can capture local features and patterns within

the URL, while LSTMs excel at modeling long-term

dependencies and capturing the sequential nature of URLs.

This combination allows the model to effectively analyze

hierarchical representations of URLs, distinguishing between

normal and malicious structures. By leveraging both local and

global context, the CNN-LSTM model enhances the accuracy

and effectiveness of malicious URL detection systems.

In the proposed method, a URL was first encoded as bytes’

array, and if the length of the URL was greater than L=100

characters, the URL would be trunked. If the length was less

than 100, the URL would be padded with “all zero” bytes. The

bytes’ vector was then fed to a 1D CNN-LSTM model. This

model was chosen after having tried different

models/combinations (results are shown in the evaluation and

discussion section). The details of the model are shown in

Figure 2.

3.3 BERT-MLP model on text content

The webpage text content may be a good indicator of

potential maliciousness of the website (SPAM, phishing, fake

news, …). A BERT-MLP (Bidirectional Encoder

Representations from Transformers-Multi-Layer Perceptron)

model is used for text content classification as shown in Figure

3. We began first by preprocessing the content text using the

TensorFlow TF.text API [26]. The preprocessing step includes

text cleaning, tokenization and vectorization.

Figure 2. CNN-LSTM model architecture

Figure 3. BERT-MLP model for text content classification

Following preprocessing, we used ALBERT [27] from the

“TensorFlow Hub” to extract features from the webpages.

ALBERT is “A Light” version of BERT which is a pre-trained

language model that can encode text tokens into high-

dimensional vectors. The BERT model has achieved state-of-

the-art results in various natural language processing tasks,

including text classification, question-answering, and

language translation. BERT is based on the transformer

architecture, which uses self-attention mechanisms to capture

and detect contextual relationships between words in a

sentence. BERT is trained on large corpora of text and can

1008

encode text into high-dimensional vectors, which can be used

as features for the classification task [28].

BERT was used to extract features from the web pages.

Each web page was treated as a document and encoded as a

sequence of tokens. BERT generated a vector representation

for each token, which captured its contextual relationship with

other tokens in the document. The output of BERT was a

fixed-length vector representation of the entire document.

A binary MLP (Multi-Layer Perceptron) classification

model was then trained on the feature vectors generated by

BERT. The model took the BERT feature vectors as input and

output a binary classification score indicating whether the

content text was malicious or benign. Dropout layers were

added to avoid overfitting.

The integration of a BERT-MLP model offers significant

advantages for malicious web content detection. The BERT

component, which is pre-trained on extensive text data,

provides contextual understanding and semantic

comprehension [28], enabling the model to capture subtle

linguistic cues and identify malicious patterns that may be

missed by traditional keyword-based approaches. This

contextual understanding is particularly valuable when dealing

with deceptive or obfuscated content.

Additionally, BERT's subword tokenization handles out-of-

vocabulary words effectively, making the model robust

against manipulations intended to evade detection. By

leveraging transfer learning and fine-tuning, the pre-trained

BERT model can be adapted and optimized for the specific

task of detecting malicious web content, enhancing its

accuracy and performance. The Multilayer Perceptron (MLP)

component of the model complements BERT by enabling

precise classification, leveraging the contextualized

embeddings generated by BERT to capture complex

relationships and make accurate predictions. Overall, the

BERT-MLP model combines contextual understanding,

semantic comprehension, fine-tuning, and powerful

classification capabilities, making it a highly effective tool for

detecting malicious web content.

3.4 FastText-BiLSTM model on JavaScript code

Most of malicious webpages use JavaScript code to perform

malicious actions on the victim machine like downloading and

installing Malwares or showing unwanted popups, therefore,

analyzing the JavaScript code is crucial when trying to detect

malicious webpages.

Before the model had been trained, each script was parsed

using Esprima [29] JavaScript parser to extract the abstract

syntax tree (AST) representation of the code. An AST

represents the structure of the JavaScript code as a tree, where

each node in the tree represents a syntactic construct such as a

function, an “if” statement, a variable declaration, or an

expression [20]. The AST is a useful representation of the code

because it captures the structure of the code and its syntax,

without being affected by the specific formatting or layout of

the code.

We traversed the AST in a depth-first manner and extracted

the sequence of node types and attributes encountered. This

sequence was used as a feature to capture the order and

frequency of different types of constructs in the code. The

sequence was then treated like a text, and a word embedding

was calculated for each element (token) of the sequence using

FastText [30]. FastText is a library for text classification and

text representation developed by Facebook's Artificial

Intelligence Research (FAIR) team. It is an open-source

library that provides efficient tools to work with text data and

build language models.

One of the key features of FastText is its ability to represent

words as n-grams, which are contiguous sequences of

characters within a word. By representing words in this way,

FastText can capture sub-word information, which is useful

for dealing with rare or out-of-vocabulary words. It also

enables to capture semantic and syntactic relationships

between words.

The Bi-LSTM (Bi-directional LSTM) model takes the

FastText embedding as an input for training and produces a

classification output. Like other RNNs, Bi-LSTMs are

designed to handle sequential data by processing one input at

a time and maintaining an internal state that captures

information from previous inputs. However, unlike traditional

RNNs, Bi-LSTMs have two LSTM layers: one that processes

the input sequence from left to right, and one that processes

the input sequence from right to left. This allows the network

to capture both forward and backward dependencies in the

input sequence.

Using a FastText-BiLSTM model for malicious JavaScript

detection offers advantages by combining the strengths of both

components. FastText [30] excels at capturing word-level

representations and understanding the syntactic and semantic

characteristics of JavaScript code. BiLSTM, on the other hand,

specializes in analyzing sequential dependencies within code

sequences. This combination allows the model to effectively

detect subtle patterns of malicious behavior, adapt to different

code variations, and leverage contextual information for

accurate detection of malicious JavaScript. Overall, the

FastText-BiLSTM model provides a powerful framework for

robust and reliable identification of malicious JavaScript code.

3.5 Fusion of sub-models outputs

To combine the three types of modalities, we opted to use a

late fusion approach. After having trained each model

separately with one type (modality) of features, the outputs of

the three models were aggregated by calculating the average

of the outputs probabilities to produce the final prediction

(Malicious/Benign).

In the next section, we will present the experimental results

and analysis to evaluate the performance of our proposed

method and compare it with other state-of-the-art methods.

4. EVALUATION AND DISCUSSION

In this section, we showcase the results of experiments

carried out to assess our propositions and compare them to

conventional ML/DL approaches as well as existing works

from the literature.

4.1 Dataset

To train our system, we used the “Malicious and Benign

Webpages Dataset” described in the study [6]. The dataset

used in this work was created by Singh. In 2020 and made

publicly available. To collect the data, Singh utilized

MalCrawler [31], a web crawler developed by the same

researcher. MalCrawler is specifically designed to search for

malicious webpages. The collected data was then labeled using

the Google Safe Browsing API [4], a service that provides

1009

information on the safety of websites.

The dataset contained 1,561,934 rows (webpage samples)

with 12 columns including the URL, the webpage content

(JavaScript code and Text content), the IP address, and other

features. The complete list of features with the first few

simples is shown in Figure 4. Each row is labeled as “good”

(benign) or “bad” (malicious).

Figure 4. Malicious and benign webpages dataset [6]

Figure 5. Malicious and benign webpages dataset classes’

distribution [6]

Table 1. The final data distribution after under-sampling

 Benign Malicious Total

Train 28,252 28,252 56,504

Test 7,063 7,063 14,126

Total 14,126 14,126 70,630

The original dataset was highly imbalanced-there were

much more benign examples than malicious ones-(see Figure

5), which could have misled any Machine Learning model. To

handle this problem, we used the random under-sampling

technique to reduce the number of benign examples and get a

balanced class dataset. The final dataset contained a total of

70,630 web pages, with 35,315 pages each for malicious and

benign content. We used 80% of the dataset for training and

the remaining 20% for validation and testing. The distribution

of data is presented in Table 1.

After having balanced the dataset, we cleaned it by deleting

unused columns, and we separated the content columns into

two new columns: JavaScript code and the Text content. The

final dataset contained four columns: URL, Text content,

JavaScript code and label.

4.2 Experimental results

The Multi-Modal network was trained on the above-

mentioned dataset, and the performance of the method was

evaluated applying standard metrics such as accuracy,

precision, F1, recall and MCC (Matthews Correlation

Coefficient).

First, we compared the CNN-LSTM model on URL string

with seven classical ML models applied on manually extracted

features from the study [11]. The results are shown in Table 2.

We can clearly see that the CNN-LSTM model outperforms

classical baseline ML models. It is also advantageous in terms

of features being extracted automatically by the model rather

than being extracted manually. An accuracy rate of 95.50% is

a remarkable result, taking into consideration that most

malicious JavaScript code is obfuscated.

To evaluate the performance of the second model (FastText

-BiLSTM) being applied on JavaScript code, we used ROC

curve (Receiver Operating Characteristic curve) as shown in

Figure 6. A receiver operating characteristic (ROC) curve is a

graphical plot that shows the performance of a binary

classification model at different classification thresholds. It is

a commonly used evaluation metric for machine learning

models, especially in medical diagnosis, signal detection, and

anomaly detection.

Table 2. Evaluation of CNN-LSTM model and seven ML

models applied on manual features

Model
Accuracy

(%)

Precision

(%)

Recall

(%)

F-Measure

(%)
MCC

Naive

Bayes
58.034 59.445 58.034 55.986 0.1713

Decision

Tree
85.976 86.015 85.976 85.975 0.7199

KNN

(K=3)
82.932 82.946 82.932 82.926 0.6586

Random

Forest
86.379 86.400 86.379 86.380 0.7277

MLP 85.608 85.691 85.608 85.605 0.7130

XGBoost 78.734 79.902 78.734 78.483 0.5855

SVM 82.564 82.589 82.564 82.564 0.6515

CNN-

LSTM
95.50 95.60 95.50 95.49 0.9110

The ROC curve is created by plotting the TPR on the y-axis

and the FPR on the x-axis, using different threshold values for

the model's predicted probabilities. The ideal ROC curve

would have a TPR of 1 and an FPR of 0, indicating perfect

classification performance. However, in practice, there is often

a trade-off between the TPR and FPR, as increasing the TPR

typically leads to an increase in the FPR.

To interpret the ROC curve, you examine the area under the

curve (AUC), which is a measure of the overall performance

of the model. The AUC ranges from 0 to 1, with a value of 0.5

indicating random guessing, and a value of 1 indicating perfect

classification performance. We can see from Figure 6 that the

values are close to 1, which indicates that the model performs

very well in the classification.

The FastText-BiLSTM model also gave the flowing results.

Accuracy: 0.967, Precision: 0.963, Recall: 0.985, F1 score:

0.974 and MCC: 0.928.

For the third modality (text content), the BERT-MLP model

trained for 10 epochs gave the graph of Figure 7 that represents

the evolution of accuracy for both training and test sets. The

1010

graph shows that the model just fits the training data and can

give other previously unseen data a good test accuracy of 91%.

Figure 6. ROC curve of the FastText-BiLSTM model

applied on JavaScript code

Figure 7. Accuracy evolution of the training and test sets

with BERT-MLP model

Finally, in order to evaluate the performance of the whole

system, we calculated the final confusion matrix (Figure 8).

We compared the metrics’ results with those from the study

[32] that uses the same dataset [6]. We also compared with

results from XGBoost and Random Forest classifiers applied

on manually extracted features from the “Malicious and

Benign Webpages Dataset” [6], including statistical features

from the URL, the JavaScript code and the text content [11,

17]. Comparison results are demonstrated in Table 3.

The results show that the proposed method outperforms

traditional machine learning methods and other state-of-the-art

methods as far as detecting malicious webpages is concerned,

demonstrating how effective and beneficial using multi-modal

features and deep learning for this task is.

The proposed multi-modal deep learning framework offers

several advantages over other approaches. Firstly, by

combining multiple modalities, such as URL features, content

features, and JavaScript features, the framework incorporates

diverse information sources that collectively enhance the

detection capability. This multi-modal approach allows for a

more comprehensive analysis of webpages, capturing different

aspects and reducing the risk of false positives or false

negatives.

Figure 8. The confusion matrix of the whole MMDL system

Table 3. Comparison with other ML/DL approaches

Model
Accuracy

(%)

Precision

(%)

Recall

(%)

F-

Measure

(%)

MCC

XGBoost 90.95 92.47 89.29 90.85 0.8195

Random Forest 92.91 95.33 90.47 92.83 0.8596

Aljabri, et al.

(NB) [32]
96.01 95.64 92.25 93.91 -

Our approach

MMDL
97.83 98.21 97.43 97.82 0.9567

The deep learning architecture utilized in the proposed

framework enables the automatic learning of intricate patterns

and representations in the data. Deep learning models are

capable of capturing complex relationships within the data,

thus enhancing the model's discriminatory power and

improving detection accuracy. The use of deep learning

models in conjunction with the multi-modal approach

contributes to the superior performance of the proposed

method.

Additionally, the integration of deep learning and multi-

modal analysis allows for efficient feature extraction and

fusion. The deep learning models can extract high-level

features automatically from the input data, eliminating the

need for manual feature engineering. The fusion of features

from different modalities enables the model to leverage

complementary information, enhancing the overall detection

performance. By combining these aspects, the proposed

method achieves a more effective malicious webpage

detection capability compared to other approaches. We also

argue that, since our approach uses data from multiple sources

(URL, code and text), it can be more robust against adversarial

evasions’ techniques.

However, it is important to acknowledge the limitations of

the proposed method. One limitation is the availability and

quality of data for training and evaluation. The performance of

deep learning models heavily relies on the quantity and quality

of labeled data. Obtaining a large and diverse dataset of

labeled malicious and benign webpages can be challenging.

1011

Another limitation is the computational complexity and

resource requirements of deep learning models, which may

pose challenges in real-time or resource-constrained

environments.

Future work will focus on addressing these limitations and

further improving the proposed method's performance. This

involves exploring techniques to acquire more diverse and

representative datasets, including adversarial samples and

emerging threats. Additionally, research efforts will be

directed towards optimizing the deep learning architecture,

model training strategies, and investigating techniques for

transfer learning and domain adaptation to improve

performance in scenarios with limited labeled data. Moreover,

considering the evolving nature of web threats, continuous

model updating and adaptation to emerging patterns and attack

vectors would be valuable for maintaining effective detection

capabilities.

5. CONCLUSIONS

In conclusion, our proposed Multi-Modal Deep Learning

Approach for detecting malicious webpages holds promising

practical implications and real-world applicability.

Implementing this approach in real-world systems, such as

web browsers or security software, could significantly

enhance their ability to protect users from various web-based

threats. By integrating multiple modalities of data, including

the URL string, JavaScript code, and text content, our

approach provides a comprehensive analysis of webpages,

addressing the underlying complexity that traditional

approaches often overlook.

However, deploying this approach in real-world systems

may present certain challenges and obstacles. One challenge is

the scalability of the approach, as processing multiple

modalities of data in real-time requires computational

resources. Efficient implementation and optimization

techniques, such as model compression or hardware

acceleration, may be necessary to overcome these scalability

limitations.

Another concern is the potential impact on user privacy.

Deep learning models inherently require access to user data for

training and prediction purposes. It is crucial to address

privacy concerns by employing appropriate privacy-

preserving strategies, ensuring that user privacy is respected

throughout the detection process.

Despite these challenges, the proposed method offers

significant potential to improve cybersecurity in practice. By

leveraging Multi-Modal Deep Learning, web browsers and

security software can more effectively detect and mitigate a

wide range of malicious webpages, bolstering users' protection

against evolving web threats. Continuous research and

development in this area, addressing scalability, privacy, and

performance concerns, will be crucial for successful adoption

and integration of this approach into real-world cybersecurity

systems.

REFERENCES

[1] Daeef, A.Y., Ahmad, R.B., Yacob, Y., Phing, N.Y.

(2016). Wide scope and fast websites phishing detection

using URLs lexical features. In 2016 3rd International

Conference on Electronic Design (ICED), IEEE, 410-

415. https://doi.org/10.1109/ICED.2016.7804679

[2] Sun, B., Akiyama, M., Yagi, T., Hatada, M., Mori, T.

(2016). Automating URL blacklist generation with

similarity search approach. IEICE Transactions on

Information and Systems, 99(4): 873-882.

https://doi.org/10.1587/transinf.2015ICP0027

[3] Selvaganapathy, S., Nivaashini, M., Natarajan, H. (2018).

Deep belief network based detection and categorization

of malicious URLs. Information Security Journal: A

Global Perspective, 27(3): 145-

161.https://doi.org/10.1080/19393555.2018.1456577

[4] Google Safe Browsing APIs.

https://developers.google.com/safe-browsing/v4,

accessed on October 05, 2022.

[5] Sahoo, D., Liu, C.H., Hoi, S.C.H. (2017). Malicious URL

detection using machine learning: A survey. arXiv

Preprint arXiv:1701.07179.

https://doi.org/10.48550/arXiv.1701.07179

[6] Singh, A.K. (2020). Malicious and benign webpages

dataset. Data in Brief, 32: 106304.

https://doi.org/10.1016/j.dib.2020.106304

[7] Jain, A.K., Gupta, B.B. (2016). A novel approach to

protect against phishing attacks at client side using auto-

updated white-list. EURASIP Journal on Information

Security, 2016: 1-11. https://doi.org/10.1186/s13635-

016-0034-3

[8] Chiew, K.L., Tan, C.L., Wong, K., Yong, K.S., Tiong,

W.K. (2019). A new hybrid ensemble feature selection

framework for machine learning-based phishing

detection system. Information Sciences, 484: 153-166.

https://doi.org/10.1016/j.ins.2019.01.064

[9] Zouina, M., Outtaj, B. (2017). A novel lightweight URL

phishing detection system using SVM and similarity

index. Human-centric Computing and Information

Sciences, 7(1): 1-13. https://doi.org/10.1186/s13673-

017-0098-1

[10] Chatterjee, M., Namin, A.S. (2019). Deep reinforcement

learning for detecting malicious websites. arXiv Preprint

arXiv:1905.09207.

https://doi.org/10.48550/arXiv.1905.09207

[11] Belfedhal, A.E., Belfedhal, M.A. (2022). A lightweight

phishing detection system based on machine learning and

URL features. International Conference on Managing

Business Through Web Analytics, Cham: Springer

International Publishing, 307-319.

https://doi.org/10.1007/978-3-031-06971-0_22

[12] Le, H., Pham, Q., Sahoo, D., Hoi, S.C. (2018). URLNeT:

Learning a URL representation with deep learning for

malicious URL detection. arXiv Preprint arXiv:

1802.03162. https://doi.org/10.48550/arXiv.1802.03162

[13] Peng, Y.F., Tian, S.W., Yu, L.Y., Lv, Y., Wang, R.J.

(2019). A joint approach to detect malicious URL based

on attention mechanism. International Journal of

Computational Intelligence and Applications, 18(03):

1950021. https://doi.org/10.1142/S1469026819500214

[14] Sutton, R.S., Barto, A.G. (1998). Reinforcement learning:

An introduction. IEEE Transactions on Neural Networks,

9(5): 1054-1054.

https://doi.org/10.1109/TNN.1998.712192

[15] Ebbu2017. Phishing Dataset. (2018).

https://github.com/ebubekirbbr/pdd.

[16] Yuan, J.T., Chen, G.X., Tian, S.W., Pei, X.J. (2021).

Malicious URL detection based on a parallel neural joint

model. IEEE Access, 9: 9464-9472.

1012

https://doi.org/10.1080/19393555.2018.1456577
https://doi.org/10.1007/978-3-031-06971-0_22
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=72
https://doi.org/10.1109/TNN.1998.712192

https://doi.org/10.1109/ACCESS.2021.3049625

[17] McGahagan, J., Bhansali, D., Pinto-Coelho, C., Cukier,

M. (2019). A comprehensive evaluation of webpage

content features for detecting malicious websites. In

2019 9th Latin-American Symposium on Dependable

Computing (LADC), IEEE, 1-10.

https://doi.org/10.1109/LADC48089.2019.8995713

[18] Wang, Y., Cai, W.D., Wei, P.C. (2016). A deep learning

approach for detecting malicious javascript code.

Security and Communication Networks, 9(11): 1520-

1534. https://doi.org/10.1002/sec.1441

[19] Saxe, J., Harang, R., Wild, C., Sanders, H. (2018). A

deep learning approach to fast, format-agnostic detection

of malicious web content. In 2018 IEEE Security and

Privacy Workshops (SPW), IEEE, 8-14.

https://doi.org/10.1109/SPW.2018.00010

[20] Alex, S., Rajkumar, T.D. (2021). Spider bird swarm

algorithm with deep belief network for malicious

javascript detection. Computers & Security, 107: 102301.

https://doi.org/10.1016/j.cose.2021.102301

[21] Yang, P., Zhao, G.Z., Zeng, P. (2019). Phishing website

detection based on multidimensional features driven by

deep learning. IEEE Access, 7: 15196-15209.

https://doi.org/10.1109/ACCESS.2019.2892066

[22] Li, Y.K., Yang, Z.G., Chen, X., Yuan, H.P., Liu, W.Y.

(2019). A stacking model using URL and HTML features

for phishing webpage detection. Future Generation

Computer Systems, 94: 27-39.

https://doi.org/10.1016/j.future.2018.11.004

[23] Ke, G., Meng, Q., Finley, T., Wang, T.F., Chen, W., Ma,

W.D., Ye, Q.W., Liu, T.Y. (2017). Lightgbm: A highly

efficient gradient boosting decision tree. Advances in

Neural Information Processing Systems, 30.

https://doi.org/10.5555/3294996.3295074

[24] Jabeen, S., Li, X., Amin, M.S., Bourahla, O., Li, S.Y.,

Jabbar, A. (2023). A review on methods and applications

in multimodal deep learning. ACM Transactions on

Multimedia Computing, Communications and

Applications, 19(2s): 1-41.

https://doi.org/10.1145/3545572

[25] Bilgera, C., Yamamoto, A., Sawano, M., Matsukura, H.,

Ishida, H. (2018). Application of convolutional long

short-term memory neural networks to signals collected

from a sensor network for autonomous gas source

localization in outdoor environments. Sensors, 18(12):

4484. https://doi.org/10.3390/s18124484

[26] BERT Preprocessing with TF Text. Tensorflow.org.

https://www.tensorflow.org/text/guide/bert_preprocessi

ng_guide, accessed on Nov. 06, 2022.

[27] Lan, Z.Z., Chen, M.D., Goodman, S., Gimpel, K.,

Sharma, P., Soricut, R. (2019). Albert: A lite bert for self-

supervised learning of language representations. arXiv

Preprint arXiv: 1909.11942.

https://doi.org/10.48550/arXiv.1909.11942

[28] Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018).

Bert: pre-training of deep bidirectional transformers for

language understanding. arXiv Preprint arXiv:

1810.04805. https://doi.org/10.48550/arXiv.1810.04805

[29] Hidayat, A. (2015). Esprima.

https://github.com/Kronuz/esprima-python.

[30] Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. (2016).

Bag of tricks for efficient text classification. arXiv. 2016,

arXiv:1607.01759.

https://doi.org/10.48550/arXiv.1607.01759

[31] Singh, A.K. Goyal, N. (2017). Malcrawler: A crawler for

seeking and crawling malicious websites. International

Conference on Distributed Computing and Internet

Technology, 10109: 210-223.

https://doi.org/10.1007/978-3-319-50472-8_17

[32] Aljabri, M., Alhaidari, F., Mohammad, R.M., Mirza, S.,

Alhamed, D.H., Altamimi, H.S., Chrouf, S.M., Ijaz, M.F.

(2022). An assessment of lexical, network, and content-

based features for detecting malicious URLs using

machine learning and deep learning models.

Computational Intelligence and Neuroscience, 2022:

2022. https://doi.org/10.1155/2022/3241216

1013

https://doi.org/10.1007/978-3-319-50472-8_17
https://dl.acm.org/profile/99660504348

