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The pervasive threat of malicious webpages, which can lead to financial loss, data breaches, 

and malware infections, underscores the need for effective detection methods. Conventional 

techniques for detecting malicious web content primarily rely on URL-based features or 

features extracted from various webpage components, employing a single feature vector 

input into a machine learning model for classifying webpages as benign or malicious. 

However, these approaches insufficiently address the complexities inherent in malicious 

webpages. To overcome this limitation, a novel Multi-Modal Deep Learning method for 

malicious webpage detection is proposed in this study. Three types of automatically 

extracted features, specifically those derived from the URL, the JavaScript code, and the 

webpage text, are leveraged. Each feature type is processed by a distinct deep learning 

model, facilitating a comprehensive analysis of the webpage. The proposed method 

demonstrates a high degree of effectiveness, achieving an accuracy rate of 97.90% and a 

false negative rate of a mere 2%. The results highlight the advantages of utilizing multi-

modal features and deep learning techniques for detecting malicious webpages. By 

considering various aspects of web content, the proposed method offers improved accuracy 

and a more comprehensive understanding of malicious activities, thereby enhancing web 

user security and effectively mitigating the risks associated with malicious webpages. 
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1. INTRODUCTION

The Internet has revolutionized access to a plethora of 

valuable services, including e-banking, e-commerce, e-

learning, and social media, all of which can be reached with a 

single click through websites. However, the growth of the 

internet has concurrently led to an increase in the prevalence 

of malicious websites, which are designed to disseminate 

malware, steal personal information, and engage in various 

nefarious activities. Consequently, the development of 

effective malicious webpage detection methods has become 

crucial. 

In essence, a malicious webpage is characterized by the 

presence of unwanted and hazardous content, which can be 

utilized to launch a range of attacks and engage in diverse 

malicious behaviors such as phishing [1], SPAM, drive-by-

downloads [2], advanced persistent threats (APT) [3], and 

deceptive sites [4], among others. 

To disseminate malicious URLs, attackers typically employ 

social engineering tactics to deceive users through email 

SPAMs, SMSs, social networks, forums, pop-ups, and other 

means. Malicious webpages exploit browser and user 

vulnerabilities to gain unauthorized access and execute their 

malicious activities [5]. The growing sophistication of these 

threats underscores the importance of developing reliable and 

effective countermeasures to protect users and their data. 

Traditionally, machine learning techniques have been used 

to detect malicious webpages, but these methods have 

limitations when it comes to identifying new attacks. To 

overcome these limitations, recent research has focused on 

using deep learning techniques for this task. Most of these 

research approaches have used either URL-only-based 

features or a combination of URL, and content features 

represented as a single vector which is used by a deep learning 

model to perform classification. Despite the promising 

outcomes of this type of approaches, they are not without their 

shortcomings. 

One of the key challenges lies in the diverse range of 

complexities exhibited by malicious webpages. They are 

crafted by cybercriminals to employ various tactics, such as 

obfuscation, polymorphism, and dynamic content generation. 

These intricate techniques make it difficult to extract 

meaningful features solely from the URL or content of the 

webpage. Consequently, approaches that solely rely on URL-

based or combined URL-content feature vectors may fail to 

capture the entire spectrum of malicious behaviors, rendering 

them susceptible to sophisticated and advanced attacks. 

Moreover, the dynamic nature of modern webpages further 

exacerbates the detection challenge. Web content can change 

dynamically based on user interactions or external factors, 

making it essential to monitor and analyze the behavior of web 

elements in real-time. Traditional approaches that rely on 

static feature vectors may struggle to adapt to these dynamic 

alterations, leading to a decreased effectiveness in detecting 

malicious activities. 

To address these limitations, presented in this paper is a 

Multi-Modal Deep Learning method for detecting malicious 

webpages. The proposed method uses a combination of URL, 

JavaScript code, and content textual features extracted from 

webpages to train three different deep neural networks which 

allows a comprehensive analysis of webpages, enabling a 

more accurate identification of malicious content. The 
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networks are to use a dataset of both benign and malicious 

webpages [6], and the outputs of the three models are 

combined using the average of probabilities to obtain a final 

output. For the three modalities, features are extracted 

automatically by the models to avoid using manually 

engineered features because most of the time, it’s very 

difficult-even for an expert in the area-to know all the useful 

features and to also choose the subset of best features, for it’s 

quite time and effort consuming. 

So, the key contributions of this paper are twofold. First, a 

multi-modal approach is presented that combines multiple 

sources of information, allowing for a holistic examination of 

the characteristics exhibited by malicious webpages. Second, 

deep learning models are leveraged to process each feature 

type, capturing intricate patterns and behaviors that are crucial 

for effective detection. 

To evaluate the proposed approach, we used standard 

metrics such as accuracy, precision, and recall. We also 

compared the approach with other ML and DL methods. The 

effectiveness of the proposed method is demonstrated through 

experimental results, with a high accuracy rate of 97.90% 

achieved and a minimal false negative rate of only 2%. These 

findings highlight the benefits of utilizing multi-modal 

features and deep learning techniques, providing a robust and 

reliable solution for detecting malicious webpages. 

The rest of the article is organized as follows: in the next 

section, we will present the literature related to the field of 

malicious webpage detection. Then, we will describe our 

proposed method in detail. In addition, we will show the 

experimental results and analysis. Finally, we will conclude 

the article and suggest future work. 

2. RELATED WORK

Malicious webpages are a serious problem that threats the 

cyber security of millions of Web users around the globe. 

Therefore, over the last decades, a great deal of research has 

been done to address this issue [5]. The relevant research 

approaches can be divided mainly into two categories: 

blacklist-based approaches and machine learning-based 

approaches. 

2.1 Blacklists-based approaches 

One of the earliest solutions was to use blacklists [2]. 

Blacklists are lists of URLs that have been identified as 

malicious or potentially harmful. These lists are created and 

maintained by security vendors, researchers, and other 

organizations that specialize in identifying and analyzing web 

threats. A good example of URLs blacklist is “Google Safe 

Browsing Service” [4], which provides an API to check 

whether or not a URL is safe by searching it in Google Black 

list. To expand the capabilities of the blacklist approach, Sun 

et al. [2] proposed a system called “AutoBLG” that updates 

automatically a blacklist by searching for new malicious URLs 

using statistical similarity filters and IP addresses. 

The main advantage of blacklists is that they are easy to 

operate and maintain. However, their major weakness is that 

they are only effective in blocking websites that have already 

been identified as malicious. New threats or previously 

unknown websites can still slip through the cracks [7]. 

2.2 Machine Learning-based approaches 

To overcome the limitations of blacklists, researchers have 

suggested using Machine Learning (ML) techniques. Since the 

problems of detecting whether a website is malicious or not is 

a binary classification problem, ML has the ability to detect 

new malicious URL webpages, which were previously unseen 

[8]. ML approaches can be categorized according to the used 

type of features: URL based, content based or hybrid 

approaches (a combination of URL and content features). 

2.2.1 URL-based approaches 

The simplest way of using ML in order to solve the problem 

in question is to use features extracted from the URLs 

associated with webpages. These features can be statistical like: 

the length of the URL, lengths of different parts of the URL, 

number of alphabet letters, the number of digits, number of 

special characters, etc. [9-11] or lexical like: n-grams, tokens 

and Bag-of-Words [12, 13]. 

For instance, Selvaganapathy et al. [3] laid out an approach 

based on Deep Belief Network (DBN) for malicious URL 

detection and classification. For a given URL, the URL string 

and host information were converted into a numerical vector 

using a token-based method. The vector was then fed into the 

DBN for dimensionality reduction, and finally, a Deep Neural 

Network was applied for URLs classification. 

Chatterjee and Namin [10] used Deep Reinforcement 

Learning with a set of 14 features extracted from the URL. 

They applied the “Q-learning” [14] algorithm to Ebbu2017 

dataset [15] and reported a detection accuracy of 90.1%. Le et 

al. [12] proposed URLNet, an end-to-end deep learning system 

for URL classification. This system is based on Convolutional 

Neural Networks (CNN) and words’ and characters’ 

embedding to extract features directly from the URL string. 

Authors tested their proposition on a large dataset of 10 

million URLs collected from VirusTotal. 

Daeef et al. [1] made the case for using N-grams as 

extracted lexical features from the URL string. Authors tested 

three different Machine Learning models, namely: J48, 

Support Vector Machine, and Logistic Regression. The best 

reported results were obtained using J48 classifier with 93% 

of detection accuracy. 

More recently, Yuan et al. [16] presented a Neural Network 

Model using a feature extraction mechanism that converts the 

URL string into a grayscale image to obtain “visual” 

characteristics, and use word and character embedding to 

obtain “semantic” features from the same URL. They used a 

modified Recurrent Neural Network (RNN) called 

“Independent Recurrent Neural Network” (IndRNN) with an 

attention mechanism to combine visual and semantic features 

for malicious URLs detection. 

The advantage of using URL features is that the method 

does not require a lot of resources. However, its biggest issue 

is that it is useless when dealing with compromised websites 

and servers [5]. For this reason, researchers have suggested 

using content-based features (HTML, CSS, JavaScript, images, 

text, …) instead of URLs [17]. 

2.2.2 Content-based approaches 

One example of content based approaches is the work 

presented by Wang et al. [18]. Authors proposed using auto-

encoders to learn important features from JavaScript code of a 

webpage, the learned features are then fed to a logistic 

regression model for classification. Authors experimented 
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with a dataset of 27, 000 webpages, and reported an accuracy 

of 95%. 

Saxe et al. [19] proposed to extract tokens from HTML 

content using regular expressions. The extracted tokens are 

then used as features by a Deep Neural Network for malicious 

content detection. This system achieved a 97.5% accuracy rate. 

Alex and Rajkumar [20] combined two optimization 

algorithms (namely, Spider Monkey Optimization and Bird 

Swarm Optimization) with a Deep Belief Network for 

malicious JavaScript code detection. They utilized a set of 

manually engineered features like function calls, and 

conditional statements to create their dataset. Authors reported 

an accuracy of 94.4% with False Positive Rate (FPR) of 8.1%. 

Another interesting work by McGahagan et al. [17] consists 

on using 26 content-based features extracted from both HTML 

and JavaScript code. Authors began with 1,865 features and 

used feature transformation techniques to reduce this number 

to 26. They trained eight different machine learning models on 

a built dataset of 5,931 malicious and 34,778 benign websites. 

The best results of accuracy at the rate of 91% were obtained 

by the Random Forest classifier. 

2.2.3 Hybrid approaches 

Since relying on one type of features can’t give the best 

possible results, some researchers argue in favor of using a 

combination of features to better describe the webpage nature. 

As an example, Chiew et al. [8] used 48 features extracted 

from the URL string and the HTML code. These features are 

then fed into a “Hybrid Ensemble Feature Selection” method 

to reduce the number of features to only 10 features. They used 

a dataset of 10,000 phishing/legitimate webpages, and 

experimented with many machine learning algorithms (Naive 

Bayes, SVM, …). Authors reported that best performances 

were made by the Random Forest algorithm with 94.27% of 

classification accuracy. 

Yang et al. [21] proposed a multidimensional phishing 

detection system in which features are extracted from the URL 

string, the HTML code and the webpage text content. The 

proposed system works in two stages. In stage one, a deep 

learning model is used to extract features from the URL string, 

and, in stage two, different multisource features are 

concatenated to form a one vector that was fed into a XGBoost 

(eXtreme Gradient Boosting) model for classification. 

Li et al. [22] used a “stacking model” on a training dataset 

of 53,103 phishing/legitimate websites, with a total of 20 

features extracted from the HTML code and the URL string. 

The used model combines Gradient Boosting Decision Tree, 

XGBoost and LightGBM [23] in multiple layers to enhance 

performance. Both previously mentioned research works 

detect only phishing webpage (not all possible malicious 

webpages like drive-by-download). 

2.3 Discussion 

Blacklists and machine learning-based approaches are two 

common methods for detecting malicious webpages. 

Blacklists involve maintaining lists of known malicious 

websites or URLs and rely on predefined patterns to identify 

and block malicious content. They offer simplicity, fast 

response times, and low false positive rates. However, 

blacklists have limitations, such as being reactive and unable 

to detect new threats, requiring continuous maintenance, and 

being susceptible to evasion techniques. 

In contrast, machine learning-based approaches leverage 

algorithms and models trained on large datasets to 

automatically learn and detect malicious webpages. These 

approaches can utilize different types of features, including 

URL features, content features, or hybrid features combining 

both URL and content information. URL features provide 

quick processing and are useful for blocking known malicious 

domains. Content features analyze webpage content to capture 

behavior and intent, offering more comprehensive analysis 

and adaptability to evolving threats. Hybrid features combine 

the strengths of both URL and content analysis, resulting in 

robust and accurate detection. 

In this work, we propose to use three types of features, yet, 

unlike other research approaches that combine all features 

directly into a single vector, we implemented multimodality to 

distinguish each type of features, as well as deep learning to 

automatically extract and select the best set of features. 

3. PROPOSED METHODOLOGY

As mentioned above, the most important idea behind our 

approach is that all elements of a webpage can give an insight 

regarding its maliciousness, therefore, we used three types of 

features in our framework for webpage classification, namely: 

the URL string, the text content and the JavaScript code. We 

excluded third-party information features (e.g., WHOIS and 

search engines information) because this requires access to a 

third party service which can be inaccessible and can take a lot 

of time to be evoked. Also, instead of extracting features 

manually, we used a combination of three deep learning 

methods (CNN-LSTM, FastText-BiLSTM and BERT-MLP) 

to automatically find the useful features from data. The 

problem with most of the manually extracted features-based 

approaches is that badly chosen features can lead to over-

fitting, noise, and a decrease in the accuracy of the detection. 

Figure 1. Multi-modal proposed system 
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3.1 Overview 

 

Our system (as shown in Figure 1) used Multi-Modal Deep 

Learning (MMDL) and was composed of three different 

models with three types (modalities) of features. MMDL is a 

subfield of Deep Learning that focuses on the integration of 

multiple modalities of data, such as text, images, audio, video, 

etc. The goal of Multi-Modal Deep Learning is to develop 

models that can understand and make predictions based on 

multiple types of data. 

One of the key challenges in multi-modal Deep Learning is 

the integration of different types of data, which may have 

different characteristics and may be processed by different 

types of neural networks. To address this challenge, various 

methods have been proposed in the literature, such as late 

fusion, early fusion, and multi-task learning [24]. In our case, 

we used late fusion which is a method through which different 

modalities of data are processed separately by their own neural 

networks and the results are then combined at a later stage. 

The three types of used features are: The URL string, the 

JavaScript code and the webpage text content. To train the 

whole model, we began by training one model for each 

modality. Below are the details of each model. 

 

3.2 CNN-LSTM model on URL string 

 

A CNN-LSTM model is a type of deep neural network 

architecture that combines Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) networks. 

CNNs are typically used for image and signal processing tasks 

and are good at extracting spatial features, while LSTMs are 

commonly used for sequential data tasks and are good at 

modeling temporal dependencies. By combining these two 

architectures, a CNN-LSTM model can effectively capture 

both spatial and temporal features in data [25]. 

In our case, a CNN-LSTM model is advantageous for 

malicious URL detection as it combines the pattern extraction 

capability of CNNs with the sequential modeling ability of 

LSTMs. CNNs can capture local features and patterns within 

the URL, while LSTMs excel at modeling long-term 

dependencies and capturing the sequential nature of URLs. 

This combination allows the model to effectively analyze 

hierarchical representations of URLs, distinguishing between 

normal and malicious structures. By leveraging both local and 

global context, the CNN-LSTM model enhances the accuracy 

and effectiveness of malicious URL detection systems. 

In the proposed method, a URL was first encoded as bytes’ 

array, and if the length of the URL was greater than L=100 

characters, the URL would be trunked. If the length was less 

than 100, the URL would be padded with “all zero” bytes. The 

bytes’ vector was then fed to a 1D CNN-LSTM model. This 

model was chosen after having tried different 

models/combinations (results are shown in the evaluation and 

discussion section). The details of the model are shown in 

Figure 2. 

 

3.3 BERT-MLP model on text content 

 

The webpage text content may be a good indicator of 

potential maliciousness of the website (SPAM, phishing, fake 

news, …). A BERT-MLP (Bidirectional Encoder 

Representations from Transformers-Multi-Layer Perceptron) 

model is used for text content classification as shown in Figure 

3. We began first by preprocessing the content text using the 

TensorFlow TF.text API [26]. The preprocessing step includes 

text cleaning, tokenization and vectorization. 

 

 
 

Figure 2. CNN-LSTM model architecture 

 

 
 

Figure 3. BERT-MLP model for text content classification 

 

Following preprocessing, we used ALBERT [27] from the 

“TensorFlow Hub” to extract features from the webpages. 

ALBERT is “A Light” version of BERT which is a pre-trained 

language model that can encode text tokens into high-

dimensional vectors. The BERT model has achieved state-of-

the-art results in various natural language processing tasks, 

including text classification, question-answering, and 

language translation. BERT is based on the transformer 

architecture, which uses self-attention mechanisms to capture 

and detect contextual relationships between words in a 

sentence. BERT is trained on large corpora of text and can 
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encode text into high-dimensional vectors, which can be used 

as features for the classification task [28]. 

BERT was used to extract features from the web pages. 

Each web page was treated as a document and encoded as a 

sequence of tokens. BERT generated a vector representation 

for each token, which captured its contextual relationship with 

other tokens in the document. The output of BERT was a 

fixed-length vector representation of the entire document. 

A binary MLP (Multi-Layer Perceptron) classification 

model was then trained on the feature vectors generated by 

BERT. The model took the BERT feature vectors as input and 

output a binary classification score indicating whether the 

content text was malicious or benign. Dropout layers were 

added to avoid overfitting. 

The integration of a BERT-MLP model offers significant 

advantages for malicious web content detection. The BERT 

component, which is pre-trained on extensive text data, 

provides contextual understanding and semantic 

comprehension [28], enabling the model to capture subtle 

linguistic cues and identify malicious patterns that may be 

missed by traditional keyword-based approaches. This 

contextual understanding is particularly valuable when dealing 

with deceptive or obfuscated content. 

Additionally, BERT's subword tokenization handles out-of-

vocabulary words effectively, making the model robust 

against manipulations intended to evade detection. By 

leveraging transfer learning and fine-tuning, the pre-trained 

BERT model can be adapted and optimized for the specific 

task of detecting malicious web content, enhancing its 

accuracy and performance. The Multilayer Perceptron (MLP) 

component of the model complements BERT by enabling 

precise classification, leveraging the contextualized 

embeddings generated by BERT to capture complex 

relationships and make accurate predictions. Overall, the 

BERT-MLP model combines contextual understanding, 

semantic comprehension, fine-tuning, and powerful 

classification capabilities, making it a highly effective tool for 

detecting malicious web content. 

 

3.4 FastText-BiLSTM model on JavaScript code 

 

Most of malicious webpages use JavaScript code to perform 

malicious actions on the victim machine like downloading and 

installing Malwares or showing unwanted popups, therefore, 

analyzing the JavaScript code is crucial when trying to detect 

malicious webpages. 

Before the model had been trained, each script was parsed 

using Esprima [29] JavaScript parser to extract the abstract 

syntax tree (AST) representation of the code. An AST 

represents the structure of the JavaScript code as a tree, where 

each node in the tree represents a syntactic construct such as a 

function, an “if” statement, a variable declaration, or an 

expression [20]. The AST is a useful representation of the code 

because it captures the structure of the code and its syntax, 

without being affected by the specific formatting or layout of 

the code. 

We traversed the AST in a depth-first manner and extracted 

the sequence of node types and attributes encountered. This 

sequence was used as a feature to capture the order and 

frequency of different types of constructs in the code. The 

sequence was then treated like a text, and a word embedding 

was calculated for each element (token) of the sequence using 

FastText [30]. FastText is a library for text classification and 

text representation developed by Facebook's Artificial 

Intelligence Research (FAIR) team. It is an open-source 

library that provides efficient tools to work with text data and 

build language models. 

One of the key features of FastText is its ability to represent 

words as n-grams, which are contiguous sequences of 

characters within a word. By representing words in this way, 

FastText can capture sub-word information, which is useful 

for dealing with rare or out-of-vocabulary words. It also 

enables to capture semantic and syntactic relationships 

between words. 

The Bi-LSTM (Bi-directional LSTM) model takes the 

FastText embedding as an input for training and produces a 

classification output. Like other RNNs, Bi-LSTMs are 

designed to handle sequential data by processing one input at 

a time and maintaining an internal state that captures 

information from previous inputs. However, unlike traditional 

RNNs, Bi-LSTMs have two LSTM layers: one that processes 

the input sequence from left to right, and one that processes 

the input sequence from right to left. This allows the network 

to capture both forward and backward dependencies in the 

input sequence. 

Using a FastText-BiLSTM model for malicious JavaScript 

detection offers advantages by combining the strengths of both 

components. FastText [30] excels at capturing word-level 

representations and understanding the syntactic and semantic 

characteristics of JavaScript code. BiLSTM, on the other hand, 

specializes in analyzing sequential dependencies within code 

sequences. This combination allows the model to effectively 

detect subtle patterns of malicious behavior, adapt to different 

code variations, and leverage contextual information for 

accurate detection of malicious JavaScript. Overall, the 

FastText-BiLSTM model provides a powerful framework for 

robust and reliable identification of malicious JavaScript code. 

 

3.5 Fusion of sub-models outputs 

 

To combine the three types of modalities, we opted to use a 

late fusion approach. After having trained each model 

separately with one type (modality) of features, the outputs of 

the three models were aggregated by calculating the average 

of the outputs probabilities to produce the final prediction 

(Malicious/Benign). 

In the next section, we will present the experimental results 

and analysis to evaluate the performance of our proposed 

method and compare it with other state-of-the-art methods. 

 

 

4. EVALUATION AND DISCUSSION  

 

In this section, we showcase the results of experiments 

carried out to assess our propositions and compare them to 

conventional ML/DL approaches as well as existing works 

from the literature. 

 

4.1 Dataset 

 

To train our system, we used the “Malicious and Benign 

Webpages Dataset” described in the study [6]. The dataset 

used in this work was created by Singh. In 2020 and made 

publicly available. To collect the data, Singh utilized 

MalCrawler [31], a web crawler developed by the same 

researcher. MalCrawler is specifically designed to search for 

malicious webpages. The collected data was then labeled using 

the Google Safe Browsing API [4], a service that provides 
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information on the safety of websites. 

The dataset contained 1,561,934 rows (webpage samples) 

with 12 columns including the URL, the webpage content 

(JavaScript code and Text content), the IP address, and other 

features. The complete list of features with the first few 

simples is shown in Figure 4. Each row is labeled as “good” 

(benign) or “bad” (malicious). 

 

 
 

Figure 4. Malicious and benign webpages dataset [6] 

 

 
 

Figure 5. Malicious and benign webpages dataset classes’ 

distribution [6] 

 

Table 1. The final data distribution after under-sampling 

 
 Benign Malicious Total 

Train 28,252 28,252 56,504 

Test 7,063 7,063 14,126 

Total 14,126 14,126 70,630 

 

The original dataset was highly imbalanced-there were 

much more benign examples than malicious ones-(see Figure 

5), which could have misled any Machine Learning model. To 

handle this problem, we used the random under-sampling 

technique to reduce the number of benign examples and get a 

balanced class dataset. The final dataset contained a total of 

70,630 web pages, with 35,315 pages each for malicious and 

benign content. We used 80% of the dataset for training and 

the remaining 20% for validation and testing. The distribution 

of data is presented in Table 1. 

After having balanced the dataset, we cleaned it by deleting 

unused columns, and we separated the content columns into 

two new columns: JavaScript code and the Text content. The 

final dataset contained four columns: URL, Text content, 

JavaScript code and label. 

 

4.2 Experimental results 

 

The Multi-Modal network was trained on the above-

mentioned dataset, and the performance of the method was 

evaluated applying standard metrics such as accuracy, 

precision, F1, recall and MCC (Matthews Correlation 

Coefficient). 

First, we compared the CNN-LSTM model on URL string 

with seven classical ML models applied on manually extracted 

features from the study [11]. The results are shown in Table 2. 

We can clearly see that the CNN-LSTM model outperforms 

classical baseline ML models. It is also advantageous in terms 

of features being extracted automatically by the model rather 

than being extracted manually. An accuracy rate of 95.50% is 

a remarkable result, taking into consideration that most 

malicious JavaScript code is obfuscated. 

To evaluate the performance of the second model (FastText 

-BiLSTM) being applied on JavaScript code, we used ROC 

curve (Receiver Operating Characteristic curve) as shown in 

Figure 6. A receiver operating characteristic (ROC) curve is a 

graphical plot that shows the performance of a binary 

classification model at different classification thresholds. It is 

a commonly used evaluation metric for machine learning 

models, especially in medical diagnosis, signal detection, and 

anomaly detection. 

 

Table 2. Evaluation of CNN-LSTM model and seven ML 

models applied on manual features 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 
MCC 

Naive 

Bayes 
58.034 59.445 58.034 55.986 0.1713 

Decision 

Tree 
85.976 86.015 85.976 85.975 0.7199 

KNN 

(K=3) 
82.932 82.946 82.932 82.926 0.6586 

Random 

Forest 
86.379 86.400 86.379 86.380 0.7277 

MLP 85.608 85.691 85.608 85.605 0.7130 

XGBoost 78.734 79.902 78.734 78.483 0.5855 

SVM 82.564 82.589 82.564 82.564 0.6515 

CNN-

LSTM 
95.50 95.60 95.50 95.49 0.9110 

 

The ROC curve is created by plotting the TPR on the y-axis 

and the FPR on the x-axis, using different threshold values for 

the model's predicted probabilities. The ideal ROC curve 

would have a TPR of 1 and an FPR of 0, indicating perfect 

classification performance. However, in practice, there is often 

a trade-off between the TPR and FPR, as increasing the TPR 

typically leads to an increase in the FPR. 

To interpret the ROC curve, you examine the area under the 

curve (AUC), which is a measure of the overall performance 

of the model. The AUC ranges from 0 to 1, with a value of 0.5 

indicating random guessing, and a value of 1 indicating perfect 

classification performance. We can see from Figure 6 that the 

values are close to 1, which indicates that the model performs 

very well in the classification. 

The FastText-BiLSTM model also gave the flowing results. 

Accuracy: 0.967, Precision: 0.963, Recall: 0.985, F1 score: 

0.974 and MCC: 0.928. 

For the third modality (text content), the BERT-MLP model 

trained for 10 epochs gave the graph of Figure 7 that represents 

the evolution of accuracy for both training and test sets. The 
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graph shows that the model just fits the training data and can 

give other previously unseen data a good test accuracy of 91%. 

 

 
 

Figure 6. ROC curve of the FastText-BiLSTM model 

applied on JavaScript code 

 

 
 

Figure 7. Accuracy evolution of the training and test sets 

with BERT-MLP model 

 

Finally, in order to evaluate the performance of the whole 

system, we calculated the final confusion matrix (Figure 8). 

We compared the metrics’ results with those from the study 

[32] that uses the same dataset [6]. We also compared with 

results from XGBoost and Random Forest classifiers applied 

on manually extracted features from the “Malicious and 

Benign Webpages Dataset” [6], including statistical features 

from the URL, the JavaScript code and the text content [11, 

17]. Comparison results are demonstrated in Table 3. 

The results show that the proposed method outperforms 

traditional machine learning methods and other state-of-the-art 

methods as far as detecting malicious webpages is concerned, 

demonstrating how effective and beneficial using multi-modal 

features and deep learning for this task is. 

The proposed multi-modal deep learning framework offers 

several advantages over other approaches. Firstly, by 

combining multiple modalities, such as URL features, content 

features, and JavaScript features, the framework incorporates 

diverse information sources that collectively enhance the 

detection capability. This multi-modal approach allows for a 

more comprehensive analysis of webpages, capturing different 

aspects and reducing the risk of false positives or false 

negatives. 

 

 
 

Figure 8. The confusion matrix of the whole MMDL system 

 

Table 3. Comparison with other ML/DL approaches 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-

Measure 

(%) 

MCC 

XGBoost 90.95 92.47 89.29 90.85 0.8195 

Random Forest 92.91 95.33 90.47 92.83 0.8596 

Aljabri, et al. 

(NB) [32] 
96.01 95.64 92.25 93.91 - 

Our approach 

MMDL 
97.83 98.21 97.43 97.82 0.9567 

 

The deep learning architecture utilized in the proposed 

framework enables the automatic learning of intricate patterns 

and representations in the data. Deep learning models are 

capable of capturing complex relationships within the data, 

thus enhancing the model's discriminatory power and 

improving detection accuracy. The use of deep learning 

models in conjunction with the multi-modal approach 

contributes to the superior performance of the proposed 

method. 

Additionally, the integration of deep learning and multi-

modal analysis allows for efficient feature extraction and 

fusion. The deep learning models can extract high-level 

features automatically from the input data, eliminating the 

need for manual feature engineering. The fusion of features 

from different modalities enables the model to leverage 

complementary information, enhancing the overall detection 

performance. By combining these aspects, the proposed 

method achieves a more effective malicious webpage 

detection capability compared to other approaches. We also 

argue that, since our approach uses data from multiple sources 

(URL, code and text), it can be more robust against adversarial 

evasions’ techniques. 

However, it is important to acknowledge the limitations of 

the proposed method. One limitation is the availability and 

quality of data for training and evaluation. The performance of 

deep learning models heavily relies on the quantity and quality 

of labeled data. Obtaining a large and diverse dataset of 

labeled malicious and benign webpages can be challenging. 
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Another limitation is the computational complexity and 

resource requirements of deep learning models, which may 

pose challenges in real-time or resource-constrained 

environments. 

Future work will focus on addressing these limitations and 

further improving the proposed method's performance. This 

involves exploring techniques to acquire more diverse and 

representative datasets, including adversarial samples and 

emerging threats. Additionally, research efforts will be 

directed towards optimizing the deep learning architecture, 

model training strategies, and investigating techniques for 

transfer learning and domain adaptation to improve 

performance in scenarios with limited labeled data. Moreover, 

considering the evolving nature of web threats, continuous 

model updating and adaptation to emerging patterns and attack 

vectors would be valuable for maintaining effective detection 

capabilities. 

5. CONCLUSIONS

In conclusion, our proposed Multi-Modal Deep Learning 

Approach for detecting malicious webpages holds promising 

practical implications and real-world applicability. 

Implementing this approach in real-world systems, such as 

web browsers or security software, could significantly 

enhance their ability to protect users from various web-based 

threats. By integrating multiple modalities of data, including 

the URL string, JavaScript code, and text content, our 

approach provides a comprehensive analysis of webpages, 

addressing the underlying complexity that traditional 

approaches often overlook. 

However, deploying this approach in real-world systems 

may present certain challenges and obstacles. One challenge is 

the scalability of the approach, as processing multiple 

modalities of data in real-time requires computational 

resources. Efficient implementation and optimization 

techniques, such as model compression or hardware 

acceleration, may be necessary to overcome these scalability 

limitations. 

Another concern is the potential impact on user privacy. 

Deep learning models inherently require access to user data for 

training and prediction purposes. It is crucial to address 

privacy concerns by employing appropriate privacy-

preserving strategies, ensuring that user privacy is respected 

throughout the detection process. 

Despite these challenges, the proposed method offers 

significant potential to improve cybersecurity in practice. By 

leveraging Multi-Modal Deep Learning, web browsers and 

security software can more effectively detect and mitigate a 

wide range of malicious webpages, bolstering users' protection 

against evolving web threats. Continuous research and 

development in this area, addressing scalability, privacy, and 

performance concerns, will be crucial for successful adoption 

and integration of this approach into real-world cybersecurity 

systems. 
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