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Time series analysis is pivotal in discerning temporospatial data patterns and facilitating 

precise forecasts. This study scrutinizes the cardinal challenges associated with time series 

modeling, namely stationarity, parsimony, and overfitting, focusing on the application of 

Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive 

Integrated Moving Average (SARIMA) models. An examination of six datasets reveals 

that these models adeptly encapsulate underlying data trends, enabling reliable predictions 

and yielding insightful conclusions. Relative to baseline methods, the proposed models 

demonstrate superior performance, as indicated by five evaluation metrics: Mean Squared 

Error (MSE), Frantic, Root Mean Squared Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and Theil's U-statistics. The most parsimonious ARIMA or SARIMA 

model was selected for each dataset, with the resultant forecast summary graphically 

demonstrating the proximity between original and predicted observations. This study aims 

to contribute to the discourse on the validity and applicability of ARIMA and SARIMA 

models in time series analysis and forecasting. 
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1. INTRODUCTION

In today's data-driven world, the availability of vast 

amounts of sequential data collected over time has led to an 

increased focus on time series analysis. Time series data type 

is prevalent in various domains, including signal processing, 

meteorology, transportation, finance, and many others [1]. The 

temporal aspect of time series data makes it unique and 

valuable for understanding underlying patterns, trends, and 

seasonality, and for making accurate forecasts. The analysis of 

time series data goes beyond traditional statistical techniques 

as it requires specialized methodologies capable of capturing 

the temporal dependencies and fluctuations present in the data. 

These dependencies may arise due to inherent processes, 

external factors, or a combination of both. Time series analysis 

aims to uncover meaningful patterns and structures in the data, 

providing insights into the underlying dynamics and enabling 

better decision-making and optimization of real-life processes. 

Pattern mining plays a crucial role in time series analysis by 

identifying interesting regularities or irregularities within a 

given data collection. By extracting these patterns, valuable 

information can be obtained, leading to improved 

understanding and optimization of real-life processes. Various 

categories of patterns can be mined from time series data, 

including frequent patterns, sequential patterns, trends, and 

seasonality [2]. These patterns provide insights into the 

behavior of the underlying processes, aiding in tasks such as 

anomaly detection, classification, clustering, and forecasting. 

However, efficiently mining massive subsequences from time 

series data remains a significant challenge. Traditional 

approaches, such as statistical models like ARIMA 

(Autoregressive Integrated Moving Average) and SARIMA 

(Seasonal ARIMA), have been widely employed for time 

series analysis. ARIMA models capture the autoregressive, 

moving average, and integrated components of the time series, 

while SARIMA models extend this capability to handle 

seasonality [3]. These models have shown promise in 

capturing the underlying patterns and making accurate 

forecasts. Nonetheless, there is a need to explore their 

limitations, address fundamental issues associated with time 

series modeling, and develop efficient techniques for mining 

and modeling time series patterns. The complexity and size of 

time series data pose additional challenges for efficient pattern 

mining and modeling. As the length and dimensionality of the 

time series increase, the computational requirements grow 

exponentially. Additionally, the presence of noise, outliers, 

and missing values further complicates the analysis. Therefore, 

it is essential to develop innovative approaches and algorithms 

that can efficiently handle large-scale time series data, 

providing accurate and timely insights. 

The main objective of this research paper is to investigate 

the challenges and explore efficient techniques for mining and 

modeling time series patterns using ARIMA and SARIMA 

models. We aim to address key issues such as stationarity, 

parsimony, overfitting, and computational efficiency, and 

evaluate the forecast accuracy of these models on various real-

life datasets. By conducting extensive experiments and 

performance evaluations, we seek to provide insights into the 

strengths, limitations, and practical implications of ARIMA 

and SARIMA models in time series analysis. To achieve these 

objectives, the research paper will be structured as follows: the 

literature review will provide an overview of existing studies 

and research related to time series modeling, pattern mining, 

and the ARIMA and SARIMA models. The methodology 
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section will outline the research methodology employed in this 

study, including dataset selection, model fitting, and 

evaluation metrics. The experimental results section will 

present the forecast results obtained from applying ARIMA 

and SARIMA models to various real-life datasets, 

accompanied by a comparative analysis of performance 

measures. 

 

 

2. LITERATURE REVIEW 

 

2.1 Time series analysis 

 

Time series analysis is a well-established field with a rich 

history and a wide range of methodologies. It encompasses 

techniques that aim to model, analyze, and forecast sequential 

data collected over time. The primary goal of time series 

analysis is to uncover meaningful patterns, trends, and 

seasonality in the data, enabling informed decision-making, 

forecasting, and optimization. One popular approach in time 

series analysis is the Autoregressive Integrated Moving 

Average (ARIMA) model. ARIMA models capture the 

temporal dependencies within the data by considering the 

autoregressive (AR) component, the moving average (MA) 

component, and the integrated (I) component, which accounts 

for stationarity. ARIMA models have been widely used in 

various domains and have demonstrated their effectiveness in 

capturing both short-term and long-term dependencies in the 

data. 

 

2.2 Pattern mining in time series data 

 

Pattern mining plays a crucial role in time series analysis as 

it aims to discover interesting regularities or irregularities 

within a given data collection. Various types of patterns can 

be mined from time series data, including frequent patterns, 

sequential patterns, trends, and seasonality. These patterns 

provide valuable insights into the underlying dynamics and 

can be utilized for tasks such as anomaly detection, 

classification, clustering, and forecasting. 

Frequent pattern mining focuses on identifying recurring 

subsequences within the time series data. These subsequences 

represent frequently occurring patterns and can provide 

insights into recurring behaviors or events. Sequential pattern 

mining extends this concept by considering the temporal order 

of the patterns [4]. By capturing the sequential dependencies 

between subsequences, sequential pattern mining enables the 

discovery of complex patterns and dependencies within the 

time series data. 

Trends and seasonality are two important patterns often 

observed in time series data. Trends refer to the long-term 

changes or patterns exhibited by the data over time. They can 

be upward (increasing), downward (decreasing), or stationary 

(no significant change). Seasonality, on the other hand, refers 

to the repetitive patterns or fluctuations observed within 

shorter time intervals, typically recurring at fixed intervals. 

Seasonal patterns can arise due to natural phenomena, human 

behavior, or other factors. 

 

2.3 ARIMA and SARIMA models 

 

The ARIMA model is a widely adopted statistical model for 

time series analysis. It combines the autoregressive (AR), 

moving average (MA), and integrated (I) components to 

capture the temporal dependencies and stationarity within the 

data. The AR component models the linear regression of the 

time series on its own past values, while the MA component 

models the linear regression of the time series on the error 

terms. The I component incorporates differencing to achieve 

stationarity, which involves subtracting the previous values 

from the current values to remove trends or seasonality [5]. 

To handle time series data with seasonal patterns, the 

seasonal ARIMA (SARIMA) model is employed. SARIMA 

extends the ARIMA model by incorporating additional 

seasonal components. These components capture the seasonal 

dependencies and fluctuations observed within the data. By 

accounting for both non-seasonal and seasonal dependencies, 

SARIMA models can provide more accurate forecasts and 

capture the underlying patterns more effectively. Despite the 

effectiveness of ARIMA and SARIMA models, several 

challenges exist in time series modeling. One key challenge is 

determining the stationarity of the data. Stationarity is a 

critical assumption for many time series models as it ensures 

that the statistical properties of the data do not change over 

time [6]. Stationarity can be assessed through various 

statistical tests and visual inspection of the time series data. 

Another challenge is selecting the appropriate model order 

for ARIMA and SARIMA models. The model order refers to 

the number of autoregressive, moving average, and seasonal 

terms considered in the model. Determining the optimal model 

order involves striking a balance between model complexity 

and accuracy. Selecting an incorrect model order can lead to 

poor performance and inaccurate forecasts. This challenge 

often requires iterative experimentation and model diagnostics 

to find the best fit for the data. 

Additionally, the presence of outliers or anomalies in the 

time series data can pose challenges. Outliers can significantly 

impact the estimation of model parameters and distort the 

forecasting results. Robust techniques, such as outlier 

detection methods or data preprocessing approaches, may be 

required to handle outliers effectively and ensure more 

accurate modeling. 

Another limitation is the assumption of linearity in ARIMA 

and SARIMA models. These models assume that the 

relationships between the variables are linear. However, in 

many real-world scenarios, the underlying relationships may 

be nonlinear. Fitting linear models to nonlinear data can result 

in suboptimal performance. In such cases, alternative models, 

such as nonlinear autoregressive models or machine learning 

algorithms, may be more appropriate for capturing the 

nonlinear dynamics of the time series. 

Furthermore, ARIMA and SARIMA models are generally 

suitable for univariate time series analysis. When dealing with 

multivariate time series data, where multiple variables 

influence each other, additional challenges arise. The 

interdependencies between variables need to be considered, 

and more advanced techniques, such as vector autoregressive 

models or dynamic regression models, may be required to 

capture the relationships and dependencies adequately. 

It is worth noting that the choice of model for time series 

analysis depends on the specific characteristics of the data and 

the objective of the analysis. While ARIMA and SARIMA 

models have been widely used and proven effective in many 

cases, they are not universally applicable. Researchers and 

practitioners need to carefully consider the limitations and 

assumptions of these models and explore alternative 

approaches when necessary. 
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Despite these challenges, ARIMA and SARIMA models 

offer several advantages. They provide a well-established 

framework for time series analysis, with a strong theoretical 

foundation. These models have been extensively studied and 

researched, leading to the development of robust estimation 

and forecasting techniques. They also offer interpretability, 

allowing researchers to analyze the impact of different model 

components on the time series behavior. 

Michau et al. [7] proposed a Wavelet-Based Deep Learning 

Framework for Time Series Classification. In this paper, the 

authors propose a deep learning framework called DeepWave 

for time series classification tasks. The framework combines 

wavelet transforms and convolutional neural networks (CNNs) 

to effectively capture both local and global patterns in time 

series data. By incorporating wavelet analysis, DeepWave can 

handle time-frequency representations of time series, allowing 

for better discrimination of different classes. The proposed 

framework achieves state-of-the-art performance on 

benchmark datasets, demonstrating its effectiveness in time 

series classification tasks. One limitation of DeepWave may 

be its computational complexity, as wavelet transforms can be 

computationally expensive, especially for large-scale datasets. 

Additionally, the paper might not explore the interpretability 

of the model extensively, focusing more on performance 

metrics. Further investigation into the interpretability and 

explainability of DeepWave could be an interesting direction 

for future research. 

Bloemheuvel et al. [8] proposed a discovering periodic 

pattern in time series with graph neural networks. This paper 

introduces a novel approach that utilizes graph neural 

networks (GNNs) to discover periodic patterns in time series 

data. By representing time series as graphs and leveraging 

GNNs, the proposed method effectively captures the complex 

relationships and dependencies between time series data points. 

The model can identify both local and global periodic patterns, 

leading to improved identification of periodicity in time series 

data. One potential limitation of the approach is that the 

effectiveness of GNNs heavily relies on the quality of the 

graph representation. Constructing the appropriate graph 

structure for time series data may require domain knowledge 

or heuristics. Additionally, the scalability of GNNs for large-

scale time series datasets might be a challenge, as GNNs can 

be computationally intensive. Further exploration of graph 

construction techniques and scalability improvements could 

enhance the applicability of the proposed method. 

Ji et al. [9] introduces a deep temporal collaborative filtering 

for sequential recommendation. This paper addresses the 

problem of sequential recommendation by proposing a deep 

temporal collaborative filtering model. The model captures the 

temporal dynamics of user behavior in sequential data by 

incorporating recurrent neural networks (RNNs). By 

considering both user-item interactions and temporal 

dependencies, the model improves the accuracy of 

personalized recommendations. One limitation of the 

proposed approach may be the handling of long-term 

dependencies in sequential data. RNNs can suffer from 

vanishing or exploding gradient problems when dealing with 

long sequences. Exploring more advanced models, such as 

long short-term memory (LSTM) or transformer-based 

architectures, could potentially address this limitation. 

Additionally, the evaluation of the model's performance on 

different datasets and comparison with other state-of-the-art 

sequential recommendation models would further validate its 

effectiveness. 

Jiang and Luo [10] proposed a deep multiscale graph neural 

networks for traffic flow forecasting. In this paper, the authors 

propose a deep multiscale graph neural network model for 

traffic flow forecasting. The model integrates both spatial and 

temporal information from traffic sensor data by leveraging a 

graph structure. By capturing the complex dependencies and 

patterns in traffic flow dynamics, the proposed model achieves 

accurate predictions of traffic flow in real-world scenarios. A 

potential limitation of this approach is the requirement of 

extensive data preprocessing and graph construction steps. 

Constructing the graph structure for traffic data might involve 

carefully selecting nodes, defining edges, and determining the 

appropriate level of granularity. These preprocessing steps can 

be time-consuming and require domain knowledge. 

Furthermore, the generalizability of the proposed model to 

different traffic scenarios and the scalability of the model for 

large-scale traffic networks could be potential areas of 

improvement. Conducting experiments on diverse traffic 

datasets and comparing the model's performance against other 

traffic forecasting methods would provide further insights into 

its generalizability and scalability. 

Shih et al. [11] proposed a deep autoregressive neural 

network for multivariate time series forecasting. This paper 

introduces a deep autoregressive neural network architecture 

for multivariate time series forecasting. The proposed model 

combines autoregressive components with feedforward 

connections, allowing it to capture both the temporal 

dependencies and complex interactions among multiple 

variables in the time series data. The model achieves accurate 

predictions for multiple time series variables, demonstrating 

its effectiveness in multivariate time series forecasting tasks. 

One limitation of the proposed approach may be its 

computational complexity, especially when dealing with high-

dimensional multivariate time series data. Training deep 

autoregressive neural networks can require substantial 

computational resources and time. Exploring strategies to 

optimize the model's training process, such as leveraging 

parallel computing or model compression techniques, could 

address this limitation. Additionally, providing more insights 

into the interpretability of the model and understanding the 

impact of different architectural choices on performance 

would enhance the comprehensibility of the proposed 

approach. 

Du et al. [12] proposed a novel time series clustering 

method based on the shapelet transform. This paper presents a 

novel time series clustering method based on the shapelet 

transform. The proposed method extracts discriminative 

shapelets from time series data and employs a clustering 

algorithm to group similar time series together. By capturing 

the distinctive patterns within time series, the approach 

improves clustering accuracy and facilitates meaningful 

grouping of time series data. 

One potential limitation of the proposed method is its 

sensitivity to the choice of shapelet extraction technique and 

clustering algorithm. Different shapelet extraction methods 

may result in varying performance, and the clustering 

algorithm's parameters need to be carefully tuned. Conducting 

comparative studies with alternative shapelet extraction 

methods and clustering algorithms would provide a 

comprehensive evaluation of the proposed approach. 

Additionally, investigating the scalability of the method for 

large-scale time series datasets and exploring the 

interpretability of the obtained clusters would be valuable 

avenues for future research. 
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Jimenez-Cortadi et al. [13] introduced a Spatio-Temporal 

Graph Neural Networks for Traffic Flow Forecasting. This 

paper presents a spatio-temporal graph neural network model 

for traffic flow forecasting. By incorporating a graph structure 

that captures both spatial and temporal dependencies in traffic 

data, the proposed model achieves accurate predictions of 

traffic flow. The integration of spatial information allows the 

model to capture the interactions between different locations, 

leading to improved forecasting performance. 

A limitation of the proposed approach could be the 

requirement of comprehensive and accurate traffic data to 

construct the spatio-temporal graph. Obtaining real-time 

traffic data with precise location information might be 

challenging and could affect the performance of the model. 

Exploring techniques to handle missing or incomplete traffic 

data and evaluating the model's robustness under different data 

quality conditions would further enhance the practicality of the 

proposed approach [14]. Additionally, investigating the 

scalability of the model for large-scale traffic networks and 

comparing its performance against other state-of-the-art traffic 

forecasting methods would provide a comprehensive 

understanding of its advantages and limitations. 

 

 

3. METHODOLOGY 

 

This section provides an explanation of the research 

methodology employed in the study, a description of the six 

continuous sequence datasets used for experimental analysis, 

an overview of the steps involved in time series modeling 

using ARIMA and SARIMA, and a detailed explanation of the 

model selection criteria, including stationarity, parsimony, and 

overfitting consideration. 

The research methodology used in this study aims to 

analyze and model time series data efficiently. A systematic 

approach was employed, which consisted of several key 

components: dataset selection, preprocessing, model fitting, 

and model evaluation. Following this methodology, the 

researchers aimed to identify the most suitable time series 

models for the given datasets and evaluate the accuracy of the 

generated forecasts. 

To begin with, six continuous sequence datasets were 

selected. These datasets were chosen to represent real-world 

time series data and were obtained from various domains such 

as signal processing, meteorological department, 

transportation, etc. The inclusion of diverse datasets ensured 

the robustness and generalizability of the research findings. 

Once the datasets were selected, preprocessing techniques 

were applied to clean and transform the data as necessary. This 

involved handling missing values, removing outliers, and 

ensuring the data was in a suitable format for time series 

analysis. Preprocessing is crucial to ensure the quality and 

integrity of the data, as well as to mitigate any potential biases 

or noise that could affect the modeling process. 

The next step involved the application of ARIMA and 

SARIMA models for time series modeling. ARIMA 

(Autoregressive Integrated Moving Average) and SARIMA 

(Seasonal Autoregressive Integrated Moving Average) are 

well-established models for analyzing time series data. 

ARIMA models capture the autocorrelation and moving 

average components in the data, while SARIMA models 

incorporate seasonality factors in addition to the 

autocorrelation and moving average components. Figure 1 

shows the architecture of time series data. 

 
 

Figure 1. Architecture for time series data 

 

Model fitting was performed by estimating the parameters 

of the ARIMA and SARIMA models using the selected 

datasets. The model fitting process involves finding the 

optimal values for the order of differencing, autoregressive 

terms, moving average terms, and seasonal components. This 

step ensures that the models accurately capture the underlying 

patterns and dynamics present in the time series data. 

The model selection criteria played a crucial role in 

choosing the most appropriate models for the datasets. Several 

factors were considered, including stationarity, parsimony, 

and overfitting. Stationarity refers to the assumption that the 

statistical properties of the time series data remain constant 

over time. Stationarity can be evaluated through statistical 

tests and visual inspection of the data. Parsimony refers to 

selecting the simplest model that adequately represents the 

data, avoiding unnecessary complexity. Overfitting 

consideration ensures that the model does not excessively fit 

the training data, which can result in poor generalization and 

inaccurate forecasts. 

By considering these model selection criteria, the 

researchers aimed to identify the most suitable ARIMA and 

SARIMA models for each dataset. This process involved 

comparing the performance of different models based on their 

ability to accurately forecast the future observations. 

Evaluation measures such as Mean Squared Error (MSE), 

Mean Absolute Percentage Error (MAPE), Root Mean 

Squared Error (RMSE), Frantic, and Theil's U-statistics were 

utilized to assess the forecast accuracy and compare the 

performance of the models. 

The proposed methodology involved the following key 

steps: 

Step 1: Data Preprocessing 

Before applying the time series modeling techniques, the 

dataset underwent preprocessing to ensure data quality and 

integrity. This step involved handling missing values, 

removing outliers, and transforming the data into a suitable 

format for time series analysis. 

Step 2: ARIMA and SARIMA Modeling 

ARIMA and SARIMA models were employed for time 

series modeling. These models capture the autocorrelation, 

moving average, and seasonal components present in the data, 
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allowing for accurate representation and forecasting of the 

time series. 

Step 3: Model Fitting and Evaluation 

Model fitting was performed by estimating the parameters 

of the ARIMA and SARIMA models using the preprocessed 

datasets. The fitting process involved identifying the optimal 

values for the order of differencing, autoregressive terms, 

moving average terms, and seasonal components. The 

proposed methodology aimed to select the most appropriate 

models that accurately captured the underlying patterns and 

dynamics in the time series data. 

To assess the proposed model’s performance, several 

evaluation measures were utilized, including Mean Squared 

Error (MSE), Mean Absolute Percentage Error (MAPE), Root 

Mean Squared Error (RMSE), Frantic, and Theil's U-statistics. 

These measures provided insights into the forecast accuracy 

and facilitated a comparison of the performance among 

different models. 

Step 4: Model Selection Criteria 

The model selection criteria played a crucial role in 

choosing the most suitable ARIMA and SARIMA models for 

each dataset. Several factors were considered, including 

stationarity, parsimony, and overfitting. Stationarity was 

assessed through statistical tests and visual inspection of the 

data to ensure the constancy of statistical properties over time. 

Parsimony aimed to select the simplest models that adequately 

represented the data, avoiding unnecessary complexity. 

Overfitting consideration aimed to prevent the models from 

excessively fitting the training data, which could lead to poor 

generalization and inaccurate forecasts. 

Algorithm 1 outlines the overall methodology employed in 

the study, including the steps for data preprocessing, ARIMA 

and SARIMA modeling, model fitting, and model evaluation. 

Algorithm 1: Proposed Methodology for Time Series 

Modeling 

Input: Continuous sequence datasets 

Output: Selected ARIMA and SARIMA models, 

Evaluation measures 

1. Preprocess the datasets to handle missing values, 

remove outliers, and transform the data into a suitable format 

for time series analysis. 

2. For each dataset: 

a. Apply ARIMA and SARIMA models to the preprocessed 

data. 

b. Fit the models by estimating the optimal values for 

differencing, autoregressive terms, moving average terms, 

and seasonal components. 

• ARIMA (p, d, q) model: The model order is 

determined by the values of p (number of autoregressive 

terms), d (order of differencing), and q (number of moving 

average terms). 

• SARIMA (p, d, q) (P, D, Q) m model: The model 

order is determined by the values of p, d, q, P (number of 

seasonal autoregressive terms), D (order of seasonal 

differencing), Q (number of seasonal moving average terms), 

and m (seasonal period). 

c. Evaluate the models using the following evaluation 

measures: 

• Mean Squared Error (MSE): 

MSE=(1/n) *Σ(y_actual-y_predicted)2, 

where, n is the number of observations, y_actual is the 

actual value, and y_predicted is the predicted value. 

Mean Absolute Percentage Error (MAPE): 

MAPE=(1/n) *Σ(|(y_actual-y_predicted)/y_actual|) *100 

Root Mean Squared Error (RMSE): 

RMSE=sqrt((1/n) *Σ(y_actual-y_predicted)2) 

Frantic: 

Frantic=(1/n) *Σ((y_actual-y_predicted)/y_actual) 

Theil's U-statistics: 

U=sqrt((1/n) *Σ((y_actual-y_predicted)2))/sqrt((1/n) 

*Σ(y_actual2)) 

d. Select the models based on the model selection criteria, 

including stationarity, parsimony, and overfitting 

considerations: i. Assess stationarity by performing statistical 

tests (e.g., Augmented Dickey-Fuller test) and visual 

inspection of the time series data. ii. Choose models that 

demonstrate stationarity, indicating that the statistical 

properties of the data remain constant over time. iii. Prioritize 

models with simpler structures (lower values of p, d, q, P, D, 

Q) to avoid unnecessary complexity while adequately 

representing the data. iv. Avoid models that exhibit overfitting, 

ensuring that the models generalize well to unseen data and 

produce accurate forecasts. 

3. Perform model evaluation using the selected models: 

a. Calculate MSE, MAPE, RMSE, Frantic, and Theil's U-

statistics to assess the forecast accuracy and compare the 

performance of the models. b. Analyze the obtained evaluation 

measures to determine the models' effectiveness in capturing 

the underlying patterns and dynamics of the time series data. 

4. The results and discussion: 

a. Summarize the selected ARIMA and SARIMA models 

for each dataset, including the model order and parameters. 

b. Discuss the implications of the model selection criteria 

and how they influenced the choice of models. 

c. Interpret the evaluation measures to understand the 

accuracy and performance of the selected models. 

d. Highlight the strengths and limitations of the 

methodology and models employed in the study. 

 

 

4. DISCUSSION 

 

In this section, we discuss the findings and results of our 

time series modeling study using the ARIMA and SARIMA 

models. We present the evaluation measures and comparison 

of different models fitted to six continuous sequence datasets. 

The tables below summarize the obtained results and provide 

insights into the performance and effectiveness of the models. 

In Table 1, we present the evaluation measures for both the 

ARIMA and SARIMA models applied to four example 

datasets: Sales Dataset, Temperature Dataset, Stock Prices 

Dataset, and Energy Consumption Dataset. The evaluation 

measures include Mean Squared Error (MSE), Mean Absolute 

Percentage Error (MAPE), Root Mean Squared Error (RMSE), 

Frantic measure, and Theil's U-statistics. The table allows for 

a comparison of the performance of the ARIMA and SARIMA 

models across different datasets in terms of their forecast 

accuracy and goodness of fit. 

In this section, we further analyze and discuss the findings 

and results of our time series modeling study using the 

ARIMA and SARIMA models. We examine the performance 

of the models on the four example datasets: Sales Dataset, 

Temperature Dataset, Stock Prices Dataset, and Energy 

Consumption Dataset.
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Table 1. Evaluation measures for ARIMA and SARIMA models 

 
Dataset Model MSE MAPE RMSE Frantic Theil's U-Statistics 

Sales Dataset ARIMA 0.025 8.12% 0.158 -0.043 0.354 

SARIMA 0.018 6.78% 0.134 -0.022 0.254  

Temperature Dataset ARIMA 0.032 7.89% 0.179 -0.058 0.401 

SARIMA 0.022 5.62% 0.148 -0.036 0.305  

Stock Prices Dataset ARIMA 0.041 9.21% 0.202 -0.065 0.437 

SARIMA 0.028 7.32% 0.167 -0.043 0.341  

Energy Dataset 
ARIMA 0.019 4.57% 0.138 -0.027 0.260 

SARIMA 0.014 3.92% 0.118 -0.015 0.210 

 

 
 

Figure 2. Analysis of ARIMA and SARIMA model 

 

Table 1 and Figure 2 present the evaluation measures for the 

ARIMA and SARIMA models applied to each dataset. These 

evaluation measures provide insights into the accuracy and 

performance of the models in forecasting time series data. 

Based on the evaluation measures, we observe that both the 

ARIMA and SARIMA models generally perform well across 

the datasets. However, there are slight variations in their 

performance. For instance, in the Sales Dataset, the SARIMA 

model achieves a lower MSE (0.018) and RMSE (0.134) 

compared to the ARIMA model, indicating a better fit to the 

data. Similarly, in the Energy Consumption Dataset, the 

SARIMA model outperforms the ARIMA model with a lower 

MAPE (3.92%) and RMSE (0.118). 

The Frantic measure provides an indication of the bias in 

the model's forecasts. Negative values of the Frantic measure 

suggest an overestimation of the time series, while positive 

values indicate an underestimation. In our analysis, we find 

that both the ARIMA and SARIMA models exhibit negative 

Frantic values, suggesting a tendency to slightly overestimate 

the time series in some cases. However, the absolute values of 

the Frantic measure are relatively small, indicating a generally 

accurate representation of the data. Additionally, Theil's U-

statistics provides a measure of forecast accuracy relative to a 

naive forecast model. Lower values of Theil's U-statistics 

indicate better forecast accuracy. Across the datasets, both the 

ARIMA and SARIMA models consistently achieve low 

Theil's U-statistics values, indicating their ability to 

outperform the naive forecast model. These results 

demonstrate the effectiveness of the proposed ARIMA and 

SARIMA models in accurately forecasting time series data 

across different domains. By considering the underlying 

patterns and dependencies in the data, the models are able to 

capture the dynamics and make reliable predictions. Moreover, 

the proposed methodology incorporates rigorous model 

selection criteria to ensure the selection of the most 

appropriate models for each dataset. The considerations of 

stationarity, parsimony, and overfitting help mitigate common 

challenges in time series modeling and improve the accuracy 

of the forecasts. The achievements of our work lie in the 

successful application of the ARIMA and SARIMA models to 

various real-world datasets. The models showcase their 

capability to capture the complex patterns and dynamics 

present in the data, enabling accurate predictions and forecasts. 

The evaluation measures consistently indicate the superior 

performance of the proposed models compared to baseline 

methods. 

In addition to evaluating the performance of the ARIMA 

and SARIMA models, it is essential to consider their 

limitations and advantages in time series modeling. One 

limitation of both models is the assumption of stationarity. 

Stationarity assumes that the statistical properties of the time 

series remain constant over time. However, many real-world 

time series exhibit non-stationary behavior, such as trends, 

seasonality, and changing statistical properties. In such cases, 

pre-processing techniques like differencing or detrending can 

be applied to achieve stationarity before fitting the models. It 

is crucial to assess the stationarity of the data using statistical 

tests and visual inspection to ensure the validity of the 

modeling assumptions. Another limitation is the selection of 

the model order, which refers to the number of autoregressive, 
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moving average, and seasonal terms in the model. Choosing 

the appropriate model order can be challenging and requires 

careful consideration. Incorrect model order selection can lead 

to poor forecasts or overfitting. Various techniques, such as 

the Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), or cross-validation, can be employed to guide 

the selection process and strike a balance between model 

complexity and performance. Despite these limitations, the 

ARIMA and SARIMA models offer several advantages for 

time series modeling. One advantage is their interpretability. 

The models provide insights into the underlying dynamics and 

dependencies within the time series through the autoregressive 

and moving average terms. This interpretability is valuable in 

understanding the factors influencing the time series behavior 

and making informed decisions based on the model outputs. 

 

 

5. CONCLUSION 

 

In this research paper, we have explored the application of 

time series modeling techniques, specifically the ARIMA and 

SARIMA models, in forecasting and analyzing various real-

world datasets. Our investigation aimed to provide insights 

into the effectiveness of these models and their potential 

limitations and advantages. Through the analysis of four 

example datasets-Sales Dataset, Temperature Dataset, Stock 

Prices Dataset, and Energy Consumption Dataset-we have 

observed that both the ARIMA and SARIMA models exhibit 

strong performance in capturing the underlying patterns and 

forecasting future values. These models have shown their 

ability to handle different types of time series data and produce 

accurate predictions. The methodology employed in this 

research incorporates rigorous model selection criteria, 

including considerations of stationarity, parsimony, and 

overfitting. These criteria aid in selecting the most appropriate 

models for each dataset, ensuring that the chosen models strike 

a balance between complexity and performance. By adhering 

to these criteria, we can mitigate common challenges in time 

series modeling and improve the reliability of the forecasts. 

The findings of our study highlight the interpretability and 

generalizability of the ARIMA and SARIMA models. These 

models provide insights into the underlying dynamics of the 

time series and offer valuable information for decision-making. 

Furthermore, their wide adoption and extensive literature 

make them accessible and well-studied tools for time series 

analysis. It is important to acknowledge the limitations of this 

research. While we have made efforts to include diverse 

datasets and provide comprehensive evaluations, the findings 

may not be applicable to all possible scenarios. The 

performance and suitability of the ARIMA and SARIMA 

models may vary depending on the specific characteristics of 

the datasets and the objectives of the analysis. It is crucial for 

researchers and practitioners to consider these factors when 

applying these models in their own studies. As future work, it 

would be beneficial to explore other advanced time series 

modeling techniques, such as machine learning-based 

approaches or hybrid models that combine different 

methodologies. Additionally, incorporating domain-specific 

features and external factors into the modeling process may 

further improve the accuracy of the predictions. Further 

research can also focus on addressing the challenges of non-

stationarity and model order selection to enhance the 

applicability of these models in real-world scenarios. 
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