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The rapid decline in wildlife animal diversity necessitates expedited evaluations of 

biodiversity and population dynamics. Accurate image recognition from camera traps is 

central to such assessments. This study investigates the impact of different optimisation 

techniques and hyperparameter configurations on the accuracy of wildlife animal 

classification. Specifically, the comparative effectiveness of the Adaptive Moment 

Estimation (Adam) and Root Mean Square Propagation (RMSProp) optimisation 

algorithms is examined. The influence of learning rates on these optimisation techniques is 

evaluated, while other hyperparameters are held constant. Convolutional Neural Networks 

(CNN) models, namely DenseNet-121, ResNet-50, and AlexNet, are utilised for this study. 

The investigation employs a dataset composed of 47,841 images sourced from the Serengeti 

Project Season 1 Snapshot in Tanzania. The images depict wild animals in diverse 

perspectives within their natural habitats, with some providing a complete view of the 

animal's body, while others do not. The dataset, characterised by an imbalanced 

distribution, is segregated into training, validation, and testing sets at proportions of 80%, 

10%, and 10%, respectively. The results reveal that the application of the Adam 

optimisation technique yields the highest average accuracy of 80.66% with the ResNet-50 

model. However, the DenseNet-121 model achieved an overall accuracy exceeding 95%. 

Notably, the ResNet-50 architecture, with learning rates of 0.1 and 0.01, encountered 

challenges during the training and validation of all images due to the complexity of the 

dataset. Irrespective of the optimisation technique employed, the most effective 

performance was observed with the ResNet-50 model, utilising the Adam optimiser and a 

learning rate of 0.001. The study proposes suitable learning rate values for training 

scenarios similar to the present investigation. 
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1. INTRODUCTION

The development of sensor technology in recent years has 

led to an increase in the use of data acquisition in animal 

ecology. However, there are still limitations when it comes to 

converting that data into relevant and important information. 

This may hinder the ability to get more benefits or capitalise 

on the large dataset obtained by those sensors, i.e., using 

machine learning techniques with knowledge. The decline in 

animal diversity affects not only genetics but also ecological 

and behavioural diversity [1]. A review of machine learning 

techniques to detect farm animal behaviour, e.g., lameness, 

grazing, and rumination, was conducted by Debauche et al. [2]. 

The review was based on sensors and algorithms used to detect 

each animal category. 

As deep learning methods advance, object recognition 

through Convolutional Neural Networks (CNN) is steadily 

improving. The distinctive characteristics of various image-

based objects have piqued the interest of researchers, driving 

them to develop learning techniques capable of achieving high 

accuracy. The CNN architecture continues to develop, starting 

with the creation of the AlexNet architecture, which was able 

to recognise objects in ImageNet by Krizhevsky et al. [3]. This 

research represented a major breakthrough in the advancement 

of deep learning. As a result, subsequent studies have given 

rise to novel architectural variations like Inception [4], ResNet 

[5], and various other architectures. Architecture types may 

affect the accuracy of the system, which also contributes to the 

research interests in devising new architectures. 

In the field of insect detection, a study was conducted using 

Faster R-CNN with Inception V2 combined with an image 

processing approach to distinguish dengue mosquitoes. This 

approach was compared with R-FCN with Resnet-101 and 

SSD with MobileNet. As a classifier, in terms of accuracy, 

Faster R-CNN outpaced R-CCN and SSD for the test dataset 

[6].  

In addition to the selection and design of CNN architecture, 

several elements, such as the size of the training and testing 

datasets, the hyperparameter value for training, normalisation, 

regularisation, and optimisation techniques, will determine the 

accuracy of the result. For micromachines, mathematical 

relationships were established among four hyperparameters: 
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learning rate, batch size, dropout rate, and convolution kernel 

size. Additionally, a generalised multiparameter correlation 

model was formulated. Experimental results demonstrated that 

these relationships were vital to the neural network’s 

performance [5]. 

This study specifically discusses the learning rate 

configuration in gradient descent as a crucial hyperparameter 

for achieving high level of accuracy in the training process. 

The learning rate plays a crucial role in controlling the speed 

at which the model learns. Goodfellow et al. state that learning 

rate can be considered the most important hyperparameter [4]. 

Obtaining optimal learning rate values for a model with its 

corresponding datasets is not easy. The challenge lies in 

determining the appropriate hyperparameter values in the 

architecture. In order to speed up the optimisation process and 

have the right hyperparameter values, a technique was 

employed where lower-dimensional data was initially used 

and the dimensionality was progressively increased during the 

optimisation process [7]. 

This study discusses the application of Adaptive Moment 

Estimation (Adam) and RMSProp optimisation algorithms, 

which depend on the learning rate value, and their 

implementation on three CNN architectures. 

Recommendations are then provided based on the learning rate 

value of the Adam technique in animal classification. The 

comparison result from Adam is the optimisation of RMSProp 

to compare the value of achieved accuracy. Both optimisations 

are performed for the classification of animals in the wild, a 

domain where image characteristics exhibit significant 

variation. This subject has been the focus of extensive research 

in the past few years, attracting the attention of both biology 

and information technology researchers [8-11]. 

Animal pictures taken from various points of view, 

including the front view, provide numerous research 

challenges in achieving optimal accuracy. The camera trap 

technique involves capturing photographs of animals at 

various locations within a specific area over a designated time 

frame [12]. One of the major projects that collects datasets 

using camera traps and is publicly accessible is the Serengeti 

Snapshot, in which joint projects with animal photo collection 

and identification have been carried out, involving many 

communities [13], and data have been collected at a large 

geographic and temporal scale [14]. Another work on the 

Serengeti dataset was performed to identify, count, and 

describe the behaviours of wildlife animals with a deep 

Convolutional Neural Network approach. Five different 

architectures were tested: AlexNet, NiN, VGG, GoogLeNet, 

and ResNet. This effort concluded with ResNet having the best 

accuracy of 93.8% [15].   

Similar projects in other countries have also been initiated 

in recent years. Among others, a study was conducted in 

Morocco to identify the presence and absence of insects, in this 

case, three mosquito species. Recursive feature elimination 

was carried out in combination with a cross-validation 

approach. Using the Scott Knott (SK) approach, some 

classification models were tested: 1. Gradient Boosting, 2. 

Random Forest, 3. XG Boost, 4. Logistic Regression, 5. KNN, 

and 6. Gaussian Naïve Bayes. The models were evaluated 

using performance measures including accuracy, Matthews 

Correlation Coefficient (MCC), and area under the ROC curve 

(AUC). The results indicated that the Gradient Boosting, 

Random Forest, and XGBoost algorithms were the most 

powerful models [16]. 

Based on the background information and explanation cited 

above, this paper compares Adaptive Moment Estimation 

(Adam) and RMSProp optimisation algorithms for wildlife 

animal classification using Convolutional Neural Networks. 

The aim is to answer the research question of how to increase 

the accuracy of wildlife animal classification. Hence, wildlife 

animal conservation initiatives can use this work to improve 

the camera trap result. 

Both optimisation algorithms are known to respond well to 

changes in learning rate. The evaluation is carried out by 

incorporating these optimisation techniques into three 

architectures, DenseNet-121, ResNet-50, and AlexNet, to 

produce the highest possible accuracy. 

This article is organised as follows: Section 2 outlines the 

research methodology, encompassing the literature review, 

optimisation techniques of Adaptive Moment Estimation 

(Adam) and Root Mean Square Propagation (RMSProp), 

research model, and dataset. Section 3 presents the results and 

analysis of the implementation of the optimisation technique 

mentioned above on three CNN architectures, namely 

Densenet-121, ResNet-50, and AlexNet. Finally, Section 4 

presents the conclusion of this work. 

2. RESEARCH METHOD

2.1 Literature review in animal classification 

The provision of public datasets of wildlife animals using 

camera traps has been conducted by several national park 

locations, where one of the largest datasets is Snapshot 

Serengeti, which currently comprises approximately 3.2 

million images [13]. This dataset has been the object of 

research in subsequent studies. He et al. [14] presented their 

research for monitoring systems and the introduction of 

animals in the wild, from camera traps to data stored in the 

cloud. This system involves the public acting as a reviewer or 

photo provider. 

Trnovszky et al. [17] conducted a study focused on the 

learning of five different animal types: wolves, foxes, bears, 

pigs, and deer. The CNN architecture used is similar to 

AlexNet. The study involved a comparison between CNN and 

several other techniques, namely Principal Component 

Analysis (PCA), Support Vector Machine (SVM), Local 

Binary Pattern Histograms (LBPH), and Linear Discriminant 

Analysis (LDA). The dataset used is publicly accessible, the 

Washington RGB-D Object Dataset, for testing and ImageNet 

as pre-training. The dataset consisted of 500 test images, with 

100 images for each animal species captured from a frontal 

view only. The experimental results obtained by CNN resulted 

in a higher percentage of accuracy compared to the other four 

methods. For larger training set numbers without CNN, LBPH 

resulted in higher accuracy. However, the drawback is that the 

image was taken only from the front. 

Nguyen et al. [18] carried out a study on the distribution of 

various species (imbalance class) in the wild, taking into 

consideration a larger number of classifications and diverse 

animal positions. Wildlife Spotter, a dataset consisting of 

72,498 images encompassing 18 different animal types, was 

used in the study. Eighty percent of the images were used for 

training and twenty percent for validation. The positions of the 

animals were taken from multiple angles. The team compared 

three CNN architectures: VGG, Lite AlexNet, and ResNet-50. 

However, the best results of the experiments were obtained 

when the classes were still balanced, particularly for the six 
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classes with the largest dataset. In this experiment, the VGG-

16 architecture reached the highest accuracy of 95.88%. In 

training for the three highest classes of the dataset, the 

accuracy ranged from 89.16% to 90.4%. 

In addition to the research conducted by Nguyen et al. [18], 

who used public datasets, Villa et al. [19] also conducted a 

study employing the Serengeti Snapshot dataset for 26 types 

of animals. They created a well-balanced class comprising 

26,000 training images and 6240 test images. The dataset 

consists of four categories: imbalances, balances, foreground, 

and segmented. For animal recognition, Top-1 and Top-5 

measurements were taken, proceeding from the lowest results 

to the maximum level of accuracy of imbalances, balances, 

foreground, and segmented. ResNet-101 attained the highest 

accuracy of 98.1% by combining four distinct dataset 

categories. 

Zin et al. [20] conducted interesting research using Deep 

CNN (DCNN) that focused solely on cows. Forty-five forms 

of cows were sampled, and their data was captured in videos 

with a 30 fps frame rate. The image is captured from the live 

video and depicts either the full body or a partial view of the 

cows from the top or front perspective. The employed DCNN 

architecture consists of a single input layer, three 

convolutional pools, one fully connected layer, and one output 

layer. During the training phase, the identification of cows 

based on their full bodies achieved an accuracy score of 

98.87%, while the test score reached 97.01%. In the case of 

partial body images, the accuracy score obtained was 86.8%. 

Research with DCNN with an architecture similar to that of 

Zin et al. [20] was conducted by Chen et al. [10] with three 

convolutional and three max pooling. They conducted a 

comparison between DCNN and BoW (Bag of Visual Words) 

in conjunction with LDA (Linear Discriminant Analysis). The 

evaluation involved 14,346 training images and 9,530 testing 

images to identify 20 distinct classes of prominent wild 

animals found in North America. The DCNN results were still 

far below those of other studies, with a value of 38.315%. 

Verma and Gupta [21] also conducted DCNN research 

using five convolutional pools and three fully connected layers, 

similar to AlexNet. The dataset was the same as that of Chen 

et al. The dataset contained 1,110 images, of which 90% were 

allocated for training while the 10% were reserved for testing. 

Additionally, SVM and KNN models were assessed alongside 

DCNN, with the accuracy of the DCNN model reaching 91%. 

Tabak et al. [22] used more than 3 million images from five 

US states, Canada, and the Serengeti Snapshot (Tanzania) as 

their dataset. This classification used the ResNet-18 

architecture with a 16 GB RAM Macintosh laptop. The 

training accuracy results for the US dataset attained 98%, 

while the validation results from Canada and Tanzania were 

82% and 94%, respectively. Another interesting study 

involved generalisation by testing images from locations 

where training had never been done. Schneider et al. 

conducted this study using 47,000 datasets from five locations 

with five architectures [23].  

Several researchers have conducted studies on the 

application of animal detection and monitoring, both as 

standalone systems, such as for livestock monitoring, and 

integrated with other technologies. Yousif et al. [24], Guzhva 

et al. [25], Hansen et al. [26], Rivas et al. [27], and Schneider 

et al. [28] have contributed to this field of research. 

Gradient class activation procedures have been studied 

aimed at extracting the most salient pixels within the final 

convolutional layer [29]. The dataset was comprised of 20 

classes of wild animals from Africa. 

2.2 Method development 

This research analyses the classification of animal images 

in three of CNN’s most recent architectures, namely Densenet-

121, ResNet-50, and AlexNet. A comparison using Adaptive 

Moment Estimation (Adam) and Root Mean Square 

Propagation (RMSProp) as optimisation techniques was 

executed in the training stage. With Adam, the advantages of 

training processes are faster and more stable training processes 

to achieve the highest accuracy value [30]. One parameter that 

is within the scope of this research is the learning rate, with the 

notation LR. Both optimisations depend on the learning rate 

value, so the effect of changes to the accuracy value will be 

known. Classification is conducted using an image dataset that 

is based on images from camera traps with different lighting 

levels and animal positions, where photos are taken during the 

day and night. All these images represent real conditions in a 

wildlife conservation park. The dataset used in this research is 

sourced from the Serengeti Project Snapshot season 1 in 

Tanzania, and sufficient light conditions were taken. Figure 1 

illustrates the research model employed in this study. 

Figure 1. Research model 

The dataset falls into the imbalance class and is divided into 

three folders for training, validation, and testing, with a 

proportion of 80%, 10%, and 10%, respectively. There are no 

overlapping images between those three folders. During the 

preprocessing stage, not all datasets are used by manually 

excluding images of lower quality, such as those that are too 

dark or black and white. Consequently, 46,841 images were 

selected, representing 11 different animal classes. 

Figure 2. Implementation flow 

The design was implemented on FloydHub.com, a 

frequently utilised cloud-based deep learning platform. This 

study used two types of Nvidia products: the Tesla V100 RAM 

(16 GB), and the Tesla K80 RAM (16 GB). The authors wrote 
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the program code using the Anaconda platform, Jupyter 

Notebook, the PyTorch framework, and Python 3.7. Figure 2 

shows how the model was implemented in detail, from taking 

input to computing accuracy. 

The system is designed to accept image input. In 

preprocessing, animal images are placed in their class name 

folders as subfolders of the training, validation, and testing 

folders. In the process of training, validation, and testing, 

iterations are taken randomly. The file size in the input is 

changed to 224 x 224 according to the input sizes of AlexNet, 

Resnet-50, and DenseNet-121. A series of transformations and 

data augmentation techniques are applied to each image in the 

training, validation, and testing folders. These include random 

horizontal flips, resize crops, centre crops, and normalisation. 

The DataLoader is then used to load the customised images 

into each respective folder. During the initial step, the training 

DataLoader is activated to load and process the training 

images. 

 In this research, the authors conducted transfer learning by 

applying a pretrained model to the ImageNet dataset, which 

has 1000 classes of goods, flora, and fauna. Prior to training 

with the animal dataset, the machine downloads and updates 

the parameters, allowing the model to be available from the 

outset. With this, the engine already has a model at the 

beginning. Once the pretraining process is completed, feature 

extracting is performed. This extraction process solely 

considers gradients without the initial parameters from the 

pretrained outcomes, and adjusts the final output layer based 

on the quantity of classes and architectural variations. 

During the training stage, a forward pass is executed at the 

beginning, and then a backpropagation is run while calculating 

a loss. When running the optimizer step, the parameter update 

is performed. This process of forward pass, backpropagation, 

and parameter update is repeated for a specified number of 

training sessions. Upon completion of the training, total loss 

and accuracy are calculated. For validation and testing, it is 

almost the same order as the forward pass but without 

backpropagation. Loss and accuracy are accumulated from 

each process to become the final loss and accuracy. 

The results of the calculation of accuracy in training and 

testing are displayed graphically, so the movement between 

using RMSProp and Adam can be clearly seen. Accuracy is 

calculated with Top 1 by looking at average accuracy and 

highest accuracy in the testing stage.  

2.3 Dataset 

Serengeti National Park, located in Tanzania, Africa, is one 

of the sites listed by UNESCO as a world heritage site. It 

comprises 1.5 million hectares of savannah and is home to the 

largest remaining unaltered animal migration in the world. The 

dataset of the Serengeti Snapshot as a whole is extensive, 

containing approximately 3.2 million images from 11 seasons. 

However, only about 20% contain animal objects. In this 

research, 46,841 images were manually selected [31]. The 

total number of classes in this study was 11, which exhibited 

an imbalance in class distribution. 

Many pictures taken depict animals in their natural 

environment. This creates another challenge in the research, as 

it not only gives pictures taken from various angles but also 

gives pictures that only show part of the animal’s body. 

Dataset condition 

The dataset used was taken from Project Snapshot Serengeti 

season 1. Overall, the dataset consists of approximately 75% 

of images without animals, and it encompasses 47 animal 

classes. In preprocessing before the program is executed, 

image selection with three criteria is done: separating pictures 

of animals or without animals; taking pictures in the morning, 

afternoon, and evening only; and selecting classes with not 

less than 1000 pictures. From these three criteria, details are 

obtained with 46,841 images [31]. These images capture 

animals from different viewpoints, including front, side, and 

rear views, as shown in Figure 3. Furthermore, the dataset 

includes images depicting both full-body and partial-body 

views of animals and images featuring smaller animals within 

the frame. This is enough to describe the real issues caused by 

an imbalanced dataset when it is used to conduct research. 

Figure 3. Animal in Snapshot Serengeti with different view 

angles comprising a combination of full pictures and partial 

pictures 

Several previous studies have been described in Section 2.1, 

and some of them used a dataset of more than 1 million images. 

The resulting accuracy reaches> 90%. From the results 

obtained by the author, the accuracy of the classification of 

animals in the wild with several kinds of positions can reach> 

90% with a number of datasets of tens of thousands. The 

author did not discuss the relationship between lighting levels 

and accuracy results. The principle is that as long as there is 

sufficient light, the image can be used in classification with 

CNN. 

2.4 Adaptive moment estimation (Adam) and Root Mean 

Square Propagation (RMSProp) 

Optimisation algorithms that are based on gradient descent 

are selected in this work due to their good convergence in non-

convex problems, in which Adam and RMSProp fall into this 

category. Hence, the research specifically focuses on utilising 

these optimisation techniques, Adam and RMSProp, and 

comparing their accuracy results. Adam is a stochastic 

optimisation requiring only first-order gradients with low 

memory usage [27]. Adam brings together the benefits of 

AdaGrad, which demonstrates effectiveness for sparse 

gradients, and RMSProp, which performs effectively in both 

online and non-stationary scenarios. Both of these techniques 

maintain the learning rate. Previously, Stochastic Gradient 

Descent (SGD) was a popular optimisation technique used in 

machine learning. 
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Intuitively, the learning rate (step size) is not constant 

depending on the current gradient value; it is high when it is 

far from the minimum value and low when it is close to the 

minimum value. AdaGrad solves the problem in SGD, which 

applies η that was adaptive to the default value of 0.01. The 

AdaGrad formula is as follows: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐺𝑡 + 𝜖
𝑔𝑡 (1) 

where: 

𝜃 = weight parameter value 

𝐺 =  total squares of the gradient with respect to all 

parameters of 𝜃 . 

𝜀 = a small positive number. 

𝑔 = moving average of squared gradient 

𝜂 =learning rate 

𝑡 = a particular time instant 

This changes the value of η in the iteration of t for each 

parameter θi based on the gradient value obtained previously 

for the parameter θi. The disadvantage of this algorithm is that 

the previous gradient value in the denominator keeps growing, 

which will cause a lower learning rate and hence stop the 

training process. 

The Root Mean Square Propagation (RMSProp) technique 

tries to avoid the condition of stop learning occurring in 

AdaGrad by calculating the moving average of the root mean 

square over the gradient using the following formula: 

E[Δθ2]t = γE[Δθ2]t−1 + (1 − γ)Δθt
2 (2) 

The root mean squared error value of the corresponding 

parameter update is represented by 

RMS[Δθ]t = √E[Δθ2]t + ε (3) 

E[g2]t = 0.9E[g2]t−1 + 0.1gt
2 (4) 

Δθt = −
η

√E[g2]t + ε
gt (5) 

where, γ denotes a constant. Krizhevsky et al. [3] recommend 

γ = 0.9. The result of this RMS formula is the value for the 

exact same rule update as AdaGrad. The combination of these 

two functions allows RMSProp to change learning rates 

adaptively while preventing them from becoming too small. 

Adam is an optimisation algorithm like RMSProp, which 

has momentum. Adam stores the RMS and gradient averages 

from previous iterations [26]. These two values are called first 

momentum (mt) and second momentum (vt). The formula for 

first-order momentum (mt) with decay rate β1 = 0.9 and 

second-order momentum (vt) with decay rate β2 = 0.999 is as 

follows: 

mt = β1mt−1 + (1 − β1)gt (6) 

vt = β2vt−1 + (1 − β2)gt
2 (7) 

where, mt and vt are the values of moment (1st moment) and 

variance (2nd moment), respectively. 

Furthermore, the results of the formula mentioned above are 

further refined through the bias correction process so that the 

corrected first-order momentum and second-order momentum 

are 

m̂t =
mt

1 − β1
t (8) 

v̂t =
vt

1 − β2
t (9) 

The final result is, 

θt+1 = θt −
η

√v̂t + ε
m̂t (10) 

3. RESULTS AND ANALYSIS

Testing was conducted by measuring the accuracy achieved 

from each change in learning rate by DenseNet-121, ResNet-

50, and AlexNet, where everything is done with Adam and 

RMSProp. Some parameters are kept consistent, namely, 

batch size = 32, epoch = 30, and loss function using cross-

entropy loss due to the classification for multiclass. The author 

ran transfer learning with feature extracting by DenseNet-121, 

ResNet-50, and AlexNet. The learning rate value tested starts 

at 0.1 and decreases to one-tenth of the previous values, which 

are 0.1, 0.01, and 0.001.  

This research conducts transfer learning before training to 

avoid building architecture and training from scratch. The 

advantage is that one of the current transfer learning models, 

besides finetuning, is feature extracting. In the feature 

extraction, it is pretrained on the ImageNet dataset and 

followed by the last layer modification. 

3.1 RMSProp implementation 

Table 1 shows the average value of testing accuracy from a 

single test execution with 140 samples. The accuracy of 

AlexNet increases as the learning rate decreases. ResNet and 

DenseNet, however, stagnate or drop at learning rates 0.1 and 

0.01 even though DenseNet was above 70% in all three 

learning rate values. ResNet has a residual learning property, 

which results in reduced training time and increased sensitivity 

to changes in learning rate. This is evident in the results, in 

which for a learning rate of 0.001, ResNet has the highest 

increase from the previous learning rate of 0.01. 

Table 1. Mean accuracy result using RMSProp 

Architecture 
Learning Rate (η) 

0.1 0.01 0.001 

AlexNet 73.55% 72.95% 78.76% 

ResNet-50 53.42% 53.42% 77.44% 

DenseNet-121 72.03% 71.56% 78.91% 

In cases where the accuracy remains consistently below 

60%, one of the results of ResNet-50 is taken and processed in 

the form of a comparison graph of training loss and validation 

loss for a learning rate of 0.01, as depicted in Figure 4. 

Based on Figure 4, there is a noticeable trend where the 

training loss and validation loss exhibit more stability and 

remain relatively constant, particularly in the case of the 

training loss. This condition means that ResNet-50 

architectures with learning rates of 0.1 and 0.01 cannot 

conduct training properly on all training images and validation 
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due to the complexity of existing datasets. The calculation 

formula for the RMSProp algorithm is as follows: θt: = θt - 1 

- αgt / (√ nt + ε). When α (learning rate) gets smaller, θt value

will be even greater. Conversely, with a greater learning rate,

θt gets smaller. It means that the momentum θt does not reach

the optimum value of accuracy. This can explain the condition

of ResNet-50, which tends to be constant at around 50% but

increases at a learning rate of 0.001.

Figure 4. Loss comparison in ResNet-50 using a learning 

rate of 0.1 

Table 2. Highest accuracy result using RMSProp 

Architecture 
Learning Rate (η) 

0.1 0.01 0.001 

AlexNet 87.50% 90.62% 93.75% 

ResNet-50 78.12% 75.00% 96.88% 

DenseNet-121 90.62% 96.88% 96.88% 

From Table 2, using RMSProp can achieve the highest 

accuracy for all three architectures with values> 93% at a 

learning rate of 0.001. 

3.2 Adam implementation 

Similar to RMSProp, Adam’s accuracy in three 

architectures increases as the learning rate decreases, as shown 

in Table 3. ResNet-50 accuracy, however, is still less than 60%, 

with learning rates of 0.1 and 0.01. The conditions are 

comparable to using RMSProp, where ResNet-50 cannot 

properly train all training images and validate its performance 

with the complexity of the existing dataset. 

Table 3. Mean accuracy result using Adam 

Architecture 
Learning Rate (η) 

0.1 0.01 0.001 

AlexNet 73.89% 75.41% 76.03% 

ResNet-50 53.42% 58.40% 80.66% 

DenseNet121 69.64% 75.06% 79.87% 

Table 4. Highest Accuracy result using Adam 

Architecture 
Learning Rate (η) 

0.1 0.01 0.001 

AlexNet 93.75% 90.62% 90.62% 

ResNet-50 75.00% 84.38% 96.88% 

DenseNet-121 90.62% 93.75% 100.00% 

Table 4 shows that using Adam, the highest accuracy can be 

achieved by all three architectures with values >90% at a 

learning rate of 0.001. Notably, DenseNet achieves 

exceptional accuracy, with some samples reaching 100% 

accuracy out of the 140 tested. 

Subsequently, combining the results of Table 1 and Table 3 

will produce a graph, represented in Figure 5. 

Figure 5. Learning rate to accuracy 

The maximum accuracy attained in this experiment was 

observed at a learning rate value of 0.001, indicating that the 

learning process occurred in more detail. There is a tendency 

for accuracy to increase with learning rates below 0.001. This 

condition, however, was not examined in this work. Figure 5 

also shows that ResNet-50 is effective with a small learning 

rate, i.e., 0.001, when it outperforms AlexNet and DenseNet 

either with Adam or RMSProp. 

In general, the accuracy of Adam is higher than that of 

RMSProp. Nevertheless, RMSProp remains a viable option 

because the average testing accuracy reaches more than 70%, 

and even the highest accuracy can reach more than 90%, as 

shown in Table 2.  

Current work does not give enough opportunity to take 

advantage of the residual learning inherent in certain 

architectures. As a result, there is ample room for future 

research and exploration in this area.  

4. CONCLUSIONS

This paper evaluated the performance of the CNN 

architectures DenseNet-121, ResNet-50, and AlexNet using 

Adaptive Moment Estimation (Adam) and RMSProp 

optimisation algorithms. While both optimisation techniques 

are based on the gradient descent approach, Adam outperforms 

RMSProp in terms of accuracy. This is attributed to the 

second-moment factor inherent in the Adam method.  

The increase in accuracy value is dependent on the training 

process and the data used with the same architecture and 

hyperparameter. The maximum accuracy was attained with a 

learning rate value of 0.001, while the highest average 

accuracy was obtained with a value of 80.6% from the dataset 

of wildlife animal classification by DenseNet-121 architecture. 

The impact of hyperparameter, i.e., learning rate, on ResNet-

50 architecture has different results than AlexNet and 

DenseNet-121. Hence, analysis with respect to learning rate is 

important in designing a Convolutional Neural Network. 

Furthermore, there is a tendency for accuracy to increase when 

the learning rate is <0.001. This finding opens opportunities 

for future research work as well as considering residual 

learning properties. 

To conclude, the motivation, results, and discussion on 

optimisation algorithms, learning rates, and CNN architectures 
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in this work can contribute to and enrich further research not 

only in CNN and optimisation subjects but also in a broader 

area, such as ecological and wildlife animal fields. 
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