
A Multi-Agent Systems Approach for Optimized Biomedical Literature Search

Ayman Mohammad Odeh Mansour1,2* , Mohammad Ali Ahmad Obeidat3 , Jalal Mohammad Yousef Abdallah3

1 Department of Computer and Communications Engineering, College of Engineering, Tafila Technical University,

Tafila 6611, Jordan
2 Faculty of Computer Studies (FCS), Arab Open University (AOU), Amman 11953, Jordan
3 Department of Electrical Power and Mechatronics Engineering, College of Engineering, Tafila Technical University,

Tafila 66110, Jordan

Corresponding Author Email: mansour@ttu.edu.jo

https://doi.org/10.18280/isi.280424 ABSTRACT

Received: 2 March 2023

Revised: 10 July 2023

Accepted: 26 July 2023

Available online: 31 August 2023

The potential of Multi-Agent Systems (MAS) in tackling the complexities of biomedical

literature searches has been increasingly recognized. This research delves into the

application of MAS for the amalgamation of varied information sources and expertise,

striving for a higher degree of accuracy and comprehensiveness in search results. A distinct

MAS framework, designed and implemented specifically for biomedical literature

searching, is introduced. In this framework, decentralized agents are employed, each

bearing responsibility for specific tasks such as data collection, pre-processing, information

retrieval, and result evaluation. A collaborative and communicative environment among

these agents is fostered to augment the overall performance of the system. To bolster the

accuracy and comprehensiveness of the search outcomes, a variety of information sources

and expertise are incorporated within the MAS. This amalgamation of expert knowledge

and domain-specific information serves to enhance the relevance and accuracy of the

retrieved results. Evaluation of MAS performance is carried out through multiple criteria

and metrics, providing insightful feedback for continuous improvement of the system. The

research illuminates the potential advantages of utilizing MAS in the realm of biomedical

literature searches. The MAS framework demonstrates enhanced scalability, flexibility, and

reliability when compared to traditional centralized approaches. Furthermore, the

framework accommodates the integration of diverse expertise, allowing for the

customization of the search process based on specific requirements. In conclusion, this

study emphasizes the merits of MAS in advancing biomedical literature search by

converging multiple sources of information and expertise. The results underscore the

capability of MAS to navigate inherent challenges, thereby delivering precise and

comprehensive search outcomes.

Keywords:

Multi-Agent Systems (MAS), literature

search, recommender system

1. INTRODUCTION

1.1 Recommender systems

Recommender systems, a class of personalized software

tools, are designed to suggest products or services tailored to

users' individual preferences and behavior. These systems are

utilized extensively across various industries. A prototypical

example is Amazon's recommender system, which uses users'

purchase history, browsing behavior, and product ratings to

generate personalized recommendations. By considering

patterns of other users with similar preferences, the system can

offer recommendations appealing to a broad user base, thereby

enhancing the pertinence and utility of its suggestions.

Netflix, a leading online streaming service, employs a

recommender system deploying both content-based and

collaborative filtering. Content-based filtering uses movie and

TV show descriptions and genres, while collaborative filtering

leverages ratings provided by users. This recommender system

has significantly contributed to user retention and acquisition,

demonstrating the power of personalized recommendations.

Numerous other industries also benefit from recommender

systems. Spotify, for instance, uses such a system to suggest

songs based on users' listening history and preferences. In the

realm of travel, platforms like TripAdvisor use recommender

systems to suggest destinations, hotels, and restaurants based

on users’ past travel experiences and ratings. E-commerce

platforms, such as eBay, make product suggestions based on

users’ browsing and purchase history. YouTube's

recommender system suggests videos based on viewing

history, subscriptions, and liked videos. Despite the diversity

of these applications, all these recommender systems share a

common goal: offering personalized, relevant

recommendations to users.

The development and challenges of multi-agent

recommender systems for biomedical literature retrieval are

crucial topics in the advancement of this field. Recommender

systems have evolved from traditional single-agent

approaches to sophisticated multi-agent systems, which can

integrate diverse information sources and expertise. However,

the effectiveness of such systems is often hindered by several

complex challenges that require innovative solutions.

One such challenge stems from the complexity and

heterogeneity of biomedical data, which includes a vast range

Ingénierie des Systèmes d’Information
Vol. 28, No. 4, August, 2023, pp. 1039-1053

Journal homepage: http://iieta.org/journals/isi

1039

https://orcid.org/0000-0001-7086-1613
https://orcid.org/0000-0002-0288-962X
https://orcid.org/0000-0002-4925-9158
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280424&domain=pdf

of structured and unstructured data, such as text, images, and

clinical data. Advanced techniques for data preprocessing,

integration, and representation are required to incorporate

these diverse data types into a unified recommendation

framework. Furthermore, obtaining reliable and

comprehensive datasets for developing accurate and effective

recommendation systems presents a significant challenge.

Efficient communication and coordination among the

agents in the multi-agent system is another challenge. Agents

must share information, collaborate, and synchronize their

activities effectively to ensure coherent and reliable

recommendations. Developing robust communication

protocols and coordination mechanisms that can handle the

diverse and dynamic nature of biomedical literature data is

essential.

Scalability and performance are critical challenges in

developing multi-agent recommendation systems for

biomedical literature retrieval. As the volume of biomedical

literature grows exponentially, systems must be capable of

handling large-scale datasets and delivering timely

recommendations. Efficient algorithms, optimization of

computational resources, and leveraging parallel processing

techniques are key considerations for achieving scalability and

high-performance capabilities.

Security and privacy concerns represent another layer of

complexity. Biomedical literature often contains sensitive

patient information, necessitating robust security measures to

protect data privacy. Compliance with relevant regulations and

standards, such as the Health Insurance Portability and

Accountability Act (HIPAA), while maintaining the integrity

and confidentiality of data, presents a formidable challenge.

Beyond these technical considerations, user experience is a

critical factor in the success of recommendation systems. It is

crucial to develop intuitive user interfaces, personalized

recommendations, and interactive features that meet the

specific needs of biomedical researchers and healthcare

professionals. Effective visualization techniques, user

feedback mechanisms, and adaptive interfaces can greatly

enhance the usability and acceptance of multi-agent

recommendation systems.

Addressing these challenges calls for a multidisciplinary

approach, incorporating expertise from fields such as artificial

intelligence, machine learning, data integration, information

retrieval, human-computer interaction, and biomedical

informatics. By confronting these complexities, it is possible

to overcome the challenges faced by multi-agent

recommendation systems for biomedical literature retrieval,

thereby facilitating more accurate, comprehensive, and

efficient access to biomedical knowledge.

1.2 Multi-Agent Recommender Systems: A comprehensive

overview

Multi-Agent Recommender Systems (MARS) constitute an

innovative class among recommendation systems, leveraging

the collaborative potential of multiple agents for the

generation of personalized recommendations. These agents

may be software-based, human-oriented, or a hybrid thereof,

each tasked with curating recommendations for a distinct

subset of users or items, or both [1, 2].

One of the salient advantages of MARS is their superior

competency to manage substantial and intricate data sets,

while maintaining recommendation accuracy. This is achieved

by partitioning data into more manageable subsets, with each

subset allocated to a specific agent. This not only accelerates

data processing but also enhances efficiency. Furthermore,

domain-specific specialization of each agent can lead to an

enriched user experience through more personalized

recommendations [3, 4].

Another strength of MARS lies in their capacity to

amalgamate information from multiple sources for

recommendation generation. Such a system could, for instance,

utilize a user's purchase history, ratings from other users, and

item content to curate a personalized recommendation list.

This multifaceted approach fosters a comprehensive

understanding of user preferences, thereby facilitating the

creation of superior recommendations.

However, the design of MARS is not without challenges.

Ensuring coordination among agents to produce consistent and

complementary recommendations is crucial. Furthermore, the

system must be equipped to manage potential conflicts

between agents and validate the trustworthiness of the final

recommendations.

Despite these challenges, MARS hold substantial potential

to transform recommendation practices by offering

personalized, precise recommendations. While the design

intricacies of such a system are complex, the potential benefits

warrant MARS as a promising avenue for further research and

development [5-9].

1.3 Biomedical Literature Search Systems: An essential

tool in biomedical research

Biomedical Literature Search Systems (BLSS) are

specialized tools that are integral to the biomedical research

landscape. These systems are meticulously designed to enable

researchers to efficiently retrieve pertinent articles and papers

from a plethora of scientific journals and databases, thereby

supporting and streamlining their research endeavors.

A paramount example of BLSS is PubMed, a

comprehensive database maintained by the National Library

of Medicine. PubMed grants access to an excess of 29 million

citations encompassing biomedical articles, peer-reviewed

journals, online books, and conference papers. This system

enables researchers to conduct topic-specific searches, or to

identify articles that have cited a particular paper.

Another noteworthy BLSS is Embase, which provides

access to an impressive portfolio of more than 30 million

biomedical articles and conference papers. Covering a broad

spectrum of biomedical subjects, Embase is especially

advantageous for literature searches related to pharmacology

and toxicology.

The role of BLSS in propelling the field of biomedical

research forward is undeniable. By facilitating rapid and

efficient identification of relevant articles, these systems

contribute to the acceleration of research processes and the

augmentation of research outcomes.

In conclusion, Biomedical Literature Search Systems are

indispensable assets for biomedical researchers. By providing

access to vast repositories of information, they assist

researchers in identifying necessary data to support their work.

The substantial contributions of these systems to the

advancement of biomedical research are evident, and their

critical role in the future of the field is assured [10-12].

In the study [13], the focus is on related search

recommendations, a pivotal component of modern search

engines. This paper delves into the integration of

recommendation systems with search engines and underscores

1040

the significance of incorporating knowledge graphs, user

context, and feedback to enhance search results. The relevance

of this research to biomedical literature search lies in its

emphasis on optimizing search recommendations based on

user behavior and context.

Paper [14] explores the realm of text mining and trend

detection, particularly within the context of social media,

specifically Twitter. It underscores the importance of indexing

content and employing preprocessing techniques to effectively

analyze user-generated text data. Pertinently, in the context of

biomedical literature search, similar techniques can be applied

to process and extract insights from user-generated content,

such as reviews and comments related to research articles and

medical topics.

Authors of [15] investigates the intriguing intersection of

emotion recognition via facial expressions and its application

in music recommendation. While this paper primarily

addresses music recommendation, the concept of emotion

recognition through facial expressions can be extended to

biomedical literature search. Users' emotional responses to

medical research can significantly impact their preferences

and recommendations, making emotion recognition an

intriguing avenue for optimizing search results in this domain.

1.4 The role of Artificial Intelligence in Biomedical

Literature Search Systems

Artificial Intelligence (AI) is increasingly being integrated

into Biomedical Literature Search Systems, enhancing their

functionality and improving the speed and accuracy of search

results.

One significant application of AI lies in the deployment of

Natural Language Processing (NLP) techniques. NLP

algorithms are proficient in extracting pertinent information

from scientific articles and categorizing it based on its

relevance to the researcher's query. Consequently, more

accurate and relevant results can be returned, reducing the time

researchers need to locate required information.

Machine learning, a subset of AI, is also being harnessed to

optimize the functionality of Biomedical Literature Search

Systems. Machine learning algorithms can be trained to

identify patterns within data and make predictions regarding

an article's relevance based on the available information. This

ability further enhances the accuracy and speed of search

results.

Additionally, AI is being utilized to improve the user

interface of Biomedical Literature Search Systems. Notably,

AI-powered chatbots can assist researchers in navigating the

system and provide prompt answers to their queries, enhancing

the overall user experience.

Machine learning is particularly prevalent in the field of

Biomedical Literature Search Systems, employed in various

ways such as:

(1) Document Classification: Machine learning is used to

categorize articles based on their content and relevance to a

specific query, thereby improving the accuracy of search

results.

(2) Recommendation Systems: Machine learning can devise

recommendation systems that suggest articles based on the

researcher's search history, reading habits, and preferences,

enhancing the user experience and reducing the time spent in

locating necessary information.

(3) Information Extraction: Machine learning facilitates the

extraction of relevant information from scientific articles,

reducing the time researchers spend manually reading through

articles.

(4) Query Expansion: Machine learning can expand a

researcher's query to include related terms and concepts,

improving the precision of search results.

(5) Sentiment Analysis: Machine learning can perform

sentiment analysis on scientific articles to identify positive or

negative sentiment and categorize articles accordingly.

These are just a few examples of the multitude of ways

machine learning is contributing to the evolution of

Biomedical Literature Search Systems. By improving the

speed and accuracy of search results, machine learning is

making it significantly easier for researchers to find the

information they need. As the field of Biomedical Literature

Search Systems continues to rapidly evolve, the role of

machine learning is poised to become even more critical.

1.5 The application of Multi-Agent Systems in literature

and Article Search Systems

Multi-Agent Systems (MAS) are distributed systems

composed of multiple autonomous agents that interact to

achieve a common objective. Within the realm of search

systems, MAS have been effectively employed to enhance

search results and user experience. For instance, agents can be

designated to specific tasks such as web crawling, indexing,

and ranking. Each agent, responsible for a specific task,

communicates with other agents to collectively complete the

overall search process. This division of tasks fosters improved

efficiency and scalability of the search engine.

Furthermore, MAS have been utilized to personalize search

results. Agents can monitor the user's search history and

preferences, leveraging this information to provide

customized results. For example, if a user frequently searches

for specific data, such as sports or news, an agent can present

results that correlate with the user's interests. Additionally,

MAS have been used to detect and counteract spam and

fraudulent activities in search engines. Agents can monitor

search results and user feedback, enabling the search engine to

detect and exclude false or misleading information.

In the field of literature and article search systems, MAS

play a pivotal role in enhancing the speed and accuracy of

search results and improving user experience. The following

examples illustrate the application of MAS in this context:

(1) Query Distribution: MAS can distribute the search query

across multiple databases, search engines, and other

information sources, thereby improving the accuracy of search

results.

(2) Information Fusion: MAS can consolidate information

from multiple sources to produce a unified set of search results,

enhancing the accuracy of search results.

(3) Personalization: MAS can personalize the search

experience for each user based on their search history, reading

habits, and preferences, thereby improving the user experience.

(4) Collaborative Filtering: MAS can implement

collaborative filtering algorithms that suggest articles based on

the reading habits of other users with similar interests, thus

improving the accuracy of search results and reducing the time

researchers spend locating necessary information.

These examples underscore the myriad ways in which

Multi-Agent Systems contribute to the optimization of

literature and article search systems. By improving the speed

and accuracy of search results, MAS are making it

significantly more straightforward for researchers to find the

1041

information they need. As the field of literature and article

search systems continues to evolve rapidly, the role of Multi-

Agent Systems is set to become increasingly significant.

2. THE DEVELOPED MULTI-AGENTS SYSTEM

A multi-agent system for biomedical literature search is a

complex system that involves various components and agents

working together to provide relevant and accurate search

results to the user. The system (Figure 1) includes several key

components, including the user interface, agent manager,

search agent, relevance feedback agent, data management

agent, knowledge base, parser agent, presentation agent, user

agent, validation agent, and feedback agent. The user interface

is the front-end of the system, where users can submit their

queries and view the search results. It communicates with the

other components to receive user requests and display the

results. The agent manager is responsible for coordinating the

activities of the other agents. It assigns tasks, manages

communication between agents, and ensures that the overall

system functions smoothly. The search agent is responsible for

conducting the actual search in the biomedical literature. It

retrieves relevant articles and information from the databases,

applies various search algorithms and filters, and returns the

results to the user. The relevance feedback agent is responsible

for refining the search results based on the user's feedback. It

collects information about the user's preferences, such as the

relevance of certain articles, and updates the search algorithms

accordingly. The data management agent is responsible for

managing the data used by the system. It updates the databases

with new articles, indexes the information, and ensures that the

information is organized and accessible. The knowledge base

is a repository of information and knowledge about biomedical

literature. It is used by the search agent to provide additional

context and insights to the search results. The parser agent is

responsible for parsing the results of the search, extracting

relevant information, and transforming it into a format that can

be easily processed by other agents. The presentation agent is

responsible for presenting the information extracted by the

parser agent to the user in a clear and user-friendly format. The

user agent represents the user of the system, and is responsible

for sending requests to other agents and receiving information

from them. The validation agent checks the validity of the

search results, ensuring that they are accurate and relevant.

The feedback agent allows the user to provide feedback on the

search results, such as indicating which articles are relevant,

or requesting additional information about a specific article.

This feedback can then be used to improve the search process,

such as by adjusting the search algorithms or changing the way

that the results are presented. Overall, the multi-agent system

for biomedical literature search provides a comprehensive and

flexible framework for searching, analyzing, and presenting

biomedical literature. By combining various components and

agents, the system can handle complex and uncertain

information, providing relevant and accurate results to the user.

A Fuzzy Inference Unit can be added to the multi-agent

system for biomedical literature search described above by

incorporating fuzzy logic into the search algorithm used by the

search agent. The Fuzzy Inference Unit would use fuzzy set

theory and membership functions to determine the degree of

similarity between the user's query and the articles in the

database. The membership functions would be used to assign

a fuzzy membership value to each article, based on its

relevance to the query. This fuzzy membership value would

then be used to rank the articles and determine which articles

should be included in the search results.

Figure 1. The develop multi-agent system

Additionally, the Fuzzy Inference Unit could also be used

to refine the results based on the user's feedback. The

relevance feedback agent would collect the user's preferences,

such as the relevance of certain articles, and use these

preferences to update the membership functions. The Fuzzy

Inference Unit would then use these updated membership

functions to refine the search results. This would allow the

system to provide more accurate and relevant results, as it

takes into account the user's preferences and provides a more

nuanced approach to evaluating the similarity between the

query and the articles.

Incorporating a Fuzzy Inference Unit into the multi-agent

system for biomedical literature search would provide a more

sophisticated and flexible approach to evaluating the similarity

between the query and the articles in the database. This would

result in more accurate and relevant results, and provide a

better user experience.

The architecture of a Multi-Agent System (MAS) in a

biomedical literature search can be divided into several

components, each with a specific role and function. The main

components are:

(1) Agent Manager: The agent manager is responsible for

coordinating the activities of the other agents. It assigns tasks,

manages communication between agents, and ensures that the

overall system functions smoothly.

(2) Search Agent: The search agent is responsible for

conducting the actual search in the biomedical literature. It

retrieves relevant articles and information from the databases,

applies various search algorithms and filters, and returns the

results to the user.

(3) Data Management Agent: The data management agent

is responsible for managing the data used by the system. It

updates the databases with new articles, indexes the

information, and ensures that the information is organized and

accessible.

(4) Knowledge Base: The knowledge base is a repository of

information and knowledge about biomedical literature. It is

used by the search agent to provide additional context and

insights to the search results.

1042

(5) Parser Agent: This agent is responsible for parsing the

results of the search, extracting relevant information, and

transforming it into a format that can be easily processed by

other agents. The parser agent may use text mining techniques

to extract information from the search results.

(6) Presentation Agent: This agent is responsible for

presenting the information extracted by the parser agent to the

user in a clear and user-friendly format. The presentation agent

may use a web-based interface, a graphical user interface, or

another type of interface, depending on the requirements of the

system.

(7) User Agent: This agent represents the user of the system,

and is responsible for sending requests to other agents and

receiving information from them. It includes user interface

which is the front-end of the system. Through it the users can

submit their queries and view the search results. It

communicates with the other components to receive user

requests and display the results.

(8) Validation Agent: This agent checks the validity of the

search results, ensuring that they are accurate and relevant.

The validation agent may also perform additional checks, such

as checking for duplicates, or checking for missing or incorrect

information.

(9) Feedback Agent: This agent allows the user to provide

feedback on the search results, such as indicating which

articles are relevant, or requesting additional information

about a specific article. This feedback can then be used to

improve the search process, such as by adjusting the search

algorithms or changing the way that the results are presented.

These agents would interact with each other to accomplish

the goal of the biomedical literature search system. For

example, the user agent would send a search request to the

search agent, which would send the request to the database or

search engine, retrieve the results, and pass them on to the

parser agent. The parser agent would then extract relevant

information from the results, and pass it on to the presentation

agent, which would present the information to the user.

Overall, the use of multiple agents in a biomedical literature

search system provides a flexible and scalable architecture that

can be adapted to different requirements and constraints, and

that can handle large amounts of information in an efficient

and reliable manner.

3. FUZZY SYSTEM IN BIOMEDICAL LITERATURE

SEARCH IN THE DEVELOPED MULTI-AGENT

SYSTEM

A fuzzy inference system (FIS) is a type of artificial

intelligence system that uses fuzzy logic to perform decision-

making tasks. The main idea behind fuzzy logic is to represent

uncertainty and imprecision in a mathematical framework,

allowing for more flexible and human-like reasoning

compared to traditional Boolean logic. A FIS typically consists

of several key components, including a fuzzification module,

a rule base, an inference engine, and a defuzzification module.

The fuzzification module converts the inputs into a fuzzy set

representation, while the rule base consists of a set of if-then

rules that specify the relationship between the inputs and

outputs. The inference engine combines the inputs with the

rules in the rule base to produce a fuzzy output, and the

defuzzification module converts the fuzzy output back into a

numerical or categorical representation. FISs are widely used

in a variety of applications, including control systems, image

processing, natural language processing, and biomedical

literature search. The use of FISs in these applications is

motivated by the ability of fuzzy logic to handle uncertainty

and imprecision in a flexible and human-like manner, enabling

the integration of expert knowledge and experience into the

decision-making process. FISs provide a promising approach

for addressing the challenges of decision-making in complex

and uncertain environments, providing a flexible and human-

like framework for reasoning and problem-solving.

Fuzzy systems are mathematical models that can be used to

represent and process information with uncertainty. In

biomedical literature search, fuzzy systems can be used to

analyze and interpret the vast and complex data that is

available in the biomedical field.

A fuzzy system in biomedical literature search can be used

to process and interpret unstructured data, such as free-text

medical reports and articles. The fuzzy system can use natural

language processing techniques to extract relevant information

from the text and assign a degree of confidence to each piece

of information.

Fuzzy systems can also be used to make inferences based

on uncertain data. For example, in biomedical literature search,

a fuzzy system can be used to make predictions about the

efficacy of a particular treatment based on the available data

and research.

In addition, fuzzy systems can be used to develop

recommendation systems in biomedical literature search. By

analyzing user behavior and preferences, a fuzzy system can

recommend articles and research that are likely to be of

interest to the user.

The application process of fuzzy reasoning theory in the

development stage of multi-agent systems is a crucial aspect

that requires careful consideration. Fuzzy reasoning theory

provides a framework for handling imprecise and uncertain

information, which is particularly relevant in the context of

multi-agent systems where diverse and uncertain data sources

are integrated.

To effectively apply fuzzy reasoning theory, several steps

are typically involved in the development stage of multi-agent

systems. Firstly, the system needs to define fuzzy sets and

linguistic variables to represent the imprecise or uncertain

concepts relevant to the application domain. These linguistic

variables can capture the nuances and vagueness inherent in

the data.

Next, fuzzy rules are defined to establish the relationships

between the linguistic variables. These rules encode expert

knowledge or domain-specific information, enabling the

system to reason and make intelligent decisions. The fuzzy

rules are typically represented in the form of IF-THEN

statements, where the antecedent (IF part) specifies the input

conditions and the consequent (THEN part) defines the output

or action to be taken.

The application process also involves the fuzzy inference

mechanism, which applies the defined fuzzy rules to the input

data and determines the appropriate outputs or actions based

on fuzzy logic operations such as fuzzy matching, fuzzy

aggregation, and defuzzification.

It is important to note that the application of fuzzy reasoning

theory in multi-agent systems requires careful parameter

tuning, membership function design, and rule optimization.

These steps aim to ensure the effectiveness and accuracy of the

fuzzy reasoning process in capturing and processing the

uncertainty present in the system's data and decision-making.

Additionally, the application process may involve

1043

evaluating and validating the performance of the fuzzy

reasoning-based multi-agent system. This can be done through

simulation studies, real-world experiments, or comparison

with existing approaches to assess the system's effectiveness

in achieving its objectives

3.1 Fuzzy Inference Units in biomedical literature search

Fuzzy Inference Units (Figure 2) are software agents that

are designed to operate in a fuzzy environment, meaning an

environment where information is uncertain and subject to

interpretation. In biomedical literature search, Fuzzy Inference

Units can be used to process and interpret complex data and

make decisions based on that data.

Fuzzy Inference Units can be used to extract relevant

information from biomedical literature, such as articles and

research papers. By using natural language processing

techniques, Fuzzy Inference Units can process unstructured

data, such as free-text reports, and extract information that is

relevant to the search query.

Fuzzy Inference Units can also be used to make inferences

based on uncertain data. For example, a Fuzzy Inference Unit

in biomedical literature search could use a fuzzy inference

system to make predictions about the efficacy of a particular

treatment based on the available data and research.

In addition, Fuzzy Inference Units can be used to develop

recommendation systems in biomedical literature search. By

analyzing user behavior and preferences, a Fuzzy Inference

Unit can recommend articles and research that are likely to be

of interest to the user.

Figure 2. The architecture of the developed agents with fuzzy inference capability

3.2 Factors of fuzzy system in biomedical literature search

The factors affecting the performance of a fuzzy system in

biomedical literature search can be grouped into two

categories:

(1) Technical factors:

• Data quality and availability: The quality and

quantity of data available for training the fuzzy

system can greatly impact its performance.

• Feature selection: The choice of features to be used

in the fuzzy system can greatly affect its performance.

• Algorithm design and optimization: The design and

optimization of the fuzzy algorithm can greatly

impact its performance.

(2) Domain-specific factors:

• Relevance and specificity of the query: The relevance

and specificity of the query can greatly affect the

performance of the fuzzy system in biomedical

literature search.

• Bias in the data: Bias in the data used to train the

fuzzy system can greatly affect its performance.

• Diversity of the literature: The diversity of the

literature in the biomedical field can greatly affect the

performance of the fuzzy system.

The multi-agent system utilizes a combination of fuzzy

logic and text mining techniques in its filtering process to

distinguish between articles based on their unique features,

each of which may hold varying levels of importance. The

1044

system takes into account factors that are not commonly found

in traditional search engines, including medical cues and

outcomes expected in the Results Section of an article, the use

of Boolean AND and OR operators for cues and outcomes,

weights assigned to keywords and features, and the presence

of tables and figures. The articles are ranked according to their

relevance to the user's search criteria, and the fuzzy filtering

system comprises three subsystems: fuzzy keyword weights,

fuzzy feature weights, and fuzzy relevancy ranking. The

relevancy ranking indicates the degree of relevance each

article holds for the user's search preferences. However, the

weights assigned to keywords and features by different experts

may differ due to disagreements, and therefore uncertainty

exists within the obtained weights.

3.3 Membership function of articles similarity in

biomedical literature search

In biomedical literature search, content similarity between

articles is an important factor for determining their relevance

to a given query. To quantify content similarity, a membership

function is used to define the degree of similarity between

articles.

A membership function maps the similarity score of two

articles to a value between 0 and 1, where 0 represents no

similarity and 1 represents complete similarity. The exact form

of the membership function depends on the requirements of

the specific fuzzy system being used. Some common forms of

membership functions used in biomedical literature search

include triangular, trapezoidal, and Gaussian functions.

The choice of membership function can greatly impact the

performance of the fuzzy system in biomedical literature

search. The membership function should be chosen based on

the specific requirements of the task and the data being used.

For example, a Gaussian membership function may be

appropriate when the similarity scores have a Gaussian

distribution, while a triangular membership function may be

more appropriate when the distribution is less clear.

In general, the membership function should provide a

smooth and continuous mapping of the similarity scores to the

degree of membership, reflecting the uncertainty and

imprecision that is inherent in content similarity in biomedical

literature. The membership function should also be able to

handle the variability and complexity of the biomedical

literature data, capturing the relevant similarities and

differences between articles.

When using fuzzy inference units to process parser proxy

information, the membership function of period similarity is

determined based on the specific requirements and

characteristics of the system. The membership function for

period similarity captures the degree of similarity or

dissimilarity between periods.

The design of the membership function depends on factors

such as the nature of the periods being compared, the desired

granularity of similarity levels, and the available information

for assessing similarity. Different forms of membership

functions, such as triangular, trapezoidal, or Gaussian, can be

utilized to represent the degree of similarity.

Regarding the multi-feature fusion process, it depends on

the specific implementation and requirements of the system.

Fusion of multiple features refers to combining different

sources of information or features to make a decision or

inference. In the context of processing parser proxy

information, if the system incorporates multiple features

related to period similarity, such as length, content overlap, or

temporal distribution, then it may involve a multi-feature

fusion process. The fusion process integrates the information

from multiple features to derive a comprehensive assessment

of period similarity.

It is important to note that the specific membership function

for period similarity and the presence of a multi-feature fusion

process depend on the design choices and requirements of the

system. The membership function should be carefully defined

to capture the desired notion of similarity, while the decision

to employ a multi-feature fusion process depends on the

availability and relevance of multiple features in the context of

period similarity assessment.

3.4 Fuzzy system architecture in biomedical search

A fuzzy system architecture in biomedical search is a type

of artificial intelligence system that uses fuzzy logic to

perform biomedical literature search tasks. The architecture of

a fuzzy system in biomedical search typically consists of

several key components that work together to convert the

inputs into a fuzzy set representation, process the data using a

set of rules, and convert the output back into a numerical or

categorical representation.

The first step in a fuzzy system is fuzzification, which

involves converting the input data into a fuzzy set

representation. This is typically done by mapping the

numerical or categorical values to a set of membership

functions that define the degree of membership of the inputs

in different fuzzy sets.

The second component of the fuzzy system architecture is

the rule base, which is a collection of if-then rules that specify

the relationship between the input and output variables. The

rules are used to process the fuzzy inputs and produce a fuzzy

output.

The third component of the fuzzy system is the inference

engine, which is responsible for combining the input data with

the rules in the rule base to produce an output. The inference

engine typically uses a combination of fuzzy logic operations,

such as intersection and union, to process the data.

Finally, the fuzzy system architecture includes a

defuzzification step, which involves converting the fuzzy

output back into a numerical or categorical representation.

This is typically done by mapping the fuzzy output to a single

numerical value or a set of categorical values that represent the

results of the biomedical literature search.

In the context of a multi-agent recommendation system,

handling fuzzy system factors in biomedical literature involves

incorporating fuzzy reasoning techniques to effectively

address uncertainty and imprecision in the data. Fuzzy logic

allows for the representation and manipulation of vague or

ambiguous information, which is particularly relevant in

biomedical literature where factors can exhibit varying

degrees of fuzziness.

The sources of factor discrimination in a multi-agent

recommendation system can include various aspects. Firstly,

the linguistic variables used to represent factors may have

different levels of granularity or membership functions. These

linguistic variables capture the imprecision and uncertainty

inherent in the factors under consideration. By defining

appropriate membership functions, the system can

discriminate different degrees or categories of factors,

allowing for more nuanced recommendations.

Secondly, the fuzzy rules employed in the system play a

1045

crucial role in discriminating factors. These rules establish the

relationships between the linguistic variables, guiding the

reasoning and decision-making process. Through these rules,

the system can discriminate different combinations of factors

and generate appropriate recommendations based on the

available evidence.

Additionally, the sources of factor discrimination can also

include the input data itself. Biomedical literature often

contains complex and heterogeneous information, including

textual data, numerical data, and categorical data. By

considering these diverse sources of information, the system

can discriminate factors based on their respective

characteristics, such as the relevance, reliability, and

significance of the information sources.

It is worth noting that the discrimination of factors in a

multi-agent recommendation system involves not only

handling the fuzziness of the factors but also considering their

context and relevance to the specific biomedical domain. The

system needs to carefully analyze and interpret the available

data, taking into account expert knowledge, domain-specific

considerations, and user preferences.

In summary, a multi-agent recommendation system handles

fuzzy system factors in biomedical literature by incorporating

fuzzy reasoning techniques to capture and process uncertainty.

The sources of factor discrimination include linguistic

variables, fuzzy rules, and the characteristics of the input data.

By effectively discriminating factors, the system can generate

relevant and accurate recommendations in the context of

biomedical literature retrieval.

3.5 Block diagram of Multi-Agent System architecture in

biomedical literature search

A block diagram of a multi-agent system typically consists

of several key components, including:

(1) Agents: These are the individual components of the

system that interact with each other to accomplish specific

tasks. They are modeled as Java classes that implement the

Agent interface in JADE, and they communicate with each

other using JADE's messaging infrastructure.

(2) Message Broker: This component manages the flow of

messages between agents. It is responsible for routing

messages to their intended recipients, and ensuring that

messages are delivered in a reliable and efficient manner.

(3) Agent Container: This component manages the

individual agents and provides the runtime environment for

executing the agents. It is responsible for starting and stopping

agents, and for managing their behavior and interactions.

(4) Main Container: This is the core component of JADE,

and is responsible for managing the overall operation of the

multi-agent system. It is responsible for creating and managing

Agent Containers, and for managing the interactions between

agents.

(5) Data Store: This component stores information that is

generated and processed by the agents. It may be a database, a

file system, or another type of storage mechanism.

(6) User Interface: This component provides a user-friendly

interface for interacting with the system. It may be a web-

based interface, a graphical user interface, or another type of

interface, depending on the requirements of the system.

These components interact with each other to perform the

tasks of the multi-agent system. For example, an agent may

send a message to another agent, which would be processed by

the Message Broker and delivered to the recipient agent. The

recipient agent would then process the message, generate a

response, and send it back to the original agent. This process

would continue until the desired goal of the system is achieved.

Overall, the block diagram of a multi-agent system provides

a high-level view of the components and interactions that

make

The architecture of an agent in a multi-agent system (MAS)

typically consists of several key components, including:

(1) Agent Platform: This is the runtime environment for the

agent, providing the necessary infrastructure for executing the

agent's code and managing its interactions with other agents.

JADE is one example of an agent platform that can be used to

implement agents.

(2) Agent Behaviors: These are the individual components

of the agent that implement its functionality. Each behavior

can perform a specific task, such as receiving and processing

messages, or making decisions based on data. Behaviors can

be implemented as classes that inherit from the

jade.core.behaviours. Behaviour class in JADE.

(3) Agent Beliefs: These are the beliefs or knowledge that

the agent has about the world, such as information about other

agents or information that has been learned through its

interactions with the environment. Beliefs can be stored in data

structures, such as arrays, lists, or maps, and can be updated

based on new information.

(4) Agent Capabilities: These are the skills and abilities that

the agent has, such as the ability to send and receive messages,

or to make decisions based on its beliefs. Capabilities can be

implemented as methods within the agent's behavior classes.

(5) Agent Actions: These are the actions that the agent can

perform, such as sending a message to another agent, or

updating its beliefs based on new information. Actions can be

implemented as methods within the agent's behavior classes.

(6) Agent Communication: This component manages the

communication between the agent and other agents. It

provides the necessary infrastructure for sending and receiving

messages, and for managing the flow of information between

agents.

By dividing the agent into these components, the

architecture of an agent can provide a clear and modular

structure for implementing and managing the agent's

functionality. This can make the agent more flexible and easier

to understand, maintain, and extend over time.

4. MULTI-AGNENT SYSTEM COMMUNICATION

TECHNIQUES AND SCENES

Multi-Agent System (MAS) communication is an integral

part of the system's functioning, as it enables agents to interact

and exchange information. There are several techniques and

scenarios for communication in MAS, including direct

communication, broker-based communication, and

publish/subscribe communication. Direct communication

involves agents exchanging messages directly with each other,

while broker-based communication uses a central broker to

manage the flow of messages. In publish/subscribe

communication, agents subscribe to certain topics and receive

updates when new information is published on those topics.

The choice of communication technique depends on the

specific requirements of the MAS, such as scalability,

reliability, and security. Some common scenarios for MAS

communication include negotiating tasks, exchanging

information, and coordinating actions. In these scenarios,

1046

agents must communicate with each other to achieve their

goals and complete the overall system task.

Multi-Agent System (MAS) communication languages are

used to facilitate communication between agents. These

languages allow agents to exchange messages and coordinate

their actions to achieve a common goal. Some common MAS

communication languages include:

(1) FIPA-ACL (Foundation for Intelligent Physical Agents

-Agent Communication Language): FIPA-ACL is a

standardized language for agent communication, defined by

the Foundation for Intelligent Physical Agents. It provides a

standard syntax and semantics for representing messages,

which makes it easy for agents to exchange information and

interact with each other.

(2) KQML (Knowledge Query and Manipulation

Language): KQML is a language for representing knowledge

and exchanging messages in MAS. It allows agents to express

complex information and request actions from other agents.

(3) Jason (Java Agent-Oriented Software Engineering):

Jason is an open-source language for programming intelligent

agents in Java. It provides a high-level language for specifying

the behavior of agents, as well as a framework for managing

communication between agents.

(4) TXL (Teaching Executive Language): TXL is a

language for programming agents in a MAS. It provides a

high-level syntax for specifying the behavior of agents, as well

as a framework for managing communication and

coordination between agents.

Agent communication can be presented in a number of ways,

depending on the audience and the goals of the presentation.

Some common methods include:

(1) Diagrams: Diagrams, such as flow charts or UML

diagrams, can be used to visually represent the communication

between agents. This can help to illustrate the flow of

information and the interactions between agents.

(2) Examples: Presenting examples of actual

communication between agents can help to demonstrate how

the communication works in practice. This can be done by

showing code snippets or sample messages exchanged

between agents.

(3) Use Cases: Presenting the communication in the context

of real-world scenarios, or use cases, can help to make the

communication more relatable and easier to understand. This

can be done by demonstrating how the communication

between agents enables the agents to achieve specific goals.

(4) Simulation: Simulation can be used to demonstrate the

communication between agents in a virtual environment. This

can provide a visual representation of the communication and

help to understand how the agents interact and exchange

information.

(5) Demonstrations: Demonstrations can be used to show

the communication between agents in real-time. This can

provide a hands-on experience of the communication and help

to understand how it works in practice.

Regardless of the method used, it is important to present the

communication in a clear and concise manner, emphasizing

the key elements and explaining any complex concepts. The

presentation should be tailored to the audience, using

terminology and examples that are appropriate for their level

of understanding.

Diagrams are a useful tool for presenting agent

communication, as they provide a visual representation of the

flow of information and interactions between agents.

Diagrams can help to illustrate the relationships between

agents, the messages they exchange, and the protocols they

follow. There are several types of diagrams that can be used to

present agent communication, including flow charts, UML

diagrams, and sequence diagrams. Flow charts are particularly

useful for demonstrating the flow of information between

agents, as they provide a high-level view of the interactions

between agents. UML diagrams, such as sequence diagrams,

can be used to show the detailed interactions between agents,

including the messages they exchange and the timing of these

interactions.

Diagrams can also be used to show the communication

between agents in the context of a specific scenario or use case.

This can help to demonstrate how the communication enables

the agents to achieve a specific goal or solve a problem.

Additionally, diagrams can be used to show the

communication between agents in different phases of a task,

or in response to different events. Overall, diagrams are a

powerful tool for presenting agent communication, as they

provide a visual representation of the interactions between

agents. They can help to understand the flow of information,

the relationships between agents, and how the communication

enables the agents to achieve their goals.

A state diagram in multi-agent systems is a graphical

representation of the different states that an individual agent

can be in, and the transitions between those states. It is a type

of finite state machine that models the behavior of an agent

over time. In a state diagram, each state is represented by a

circle and the transitions between states are represented by

arrows. The transitions are labelled with the conditions or

events that trigger them, and the diagram can also include

additional information such as the actions that are performed

when entering or leaving a state. State diagrams can be useful

for modeling and analyzing the behavior of multi-agent

systems, as they provide a clear and concise representation of

the different ways that the agents can interact and respond to

events in the environment. By using state diagrams as shown

in Figure 3, it is possible to identify potential problems or

conflicts between agents, as well as to design control

algorithms that coordinate the behavior of the agents. Overall,

state diagrams are an important tool for understanding and

designing multi-agent systems, as they allow for a visual

representation of the behavior of each agent and the

interactions between them.

Figure 3. The state diagram of a scene in multi-agent

environment

The automaton in Figure 3 has a set of states, including:

• X0: the initial state

• X1: waiting for a response to the request

1047

• X2: checking the data

• X3: indicating lack of communication

• X4: processing the data.

Petri nets are a type of mathematical modeling tool used to

describe and analyze complex systems, including multi-agent

systems. In a multi-agent system, there are typically multiple

autonomous agents that interact with one another and with

their environment to achieve specific goals. Petri nets can be

used to model the interactions between agents, as well as the

environment they operate in, to better understand the behavior

of the system as a whole.

Petri nets are composed of two main elements: places and

transitions. Places represent states of the system, while

transitions represent events or actions that can occur within the

system. Tokens are used to represent the current state of the

system and are placed within the different places. When a

transition is enabled, meaning that all the places that lead to

the transition have tokens, the transition can fire, moving

tokens from the input places to the output places.

In a multi-agent system, each agent can be represented as a

separate Petri net. The places and transitions within the agent's

net represent the agent's state and possible actions. Interactions

between agents can be modeled by connecting the input and

output places of different nets. For example, as in Figure 4, if

Agent A needs to receive a message from Agent B before it

can take a certain action, the input place of Agent A's transition

representing that action can be connected to the output place

of Agent B's transition representing sending the message.

Figure 4. Conversational model of between two Agents using the Petri nets

The transitions correspond either to synchronization due to

the receipt of messages or to conditions of actions. Places IA

and IB describe the initial states where the PAAs find

themselves before the beginning of the conversation. Places

FA1, FA2, FB1 and FB2 represent the end of conversation

states. Starting from state IA, Agent 1 sends a request “to do

(T)” to Agent 2 and moves in to state WA1, which represents

waiting for a response. If AGENT2 can’t do the task, it sends

a refusal to Agent1, which then goes into state FA1, which

indicates that Agent 1 must look elsewhere to have its task

carried out. If Agent 2 can do the task, it sends an acceptance

message to Agent 1, which places Agent1 into wait for a

response state WA2. During this time, Agent 2 is in state WB,

while trying to carry out the task. Once finishing the task, it

sends a notification of end of accomplishment to Agent1,

which places Agent1 in state FA2 and places AGENT2 in state

FB2. If not, Agent 2 indicates that it cannot do the task, which

places Agent1 in state FA1 and places Agent 2 in state FB1.

Petri nets can also be used to model the environment in

which the agents operate. The environment can be represented

as a separate Petri net, with places representing different states

of the environment and transitions representing events or

actions that can occur within the environment. For example,

the environment may include a place representing the location

of a resource that agents can access, and a transition

representing the acquisition of that resource.

Petri nets can help to identify potential issues in a multi-

agent system, such as deadlocks or live locks. Deadlocks occur

when none of the agents can take any further action, while live

locks occur when the agents continue to take actions but are

unable to achieve their goals. By modeling the system as a

Petri net, it is possible to identify the conditions that lead to

these issues and take steps to address them.

1048

5. MULTI-AGENT SYSTEM IMPLEMENTATION

USING JADE FOR BIOMEDICAL LITERATURE

SEARCH

Managing the complexity of multi-agent systems requires

employing various strategies and techniques. One approach is

to decompose the system into modular components or agents,

dividing the overall complexity into more manageable units.

Effective coordination and communication mechanisms are

essential for seamless interactions among agents, ensuring

information exchange and collaboration. Organizational

structures and defined agent roles help distribute tasks and

responsibilities, reducing complexity. Proper information and

knowledge management, through techniques such as

knowledge representation and sharing, streamline the handling

of complex data. Granting agents autonomy and adaptability

enables them to handle local complexities independently,

simplifying system management. Simulation and modeling

techniques allow for analyzing and understanding system

behavior in controlled environments. Monitoring and analysis

tools provide insights into system dynamics and performance,

aiding in complexity management. By applying these

strategies, developers and researchers can effectively manage

the complexity of multi-agent systems, achieving efficient and

robust behavior.

JADE (Java Agent Development Framework) is a software

platform for implementing multi-agent systems (MAS) in Java.

It provides a set of tools and libraries for developing,

deploying, and running agents, as well as for managing the

interactions between agents. In JADE, agents are implemented

as Java classes that extend the jade.core.Agent class.

The Agent class provides a number of functionalities to the

agents, including message handling, sending messages, and

agent mobility. Additionally, JADE also provides a number of

agent management functionalities, such as starting and

stopping agents, creating and removing agents, and

monitoring agent behavior.

JADE agents can interact with each other by exchanging

messages, which are instances of the jade.lang.acl.

ACLMessage class. These messages can be of different types,

such as requests, proposals, or informations, and can also be

sent with different communicative intents, such as informing,

asking, or commanding.

Another important aspect of JADE is the concept of agent

roles. Agents can assume different roles in different contexts,

and can also change their roles dynamically. This makes it

possible to model complex agent interactions and cooperation,

as well as to implement flexible and adaptable systems.

The Agent interface is the core component of JADE, and

defines the basic methods and behaviors of an agent.

JADE provides several built-in classes for creating and

implementing agents, including:

(1) Base Agent: This is the basic class for creating an agent

in JADE. It provides the default implementation of the Agent

interface, including methods for sending and receiving

messages, and managing the agent's behavior.

(2) Simple Agent: This is a subclass of Base Agent that

provides a simplified API for creating and managing agents. It

is particularly useful for simple, single-function agents that do

not require advanced features or behaviors.

(3) Cyclic Behaviour: This class is used for defining the

behavior of an agent. It provides a simple way to implement

agents that perform periodic or cyclic tasks.

(4) One Shot Behaviour: This class is used for defining the

behavior of an agent that performs a single action or task. It is

particularly useful for agents that are created for a specific

purpose, and then terminate after completing their task.

(5) Sequential Behaviour: This class is used for defining the

behavior of an agent that performs a series of actions in a

specific order. It is particularly useful for agents that need to

perform a complex set of tasks.

(6) Parallel Behaviour: This class is used for defining the

behavior of an agent that performs a set of tasks in parallel. It

is particularly useful for agents that need to perform multiple

tasks simultaneously.

In addition to these built-in classes, JADE also allows

developers to create their own custom agents by subclassing

Base Agent or one of its subclasses. This allows developers to

create agents with custom behaviors and functionality that are

tailored to their specific needs.

Overall, JADE provides a rich set of classes and tools for

creating and implementing agents, allowing developers to

create agents with a wide range of behaviors and functionality.

To implement an agent in JADE, you typically start by

defining a class that extends the Agent class, and then

implement the necessary functionalities, such as message

handling and sending, and agent mobility. You can also use a

number of provided behaviors to simplify common tasks, such

as message handling and periodic tasks.

Implementing a multi-agent system using JADE typically

involves the following steps:

(1) Designing the agents: In JADE, each agent is modeled

as a Java class that implements the Agent interface. The agents

can be designed to perform a specific task or role within the

MAS, and can interact with other agents by sending and

receiving messages.

(2) Defining the communication protocol: JADE provides a

messaging infrastructure that allows agents to exchange

messages and data with each other. The communication

protocol defines the structure and format of the messages that

are exchanged between agents.

(3) Setting up the environment: JADE provides a runtime

environment for deploying and executing agents. This

environment includes the Main Container, which is the core

component of JADE, and the Agent Container, which is the

component that manages the individual agents.

(4) Deploying the agents: Once the agents have been

designed and the communication protocol has been defined,

the agents can be deployed to the JADE environment. This

involves creating instances of the agents and registering them

with the Main Container.

(5) Interacting between agents: Once the agents are

deployed, they can start interacting with each other by sending

and receiving messages. The interactions between agents can

be managed by JADE's messaging infrastructure, which

handles the delivery and processing of messages between

agents.

JADE provides a number of additional features and tools for

developing multi-agent systems, including a graphical

interface for managing agents and messages, a library of pre-

built agents and behaviors, and support for distributed and

mobile agents.

Overall, JADE is a powerful tool for implementing multi-

agent systems, as it provides a comprehensive set of features

and libraries for developing, deploying, and executing agents,

and for managing the interactions between agents.

1049

6. EXPERIMENT AND SIMULATION RESULTS

There are several factors that can impact the design of a

multi-agent system for biomedical articles search. Firstly, the

complexity and heterogeneity of the data sources and the

information retrieval methods used by the agents can affect the

design. Secondly, the level of collaboration and

communication required between the agents can also influence

the design, as well as the types of decision-making algorithms

used to coordinate their efforts. Thirdly, the scalability of the

system, its performance and its ability to handle large volumes

of data, can affect the design, as well as the security and

privacy requirements for the system. Additionally, the

usability and user experience of the system can also play a role

in the design, including the ability for users to easily access,

interpret, and use the information retrieved by the agents.

These are some of the key factors that need to be considered

when designing a multi-agent system for biomedical articles

search.

Testing a multi-agent system (MAS) for biomedical article

search can be accomplished through various methods,

including functional testing, performance testing, user

acceptance testing, integration testing, and regression testing.

The specific testing methods will depend on the requirements

and goals of the system.

The settings for agent service description design,

communication information, and termination of operation in a

multi-agent system are specified through various mechanisms

and protocols. Here is an overview of each aspect:

Agent Service Description Design: The agent service

description refers to the specification of the services provided

by each agent in the system. It involves defining the

functionalities, capabilities, and parameters of the services

offered by the agents. This can include details such as the

input/output data formats, supported operations, required

resources, and any constraints or limitations. The service

description design can be standardized using common

ontology or description languages to ensure interoperability

and understanding among agents.

Communication Information: Communication among

agents in a multi-agent system is crucial for coordination and

collaboration. The communication information includes

specifying the communication protocols, message formats,

and message exchange patterns used for interaction. This can

involve defining the message structure, message headers, and

payload data. The communication information also

encompasses the addressing scheme, identifying the agents

involved in the communication, and establishing the necessary

connections or channels for data exchange.

Termination of Operation: The termination of operation in

a multi-agent system refers to the process of ending an agent's

participation or shutting down the system. The specification of

termination can include conditions or triggers that determine

when an agent should terminate its operation. These conditions

can be based on predefined criteria, such as completing a

specific task, reaching a certain state, or receiving a

termination signal from another agent or the system. The

termination process may involve releasing resources,

notifying other agents about the termination, and ensuring a

graceful shutdown to maintain system integrity.

Functional testing verifies that each component of the

system performs its intended function correctly. This can be

done by creating test cases that simulate different user

scenarios and comparing the system's response to expected

results. Performance testing evaluates the system's speed,

scalability, and reliability by simulating high usage scenarios,

measuring response times, and evaluating the system's ability

to handle large amounts of data and users. User acceptance

testing evaluates the system from the end-user's perspective.

This can be done by having a group of users test the system,

provide feedback, and determine if it meets their needs and

requirements. Integration testing verifies that the different

components of the system work together correctly. This can be

done by creating test cases that involve multiple agents and

evaluating the system's behavior in these scenarios.

Regression testing verifies that changes to the system do not

introduce new bugs or break existing functionality. This can

be done by re-running functional and performance test cases

after each change to the system.

The following steps for implementing the algorithm in Java

using JADE and Fuzzy JESS:

(1) Create a fuzzy inference system using Fuzzy JESS to

compare articles and determine their similarity based on

various factors such as keywords, author, and publication date.

(2) Develop a JADE agent to represent the user. The agent

should be able to send a request to the system to find similar

articles to a given article. The request should contain the

details of the article, such as the title, keywords, and author.

(3) Develop another JADE agent to represent the search

agent. The agent should be able to retrieve articles from the

database based on the request from the user agent.

(4) Develop a Fuzzy Inference Unit that uses the fuzzy

inference system created in step 1 to compare the retrieved

articles to the given article and determine their similarity.

(5) Develop a feedback agent that allows the user to provide

feedback on the search results. The feedback should be used

to update the fuzzy inference system, so that it can improve the

accuracy of the results.

(6) The search agent should then return the results to the

user agent, which should present them to the user in a clear

and user-friendly format.

(7) Finally, test the system thoroughly to ensure that it meets

the requirements and goals.

Algorithm for Finding Similar Articles to a Given Article

using MAS system with Fuzzy Inference Unit and Feedback

Agent

(1) Initialize the system by creating the agents, such as the

search agent, relevance feedback agent, parser agent,

presentation agent, user agent, Fuzzy Inference Unit, and

feedback agent.

(2) The user submits a query for a specific article by using

the user interface.

(3) The search agent retrieves relevant articles from the

biomedical literature databases based on the user's query and

applies various search algorithms and filters.

(4) The parser agent parses the results of the search, extracts

relevant information, and transforms it into a format that can

be easily processed by other agents.

(5) Convert each article into a numerical representation,

such as a vector, by using techniques such as TF-IDF (Term

Frequency-Inverse Document Frequency).

(6) The Fuzzy Inference Unit uses fuzzy logic to process the

information from the parser agent and determine the similarity

between the given article and the retrieved articles. The Fuzzy

Inference Unit uses a fuzzy membership function to determine

the degree of similarity between the articles.

(7) The feedback agent collects feedback from the user on

the relevance of the retrieved articles. This feedback can be

1050

used to refine the search results and improve the accuracy of

the Fuzzy Inference Unit's similarity calculations.

(8) The presentation agent presents the information to the

user in a clear and user-friendly format, such as a list of articles

ordered by similarity to the given article.

(9) The user can provide additional feedback on the

relevance of the articles, and the feedback agent updates the

Fuzzy Inference Unit's similarity calculations accordingly.

(10) The Fuzzy Inference Unit continues to refine the

similarity calculations based on the user's feedback and returns

a updated list of articles ordered by similarity to the given

article.

(11) The process continues until the user is satisfied with

the results, or the system reaches a maximum number of

iterations.

The data sources in the simulation process can vary

depending on the specific context and objectives of the study.

In the case of multi-agent systems for biomedical literature

retrieval, potential data sources may include:

(1) Biomedical Databases: These can include databases

such as PubMed, MEDLINE, Embase, or other domain-

specific repositories that store biomedical literature and related

information. These databases can provide a wide range of

textual data, including research articles, abstracts, keywords,

author affiliations, and citation networks.

(2) Knowledge Bases: Knowledge bases such as MeSH

(Medical Subject Headings) or ontologies specific to the

biomedical domain can be used to provide structured data and

semantic relationships between biomedical concepts. These

knowledge bases can enhance the system's understanding and

reasoning capabilities.

(3) User Feedback and Ratings: User feedback, ratings, or

reviews can be collected from researchers, healthcare

professionals, or users of the system. This feedback can

provide valuable insights into the system's performance,

relevance of recommendations, and user satisfaction.

Regarding the results and data of different testing types:

Functional Test: Functional testing focuses on verifying the

system's compliance with functional requirements. The data

involved in functional testing includes test cases, expected

outputs, and actual outputs. This data is used to assess whether

the system functions as intended and meets the specified

requirements.

Performance Test: Performance testing aims to evaluate the

system's performance under different loads and conditions.

The data collected during performance testing typically

includes response times, throughput, resource utilization, and

system scalability. This data helps assess the system's

efficiency, stability, and ability to handle varying workloads.

User Acceptance Testing: User acceptance testing involves

gathering feedback from end-users to assess their satisfaction

and acceptance of the system. The data in user acceptance

testing includes user feedback, survey responses, and usability

metrics. This data provides insights into the system's user-

friendliness, ease of use, and overall user satisfaction.

Integration Test: Integration testing focuses on testing the

interactions and compatibility of different system components

or modules. The data involved in integration testing includes

test cases, input data, and output data from integrated

components. This data helps evaluate the system's ability to

function seamlessly when different components are combined.

Regression Testing: Regression testing involves retesting

the system to ensure that existing functionality is not adversely

affected by new changes or updates. The data in regression

testing includes test cases, expected outputs, and actual

outputs. This data helps identify any unintended consequences

or regression errors resulting from changes made to the system.

It's important to note that the specific data sources and

results may vary based on the study's scope, research

objectives, and the specific implementation of the multi-agent

recommendation system for biomedical literature retrieval.

In order to test a multi-agent system (MAS) for retrieving

relevant medical articles, the following steps need to be taken.

Firstly, a dataset of 3000 articles needs to be obtained, which

can consist of research articles, review articles, and case

reports from different fields of medicine. Secondly, the articles

need to be pre-processed through text cleaning, stemming, and

vectorization, and stored in a database or knowledge base. The

next step is to implement and deploy the MAS system, which

includes agents for retrieving articles, computing similarity,

ranking articles, and returning results. Additionally, the

system should have a Fuzzy Inference Unit and a feedback

agent. Once the MAS system is deployed, the input article is

provided to the system, which then retrieves and ranks the

articles based on their similarity to the input article. Two

physicians then evaluate the top n articles returned by the

system, where n is specified by the system or the user, and

assess their relevance by comparing them to the input article.

The feedback agent receives the evaluation results from the

physicians and adjusts the parameters of the Fuzzy Inference

Unit accordingly. The above steps are then repeated several

times, with the parameters of the Fuzzy Inference Unit being

adjusted based on the feedback received from the physicians,

until the system produces satisfactory results. The

performance of the system is evaluated by measuring the

accuracy and recall of the results. Finally, the results of the

MAS system are compared with a baseline system, such as a

simple keyword-based search system or a traditional

information retrieval system.

A confusion matrix as in Table 1 is a commonly used tool

to evaluate the performance of a binary classification system.

In this case, the system is classifying articles as relevant or not

relevant to a given query. The matrix shows the count of true

positive (TP), false positive (FP), true negative (TN), and false

negative (FN) classifications.

The above confusion matrix for the MAS system shows that

the system has classified 1490 articles as relevant and they are

actually relevant, which is considered a true positive. 17

articles were classified as relevant but they were actually not

relevant, which is considered a false positive. 8 articles were

classified as not relevant but they were actually relevant,

which is considered a false negative. Finally, 1485 articles

were classified as not relevant and they were actually not

relevant, which is considered a true negative.

To evaluate the performance of the MAS system, we can

use various metrics such as accuracy, precision, recall, and F1

score.

• Accuracy:

(TP+TN)/(TP+TN+FP+FN)=(1490+1485)/(2000)=2975

/2000=0.988

• Precision: TP/(TP+FP)=1490/(1490+17)=0.989

• Recall: TP/(TP+FN)=1490/(1490+8)=0.994

• F1 Score:

2*(Precision*Recall)/(Precision+Recall)=2*(0.989*0.99

4)/(0.989+0.994)=0.992

The results show that the MAS system has a high accuracy,

precision, recall, and F1 score, indicating that the system is

performing well in classifying articles as relevant or not

1051

relevant to a given query. The two physicians checking the

results can also provide feedback on the performance of the

system and suggest any improvements that can be made.

Table 1. Confusion matrix

 Actually Relevant
Actually

Not Relevant

Predicted Relevant 1490 17

Predicted’ Not Relevant 8 1485

Table 2. The confusion matrix between the physician and

model

 Model

 Relevant Not Relevant

Physician

Relevant 1491 8 1499

Not Relevant 7 1494 1501

 1498 1502 3000

The Confusion Matrix in Table 2 compares the predictions

made by a model with the ground truth provided by a physician.

The matrix has two categories: "Relevant" and "Not Relevant".

The goal is to see how well the model is able to predict the

physician's categorization of the data.

In the "Relevant" category, the model correctly predicted

1491 out of 1499 instances, and made 8 incorrect predictions.

In the "Not Relevant" category, the model correctly predicted

1494 out of 1501 instances, and made 7 incorrect predictions.

The Kappa score can be calculated to assess the agreement

between the physician and the model. The Kappa score takes

into account the probability of chance agreement and provides

a measure of the agreement beyond chance. A Kappa score

close to 1 indicates a strong agreement between the physician

and the model, while a score close to 0 indicates little

agreement beyond chance. The Kappa score can be calculated

using the following formula:

Kappa = (Observed agreement - Expected agreement) / (1 -

Expected agreement)

where Observed agreement is the number of instances that

were correctly predicted by the model and the physician, and

Expected agreement is the number of instances that could be

expected to be correctly predicted by chance, based on the

physician's predictions and the number of instances in each

category.

To calculate the kappa statistic, you need to calculate the

following values:

• p_o: The proportion of the total agreement between the

two evaluators, which can be calculated as

(1491+1494)/3000=0.9963

• p_e: The expected proportion of agreement based on

chance, which can be calculated as

(1491+8)*(1491+7)/(3000*3000)+(8+1494)*(7+1494)/

(3000*3000)=0.9906

Finally, the kappa statistic can be calculated as k=(p_o-

p_e)/(1-p_e), which indicates the degree of agreement

between the two evaluators beyond chance.

In this case, k=(0.9963-0.9906)/(1-0.9906)=0.9632, which

indicates a high degree of agreement between the physician

and the model, with k=1 indicating perfect agreement.

7. CONCLUSIONS

In conclusion, using a Multi-Agent System (MAS) for

biomedical literature search offers many advantages over

traditional single-agent systems. The integration of multiple

agents and sources of information allows for a more

comprehensive and accurate search result, saving time and

resources for researchers and healthcare providers.

Additionally, the use of MAS can also provide a more scalable,

secure, and user-friendly experience for searching biomedical

literature. However, the design and implementation of a MAS

for this purpose require careful consideration of various

technical and non-technical factors, such as data complexity

and heterogeneity, communication and collaboration,

scalability, performance, security, privacy, and user

experience. By taking these factors into account, a MAS for

biomedical literature search can greatly improve the access

and utilization of information in the biomedical field.

ACKNOWLEDGMENT

Author would like to thank Tafila Technical University for

the support to conduct this research during academic

sabbatical year 2022/2023 in Arab Open University (AOU)-

Jordan.

REFERENCES

[1] Selivanov, A., Fridman, E. (2022). PDE-Based

deployment of multiagents measuring relative position to

one neighbor. IEEE Control Systems Letters, 6: 2563-

2568. https://doi.org/10.1109/LCSYS.2022.3169999

[2] Zhang, P., Xue, H., Gao, S., Zhang, J. (2020). Distributed

adaptive consensus tracking control for multi-agent

system with communication constraints. IEEE

Transactions on Parallel and Distributed Systems, 32(6):

1293-1306.

https://doi.org/10.1109/TPDS.2020.3048383

[3] Gómez, A., Eras, L.A.C., Aguilar, J. (2021). Multi-agent

systems for the management of resources and activities

in a smart classroom. IEEE Latin America Transactions,

19(9): 1511-

1519.https://doi.org/10.1109/TLA.2021.9468444

[4] Aryankia, K., Selmic, R.R. (2020). Neuro-adaptive

formation control and target tracking for nonlinear multi-

agent systems with time-delay. IEEE Control Systems

Letters, 5(3): 791-796.

https://doi.org/10.1109/LCSYS.2020.3006187

[5] Wang, J., Li, Y., Duan, Z., Zeng, J. (2022). A fully

distributed robust secure consensus protocol for linear

multi-agent systems. IEEE Transactions on Circuits and

Systems II: Express Briefs, 69(7): 3264-3268.

https://doi.org/10.1109/TCSII.2022.3153698

[6] He, S., Wang, H., Yu, W. (2021). Distributed fast finite-

time tracking consensus of multi-agent systems with a

dynamic leader. IEEE Transactions on Circuits and

Systems II: Express Briefs, 69(4): 2176-2180.

https://doi.org/10.1109/TCSII.2021.3125700

[7] Rostami, M., Oussalah, M., Farrahi, V. (2022). A novel

time-aware food recommender-system based on deep

learning and graph clustering. IEEE Access, 10: 52508-

52524. https://doi.org/10.1109/ACCESS.2022.3175317

[8] Hoai Nam, L.N. (2022). Profile aggregation-based group

recommender systems: Moving from item preference

profiles to deep profiles. IEEE Access, 10: 6218-6245.

1052

https://doi.org/10.1109/ACCESS.2021.3140121

[9] Xu, B., Lin, H., Lin, Y., Ma, Y., Yang, L., Wang, J.,

Yang, Z. (2016). Improve biomedical information

retrieval using modified learning to rank methods.

IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 15(6): 1797-1809.

https://doi.org/10.1109/TCBB.2016.2578337

[10] Xu, B., Lin, H., Lin, Y., Ma, Y., Yang, L., Wang, J.,

Yang, Z. (2016). Improve biomedical information

retrieval using modified learning to rank methods.

IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 15(6): 1797-1809.

https://doi.org/10.1109/TCBB.2018.2801303

[11] Althari, G., Alsulmi, M. (2022). Exploring transformer-

based learning for negation detection in biomedical texts.

IEEE Access, 10: 83813-83825.

https://doi.org/10.1109/ACCESS.2022.3197772

[12] Al Fayez, R.Q., Joy, M. (2017). Using linked data for

integrating educational medical web databases based on

BioMedical ontologies. The Computer Journal, 60(3):

369-388. https://doi.org/10.1093/comjnl/bxw096

[13] Saidi, I., Mahammed, N., Klouche, B., Bencherif, K.

(2023). An overview on related searches

recommendation. Ingénierie des Systèmes d’Information,

28(2): 283-289. https://doi.org/10.18280/isi.280203

[14] Ritzkal, Sutriawan, Prakoso, B.A., Fanani, A.Z., Riawan,

I., Fajri, H., Basuki, R.S., Alzami, F. (2023). Word

search with trending reviews on Twitter. Ingénierie des

Systèmes d’Information, 28(2): 351-356.

https://doi.org/10.18280/isi.280210

[15] Deore, S.P. (2023). Enriching song recommendation

through facial expression using deep learning. Ingénierie

des Systèmes d’Information, 28(1): 225-229.

https://doi.org/10.18280/isi.280126

1053

