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The potential of Multi-Agent Systems (MAS) in tackling the complexities of biomedical 

literature searches has been increasingly recognized. This research delves into the 

application of MAS for the amalgamation of varied information sources and expertise, 

striving for a higher degree of accuracy and comprehensiveness in search results. A distinct 

MAS framework, designed and implemented specifically for biomedical literature 

searching, is introduced. In this framework, decentralized agents are employed, each 

bearing responsibility for specific tasks such as data collection, pre-processing, information 

retrieval, and result evaluation. A collaborative and communicative environment among 

these agents is fostered to augment the overall performance of the system. To bolster the 

accuracy and comprehensiveness of the search outcomes, a variety of information sources 

and expertise are incorporated within the MAS. This amalgamation of expert knowledge 

and domain-specific information serves to enhance the relevance and accuracy of the 

retrieved results. Evaluation of MAS performance is carried out through multiple criteria 

and metrics, providing insightful feedback for continuous improvement of the system. The 

research illuminates the potential advantages of utilizing MAS in the realm of biomedical 

literature searches. The MAS framework demonstrates enhanced scalability, flexibility, and 

reliability when compared to traditional centralized approaches. Furthermore, the 

framework accommodates the integration of diverse expertise, allowing for the 

customization of the search process based on specific requirements. In conclusion, this 

study emphasizes the merits of MAS in advancing biomedical literature search by 

converging multiple sources of information and expertise. The results underscore the 

capability of MAS to navigate inherent challenges, thereby delivering precise and 

comprehensive search outcomes. 
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1. INTRODUCTION

1.1 Recommender systems 

Recommender systems, a class of personalized software 

tools, are designed to suggest products or services tailored to 

users' individual preferences and behavior. These systems are 

utilized extensively across various industries. A prototypical 

example is Amazon's recommender system, which uses users' 

purchase history, browsing behavior, and product ratings to 

generate personalized recommendations. By considering 

patterns of other users with similar preferences, the system can 

offer recommendations appealing to a broad user base, thereby 

enhancing the pertinence and utility of its suggestions. 

Netflix, a leading online streaming service, employs a 

recommender system deploying both content-based and 

collaborative filtering. Content-based filtering uses movie and 

TV show descriptions and genres, while collaborative filtering 

leverages ratings provided by users. This recommender system 

has significantly contributed to user retention and acquisition, 

demonstrating the power of personalized recommendations. 

Numerous other industries also benefit from recommender 

systems. Spotify, for instance, uses such a system to suggest 

songs based on users' listening history and preferences. In the 

realm of travel, platforms like TripAdvisor use recommender 

systems to suggest destinations, hotels, and restaurants based 

on users’ past travel experiences and ratings. E-commerce 

platforms, such as eBay, make product suggestions based on 

users’ browsing and purchase history. YouTube's 

recommender system suggests videos based on viewing 

history, subscriptions, and liked videos. Despite the diversity 

of these applications, all these recommender systems share a 

common goal: offering personalized, relevant 

recommendations to users. 

The development and challenges of multi-agent 

recommender systems for biomedical literature retrieval are 

crucial topics in the advancement of this field. Recommender 

systems have evolved from traditional single-agent 

approaches to sophisticated multi-agent systems, which can 

integrate diverse information sources and expertise. However, 

the effectiveness of such systems is often hindered by several 

complex challenges that require innovative solutions. 

One such challenge stems from the complexity and 

heterogeneity of biomedical data, which includes a vast range 
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of structured and unstructured data, such as text, images, and 

clinical data. Advanced techniques for data preprocessing, 

integration, and representation are required to incorporate 

these diverse data types into a unified recommendation 

framework. Furthermore, obtaining reliable and 

comprehensive datasets for developing accurate and effective 

recommendation systems presents a significant challenge. 

Efficient communication and coordination among the 

agents in the multi-agent system is another challenge. Agents 

must share information, collaborate, and synchronize their 

activities effectively to ensure coherent and reliable 

recommendations. Developing robust communication 

protocols and coordination mechanisms that can handle the 

diverse and dynamic nature of biomedical literature data is 

essential. 

Scalability and performance are critical challenges in 

developing multi-agent recommendation systems for 

biomedical literature retrieval. As the volume of biomedical 

literature grows exponentially, systems must be capable of 

handling large-scale datasets and delivering timely 

recommendations. Efficient algorithms, optimization of 

computational resources, and leveraging parallel processing 

techniques are key considerations for achieving scalability and 

high-performance capabilities. 

Security and privacy concerns represent another layer of 

complexity. Biomedical literature often contains sensitive 

patient information, necessitating robust security measures to 

protect data privacy. Compliance with relevant regulations and 

standards, such as the Health Insurance Portability and 

Accountability Act (HIPAA), while maintaining the integrity 

and confidentiality of data, presents a formidable challenge. 

Beyond these technical considerations, user experience is a 

critical factor in the success of recommendation systems. It is 

crucial to develop intuitive user interfaces, personalized 

recommendations, and interactive features that meet the 

specific needs of biomedical researchers and healthcare 

professionals. Effective visualization techniques, user 

feedback mechanisms, and adaptive interfaces can greatly 

enhance the usability and acceptance of multi-agent 

recommendation systems. 

Addressing these challenges calls for a multidisciplinary 

approach, incorporating expertise from fields such as artificial 

intelligence, machine learning, data integration, information 

retrieval, human-computer interaction, and biomedical 

informatics. By confronting these complexities, it is possible 

to overcome the challenges faced by multi-agent 

recommendation systems for biomedical literature retrieval, 

thereby facilitating more accurate, comprehensive, and 

efficient access to biomedical knowledge. 

 

1.2 Multi-Agent Recommender Systems: A comprehensive 

overview 

 

Multi-Agent Recommender Systems (MARS) constitute an 

innovative class among recommendation systems, leveraging 

the collaborative potential of multiple agents for the 

generation of personalized recommendations. These agents 

may be software-based, human-oriented, or a hybrid thereof, 

each tasked with curating recommendations for a distinct 

subset of users or items, or both [1, 2]. 

One of the salient advantages of MARS is their superior 

competency to manage substantial and intricate data sets, 

while maintaining recommendation accuracy. This is achieved 

by partitioning data into more manageable subsets, with each 

subset allocated to a specific agent. This not only accelerates 

data processing but also enhances efficiency. Furthermore, 

domain-specific specialization of each agent can lead to an 

enriched user experience through more personalized 

recommendations [3, 4]. 

Another strength of MARS lies in their capacity to 

amalgamate information from multiple sources for 

recommendation generation. Such a system could, for instance, 

utilize a user's purchase history, ratings from other users, and 

item content to curate a personalized recommendation list. 

This multifaceted approach fosters a comprehensive 

understanding of user preferences, thereby facilitating the 

creation of superior recommendations. 

However, the design of MARS is not without challenges. 

Ensuring coordination among agents to produce consistent and 

complementary recommendations is crucial. Furthermore, the 

system must be equipped to manage potential conflicts 

between agents and validate the trustworthiness of the final 

recommendations. 

Despite these challenges, MARS hold substantial potential 

to transform recommendation practices by offering 

personalized, precise recommendations. While the design 

intricacies of such a system are complex, the potential benefits 

warrant MARS as a promising avenue for further research and 

development [5-9]. 

 

1.3 Biomedical Literature Search Systems: An essential 

tool in biomedical research 

 

Biomedical Literature Search Systems (BLSS) are 

specialized tools that are integral to the biomedical research 

landscape. These systems are meticulously designed to enable 

researchers to efficiently retrieve pertinent articles and papers 

from a plethora of scientific journals and databases, thereby 

supporting and streamlining their research endeavors. 

A paramount example of BLSS is PubMed, a 

comprehensive database maintained by the National Library 

of Medicine. PubMed grants access to an excess of 29 million 

citations encompassing biomedical articles, peer-reviewed 

journals, online books, and conference papers. This system 

enables researchers to conduct topic-specific searches, or to 

identify articles that have cited a particular paper. 

Another noteworthy BLSS is Embase, which provides 

access to an impressive portfolio of more than 30 million 

biomedical articles and conference papers. Covering a broad 

spectrum of biomedical subjects, Embase is especially 

advantageous for literature searches related to pharmacology 

and toxicology. 

The role of BLSS in propelling the field of biomedical 

research forward is undeniable. By facilitating rapid and 

efficient identification of relevant articles, these systems 

contribute to the acceleration of research processes and the 

augmentation of research outcomes. 

In conclusion, Biomedical Literature Search Systems are 

indispensable assets for biomedical researchers. By providing 

access to vast repositories of information, they assist 

researchers in identifying necessary data to support their work. 

The substantial contributions of these systems to the 

advancement of biomedical research are evident, and their 

critical role in the future of the field is assured [10-12]. 

In the study [13], the focus is on related search 

recommendations, a pivotal component of modern search 

engines. This paper delves into the integration of 

recommendation systems with search engines and underscores 
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the significance of incorporating knowledge graphs, user 

context, and feedback to enhance search results. The relevance 

of this research to biomedical literature search lies in its 

emphasis on optimizing search recommendations based on 

user behavior and context. 

Paper [14] explores the realm of text mining and trend 

detection, particularly within the context of social media, 

specifically Twitter. It underscores the importance of indexing 

content and employing preprocessing techniques to effectively 

analyze user-generated text data. Pertinently, in the context of 

biomedical literature search, similar techniques can be applied 

to process and extract insights from user-generated content, 

such as reviews and comments related to research articles and 

medical topics. 

Authors of [15] investigates the intriguing intersection of 

emotion recognition via facial expressions and its application 

in music recommendation. While this paper primarily 

addresses music recommendation, the concept of emotion 

recognition through facial expressions can be extended to 

biomedical literature search. Users' emotional responses to 

medical research can significantly impact their preferences 

and recommendations, making emotion recognition an 

intriguing avenue for optimizing search results in this domain. 

 

1.4 The role of Artificial Intelligence in Biomedical 

Literature Search Systems 

 

Artificial Intelligence (AI) is increasingly being integrated 

into Biomedical Literature Search Systems, enhancing their 

functionality and improving the speed and accuracy of search 

results. 

One significant application of AI lies in the deployment of 

Natural Language Processing (NLP) techniques. NLP 

algorithms are proficient in extracting pertinent information 

from scientific articles and categorizing it based on its 

relevance to the researcher's query. Consequently, more 

accurate and relevant results can be returned, reducing the time 

researchers need to locate required information. 

Machine learning, a subset of AI, is also being harnessed to 

optimize the functionality of Biomedical Literature Search 

Systems. Machine learning algorithms can be trained to 

identify patterns within data and make predictions regarding 

an article's relevance based on the available information. This 

ability further enhances the accuracy and speed of search 

results. 

Additionally, AI is being utilized to improve the user 

interface of Biomedical Literature Search Systems. Notably, 

AI-powered chatbots can assist researchers in navigating the 

system and provide prompt answers to their queries, enhancing 

the overall user experience. 

Machine learning is particularly prevalent in the field of 

Biomedical Literature Search Systems, employed in various 

ways such as: 

(1) Document Classification: Machine learning is used to 

categorize articles based on their content and relevance to a 

specific query, thereby improving the accuracy of search 

results. 

(2) Recommendation Systems: Machine learning can devise 

recommendation systems that suggest articles based on the 

researcher's search history, reading habits, and preferences, 

enhancing the user experience and reducing the time spent in 

locating necessary information. 

(3) Information Extraction: Machine learning facilitates the 

extraction of relevant information from scientific articles, 

reducing the time researchers spend manually reading through 

articles. 

(4) Query Expansion: Machine learning can expand a 

researcher's query to include related terms and concepts, 

improving the precision of search results. 

(5) Sentiment Analysis: Machine learning can perform 

sentiment analysis on scientific articles to identify positive or 

negative sentiment and categorize articles accordingly. 

These are just a few examples of the multitude of ways 

machine learning is contributing to the evolution of 

Biomedical Literature Search Systems. By improving the 

speed and accuracy of search results, machine learning is 

making it significantly easier for researchers to find the 

information they need. As the field of Biomedical Literature 

Search Systems continues to rapidly evolve, the role of 

machine learning is poised to become even more critical. 

 

1.5 The application of Multi-Agent Systems in literature 

and Article Search Systems 

 

Multi-Agent Systems (MAS) are distributed systems 

composed of multiple autonomous agents that interact to 

achieve a common objective. Within the realm of search 

systems, MAS have been effectively employed to enhance 

search results and user experience. For instance, agents can be 

designated to specific tasks such as web crawling, indexing, 

and ranking. Each agent, responsible for a specific task, 

communicates with other agents to collectively complete the 

overall search process. This division of tasks fosters improved 

efficiency and scalability of the search engine. 

Furthermore, MAS have been utilized to personalize search 

results. Agents can monitor the user's search history and 

preferences, leveraging this information to provide 

customized results. For example, if a user frequently searches 

for specific data, such as sports or news, an agent can present 

results that correlate with the user's interests. Additionally, 

MAS have been used to detect and counteract spam and 

fraudulent activities in search engines. Agents can monitor 

search results and user feedback, enabling the search engine to 

detect and exclude false or misleading information. 

In the field of literature and article search systems, MAS 

play a pivotal role in enhancing the speed and accuracy of 

search results and improving user experience. The following 

examples illustrate the application of MAS in this context: 

(1) Query Distribution: MAS can distribute the search query 

across multiple databases, search engines, and other 

information sources, thereby improving the accuracy of search 

results. 

(2) Information Fusion: MAS can consolidate information 

from multiple sources to produce a unified set of search results, 

enhancing the accuracy of search results. 

(3) Personalization: MAS can personalize the search 

experience for each user based on their search history, reading 

habits, and preferences, thereby improving the user experience. 

(4) Collaborative Filtering: MAS can implement 

collaborative filtering algorithms that suggest articles based on 

the reading habits of other users with similar interests, thus 

improving the accuracy of search results and reducing the time 

researchers spend locating necessary information. 

These examples underscore the myriad ways in which 

Multi-Agent Systems contribute to the optimization of 

literature and article search systems. By improving the speed 

and accuracy of search results, MAS are making it 

significantly more straightforward for researchers to find the 
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information they need. As the field of literature and article 

search systems continues to evolve rapidly, the role of Multi-

Agent Systems is set to become increasingly significant. 

 

 

2. THE DEVELOPED MULTI-AGENTS SYSTEM  

 

A multi-agent system for biomedical literature search is a 

complex system that involves various components and agents 

working together to provide relevant and accurate search 

results to the user. The system (Figure 1) includes several key 

components, including the user interface, agent manager, 

search agent, relevance feedback agent, data management 

agent, knowledge base, parser agent, presentation agent, user 

agent, validation agent, and feedback agent. The user interface 

is the front-end of the system, where users can submit their 

queries and view the search results. It communicates with the 

other components to receive user requests and display the 

results. The agent manager is responsible for coordinating the 

activities of the other agents. It assigns tasks, manages 

communication between agents, and ensures that the overall 

system functions smoothly. The search agent is responsible for 

conducting the actual search in the biomedical literature. It 

retrieves relevant articles and information from the databases, 

applies various search algorithms and filters, and returns the 

results to the user. The relevance feedback agent is responsible 

for refining the search results based on the user's feedback. It 

collects information about the user's preferences, such as the 

relevance of certain articles, and updates the search algorithms 

accordingly. The data management agent is responsible for 

managing the data used by the system. It updates the databases 

with new articles, indexes the information, and ensures that the 

information is organized and accessible. The knowledge base 

is a repository of information and knowledge about biomedical 

literature. It is used by the search agent to provide additional 

context and insights to the search results.  The parser agent is 

responsible for parsing the results of the search, extracting 

relevant information, and transforming it into a format that can 

be easily processed by other agents. The presentation agent is 

responsible for presenting the information extracted by the 

parser agent to the user in a clear and user-friendly format. The 

user agent represents the user of the system, and is responsible 

for sending requests to other agents and receiving information 

from them.  The validation agent checks the validity of the 

search results, ensuring that they are accurate and relevant. 

The feedback agent allows the user to provide feedback on the 

search results, such as indicating which articles are relevant, 

or requesting additional information about a specific article. 

This feedback can then be used to improve the search process, 

such as by adjusting the search algorithms or changing the way 

that the results are presented.  Overall, the multi-agent system 

for biomedical literature search provides a comprehensive and 

flexible framework for searching, analyzing, and presenting 

biomedical literature. By combining various components and 

agents, the system can handle complex and uncertain 

information, providing relevant and accurate results to the user. 

A Fuzzy Inference Unit can be added to the multi-agent 

system for biomedical literature search described above by 

incorporating fuzzy logic into the search algorithm used by the 

search agent. The Fuzzy Inference Unit would use fuzzy set 

theory and membership functions to determine the degree of 

similarity between the user's query and the articles in the 

database. The membership functions would be used to assign 

a fuzzy membership value to each article, based on its 

relevance to the query. This fuzzy membership value would 

then be used to rank the articles and determine which articles 

should be included in the search results. 

 

 
 

Figure 1. The develop multi-agent system 

 

Additionally, the Fuzzy Inference Unit could also be used 

to refine the results based on the user's feedback. The 

relevance feedback agent would collect the user's preferences, 

such as the relevance of certain articles, and use these 

preferences to update the membership functions. The Fuzzy 

Inference Unit would then use these updated membership 

functions to refine the search results. This would allow the 

system to provide more accurate and relevant results, as it 

takes into account the user's preferences and provides a more 

nuanced approach to evaluating the similarity between the 

query and the articles. 

Incorporating a Fuzzy Inference Unit into the multi-agent 

system for biomedical literature search would provide a more 

sophisticated and flexible approach to evaluating the similarity 

between the query and the articles in the database. This would 

result in more accurate and relevant results, and provide a 

better user experience. 

The architecture of a Multi-Agent System (MAS) in a 

biomedical literature search can be divided into several 

components, each with a specific role and function. The main 

components are: 

(1) Agent Manager: The agent manager is responsible for 

coordinating the activities of the other agents. It assigns tasks, 

manages communication between agents, and ensures that the 

overall system functions smoothly. 

(2) Search Agent: The search agent is responsible for 

conducting the actual search in the biomedical literature. It 

retrieves relevant articles and information from the databases, 

applies various search algorithms and filters, and returns the 

results to the user. 

(3) Data Management Agent: The data management agent 

is responsible for managing the data used by the system. It 

updates the databases with new articles, indexes the 

information, and ensures that the information is organized and 

accessible. 

(4) Knowledge Base: The knowledge base is a repository of 

information and knowledge about biomedical literature. It is 

used by the search agent to provide additional context and 

insights to the search results. 
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(5) Parser Agent: This agent is responsible for parsing the 

results of the search, extracting relevant information, and 

transforming it into a format that can be easily processed by 

other agents. The parser agent may use text mining techniques 

to extract information from the search results. 

(6) Presentation Agent: This agent is responsible for 

presenting the information extracted by the parser agent to the 

user in a clear and user-friendly format. The presentation agent 

may use a web-based interface, a graphical user interface, or 

another type of interface, depending on the requirements of the 

system. 

(7) User Agent: This agent represents the user of the system, 

and is responsible for sending requests to other agents and 

receiving information from them. It includes user interface 

which is the front-end of the system. Through it the users can 

submit their queries and view the search results. It 

communicates with the other components to receive user 

requests and display the results. 

(8) Validation Agent: This agent checks the validity of the 

search results, ensuring that they are accurate and relevant. 

The validation agent may also perform additional checks, such 

as checking for duplicates, or checking for missing or incorrect 

information. 

(9) Feedback Agent: This agent allows the user to provide 

feedback on the search results, such as indicating which 

articles are relevant, or requesting additional information 

about a specific article. This feedback can then be used to 

improve the search process, such as by adjusting the search 

algorithms or changing the way that the results are presented. 

These agents would interact with each other to accomplish 

the goal of the biomedical literature search system. For 

example, the user agent would send a search request to the 

search agent, which would send the request to the database or 

search engine, retrieve the results, and pass them on to the 

parser agent. The parser agent would then extract relevant 

information from the results, and pass it on to the presentation 

agent, which would present the information to the user. 

Overall, the use of multiple agents in a biomedical literature 

search system provides a flexible and scalable architecture that 

can be adapted to different requirements and constraints, and 

that can handle large amounts of information in an efficient 

and reliable manner. 

 

 

3. FUZZY SYSTEM IN BIOMEDICAL LITERATURE 

SEARCH IN THE DEVELOPED MULTI-AGENT 

SYSTEM 

 

A fuzzy inference system (FIS) is a type of artificial 

intelligence system that uses fuzzy logic to perform decision-

making tasks. The main idea behind fuzzy logic is to represent 

uncertainty and imprecision in a mathematical framework, 

allowing for more flexible and human-like reasoning 

compared to traditional Boolean logic. A FIS typically consists 

of several key components, including a fuzzification module, 

a rule base, an inference engine, and a defuzzification module. 

The fuzzification module converts the inputs into a fuzzy set 

representation, while the rule base consists of a set of if-then 

rules that specify the relationship between the inputs and 

outputs. The inference engine combines the inputs with the 

rules in the rule base to produce a fuzzy output, and the 

defuzzification module converts the fuzzy output back into a 

numerical or categorical representation. FISs are widely used 

in a variety of applications, including control systems, image 

processing, natural language processing, and biomedical 

literature search. The use of FISs in these applications is 

motivated by the ability of fuzzy logic to handle uncertainty 

and imprecision in a flexible and human-like manner, enabling 

the integration of expert knowledge and experience into the 

decision-making process. FISs provide a promising approach 

for addressing the challenges of decision-making in complex 

and uncertain environments, providing a flexible and human-

like framework for reasoning and problem-solving. 

Fuzzy systems are mathematical models that can be used to 

represent and process information with uncertainty. In 

biomedical literature search, fuzzy systems can be used to 

analyze and interpret the vast and complex data that is 

available in the biomedical field. 

A fuzzy system in biomedical literature search can be used 

to process and interpret unstructured data, such as free-text 

medical reports and articles. The fuzzy system can use natural 

language processing techniques to extract relevant information 

from the text and assign a degree of confidence to each piece 

of information. 

Fuzzy systems can also be used to make inferences based 

on uncertain data. For example, in biomedical literature search, 

a fuzzy system can be used to make predictions about the 

efficacy of a particular treatment based on the available data 

and research. 

In addition, fuzzy systems can be used to develop 

recommendation systems in biomedical literature search. By 

analyzing user behavior and preferences, a fuzzy system can 

recommend articles and research that are likely to be of 

interest to the user.  

The application process of fuzzy reasoning theory in the 

development stage of multi-agent systems is a crucial aspect 

that requires careful consideration. Fuzzy reasoning theory 

provides a framework for handling imprecise and uncertain 

information, which is particularly relevant in the context of 

multi-agent systems where diverse and uncertain data sources 

are integrated. 

To effectively apply fuzzy reasoning theory, several steps 

are typically involved in the development stage of multi-agent 

systems. Firstly, the system needs to define fuzzy sets and 

linguistic variables to represent the imprecise or uncertain 

concepts relevant to the application domain. These linguistic 

variables can capture the nuances and vagueness inherent in 

the data. 

Next, fuzzy rules are defined to establish the relationships 

between the linguistic variables. These rules encode expert 

knowledge or domain-specific information, enabling the 

system to reason and make intelligent decisions. The fuzzy 

rules are typically represented in the form of IF-THEN 

statements, where the antecedent (IF part) specifies the input 

conditions and the consequent (THEN part) defines the output 

or action to be taken. 

The application process also involves the fuzzy inference 

mechanism, which applies the defined fuzzy rules to the input 

data and determines the appropriate outputs or actions based 

on fuzzy logic operations such as fuzzy matching, fuzzy 

aggregation, and defuzzification. 

It is important to note that the application of fuzzy reasoning 

theory in multi-agent systems requires careful parameter 

tuning, membership function design, and rule optimization. 

These steps aim to ensure the effectiveness and accuracy of the 

fuzzy reasoning process in capturing and processing the 

uncertainty present in the system's data and decision-making. 

Additionally, the application process may involve 

1043



 

evaluating and validating the performance of the fuzzy 

reasoning-based multi-agent system. This can be done through 

simulation studies, real-world experiments, or comparison 

with existing approaches to assess the system's effectiveness 

in achieving its objectives 

 

3.1 Fuzzy Inference Units in biomedical literature search  

 

Fuzzy Inference Units (Figure 2) are software agents that 

are designed to operate in a fuzzy environment, meaning an 

environment where information is uncertain and subject to 

interpretation. In biomedical literature search, Fuzzy Inference 

Units can be used to process and interpret complex data and 

make decisions based on that data. 

Fuzzy Inference Units can be used to extract relevant 

information from biomedical literature, such as articles and 

research papers. By using natural language processing 

techniques, Fuzzy Inference Units can process unstructured 

data, such as free-text reports, and extract information that is 

relevant to the search query. 

Fuzzy Inference Units can also be used to make inferences 

based on uncertain data. For example, a Fuzzy Inference Unit 

in biomedical literature search could use a fuzzy inference 

system to make predictions about the efficacy of a particular 

treatment based on the available data and research. 

In addition, Fuzzy Inference Units can be used to develop 

recommendation systems in biomedical literature search. By 

analyzing user behavior and preferences, a Fuzzy Inference 

Unit can recommend articles and research that are likely to be 

of interest to the user. 

 

 
 

Figure 2. The architecture of the developed agents with fuzzy inference capability 

 

3.2 Factors of fuzzy system in biomedical literature search  

 

The factors affecting the performance of a fuzzy system in 

biomedical literature search can be grouped into two 

categories: 

(1) Technical factors: 

• Data quality and availability: The quality and 

quantity of data available for training the fuzzy 

system can greatly impact its performance. 

• Feature selection: The choice of features to be used 

in the fuzzy system can greatly affect its performance. 

• Algorithm design and optimization: The design and 

optimization of the fuzzy algorithm can greatly 

impact its performance. 

(2) Domain-specific factors: 

• Relevance and specificity of the query: The relevance 

and specificity of the query can greatly affect the 

performance of the fuzzy system in biomedical 

literature search. 

• Bias in the data: Bias in the data used to train the 

fuzzy system can greatly affect its performance. 

• Diversity of the literature: The diversity of the 

literature in the biomedical field can greatly affect the 

performance of the fuzzy system. 

The multi-agent system utilizes a combination of fuzzy 

logic and text mining techniques in its filtering process to 

distinguish between articles based on their unique features, 

each of which may hold varying levels of importance. The 
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system takes into account factors that are not commonly found 

in traditional search engines, including medical cues and 

outcomes expected in the Results Section of an article, the use 

of Boolean AND and OR operators for cues and outcomes, 

weights assigned to keywords and features, and the presence 

of tables and figures. The articles are ranked according to their 

relevance to the user's search criteria, and the fuzzy filtering 

system comprises three subsystems: fuzzy keyword weights, 

fuzzy feature weights, and fuzzy relevancy ranking. The 

relevancy ranking indicates the degree of relevance each 

article holds for the user's search preferences. However, the 

weights assigned to keywords and features by different experts 

may differ due to disagreements, and therefore uncertainty 

exists within the obtained weights.  

 

3.3 Membership function of articles similarity in 

biomedical literature search  

 

In biomedical literature search, content similarity between 

articles is an important factor for determining their relevance 

to a given query. To quantify content similarity, a membership 

function is used to define the degree of similarity between 

articles. 

A membership function maps the similarity score of two 

articles to a value between 0 and 1, where 0 represents no 

similarity and 1 represents complete similarity. The exact form 

of the membership function depends on the requirements of 

the specific fuzzy system being used. Some common forms of 

membership functions used in biomedical literature search 

include triangular, trapezoidal, and Gaussian functions. 

The choice of membership function can greatly impact the 

performance of the fuzzy system in biomedical literature 

search. The membership function should be chosen based on 

the specific requirements of the task and the data being used. 

For example, a Gaussian membership function may be 

appropriate when the similarity scores have a Gaussian 

distribution, while a triangular membership function may be 

more appropriate when the distribution is less clear. 

In general, the membership function should provide a 

smooth and continuous mapping of the similarity scores to the 

degree of membership, reflecting the uncertainty and 

imprecision that is inherent in content similarity in biomedical 

literature. The membership function should also be able to 

handle the variability and complexity of the biomedical 

literature data, capturing the relevant similarities and 

differences between articles. 

When using fuzzy inference units to process parser proxy 

information, the membership function of period similarity is 

determined based on the specific requirements and 

characteristics of the system. The membership function for 

period similarity captures the degree of similarity or 

dissimilarity between periods. 

The design of the membership function depends on factors 

such as the nature of the periods being compared, the desired 

granularity of similarity levels, and the available information 

for assessing similarity. Different forms of membership 

functions, such as triangular, trapezoidal, or Gaussian, can be 

utilized to represent the degree of similarity. 

Regarding the multi-feature fusion process, it depends on 

the specific implementation and requirements of the system. 

Fusion of multiple features refers to combining different 

sources of information or features to make a decision or 

inference. In the context of processing parser proxy 

information, if the system incorporates multiple features 

related to period similarity, such as length, content overlap, or 

temporal distribution, then it may involve a multi-feature 

fusion process. The fusion process integrates the information 

from multiple features to derive a comprehensive assessment 

of period similarity. 

It is important to note that the specific membership function 

for period similarity and the presence of a multi-feature fusion 

process depend on the design choices and requirements of the 

system. The membership function should be carefully defined 

to capture the desired notion of similarity, while the decision 

to employ a multi-feature fusion process depends on the 

availability and relevance of multiple features in the context of 

period similarity assessment. 

 

3.4 Fuzzy system architecture in biomedical search 

 

A fuzzy system architecture in biomedical search is a type 

of artificial intelligence system that uses fuzzy logic to 

perform biomedical literature search tasks. The architecture of 

a fuzzy system in biomedical search typically consists of 

several key components that work together to convert the 

inputs into a fuzzy set representation, process the data using a 

set of rules, and convert the output back into a numerical or 

categorical representation. 

The first step in a fuzzy system is fuzzification, which 

involves converting the input data into a fuzzy set 

representation. This is typically done by mapping the 

numerical or categorical values to a set of membership 

functions that define the degree of membership of the inputs 

in different fuzzy sets. 

The second component of the fuzzy system architecture is 

the rule base, which is a collection of if-then rules that specify 

the relationship between the input and output variables. The 

rules are used to process the fuzzy inputs and produce a fuzzy 

output. 

The third component of the fuzzy system is the inference 

engine, which is responsible for combining the input data with 

the rules in the rule base to produce an output. The inference 

engine typically uses a combination of fuzzy logic operations, 

such as intersection and union, to process the data. 

Finally, the fuzzy system architecture includes a 

defuzzification step, which involves converting the fuzzy 

output back into a numerical or categorical representation. 

This is typically done by mapping the fuzzy output to a single 

numerical value or a set of categorical values that represent the 

results of the biomedical literature search. 

In the context of a multi-agent recommendation system, 

handling fuzzy system factors in biomedical literature involves 

incorporating fuzzy reasoning techniques to effectively 

address uncertainty and imprecision in the data. Fuzzy logic 

allows for the representation and manipulation of vague or 

ambiguous information, which is particularly relevant in 

biomedical literature where factors can exhibit varying 

degrees of fuzziness. 

The sources of factor discrimination in a multi-agent 

recommendation system can include various aspects. Firstly, 

the linguistic variables used to represent factors may have 

different levels of granularity or membership functions. These 

linguistic variables capture the imprecision and uncertainty 

inherent in the factors under consideration. By defining 

appropriate membership functions, the system can 

discriminate different degrees or categories of factors, 

allowing for more nuanced recommendations. 

Secondly, the fuzzy rules employed in the system play a 
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crucial role in discriminating factors. These rules establish the 

relationships between the linguistic variables, guiding the 

reasoning and decision-making process. Through these rules, 

the system can discriminate different combinations of factors 

and generate appropriate recommendations based on the 

available evidence. 

Additionally, the sources of factor discrimination can also 

include the input data itself. Biomedical literature often 

contains complex and heterogeneous information, including 

textual data, numerical data, and categorical data. By 

considering these diverse sources of information, the system 

can discriminate factors based on their respective 

characteristics, such as the relevance, reliability, and 

significance of the information sources. 

It is worth noting that the discrimination of factors in a 

multi-agent recommendation system involves not only 

handling the fuzziness of the factors but also considering their 

context and relevance to the specific biomedical domain. The 

system needs to carefully analyze and interpret the available 

data, taking into account expert knowledge, domain-specific 

considerations, and user preferences. 

In summary, a multi-agent recommendation system handles 

fuzzy system factors in biomedical literature by incorporating 

fuzzy reasoning techniques to capture and process uncertainty. 

The sources of factor discrimination include linguistic 

variables, fuzzy rules, and the characteristics of the input data. 

By effectively discriminating factors, the system can generate 

relevant and accurate recommendations in the context of 

biomedical literature retrieval. 

 

3.5 Block diagram of Multi-Agent System architecture in 

biomedical literature search 

 

A block diagram of a multi-agent system typically consists 

of several key components, including: 

(1) Agents: These are the individual components of the 

system that interact with each other to accomplish specific 

tasks. They are modeled as Java classes that implement the 

Agent interface in JADE, and they communicate with each 

other using JADE's messaging infrastructure. 

(2) Message Broker: This component manages the flow of 

messages between agents. It is responsible for routing 

messages to their intended recipients, and ensuring that 

messages are delivered in a reliable and efficient manner. 

(3) Agent Container: This component manages the 

individual agents and provides the runtime environment for 

executing the agents. It is responsible for starting and stopping 

agents, and for managing their behavior and interactions. 

(4) Main Container: This is the core component of JADE, 

and is responsible for managing the overall operation of the 

multi-agent system. It is responsible for creating and managing 

Agent Containers, and for managing the interactions between 

agents. 

(5) Data Store: This component stores information that is 

generated and processed by the agents. It may be a database, a 

file system, or another type of storage mechanism. 

(6) User Interface: This component provides a user-friendly 

interface for interacting with the system. It may be a web-

based interface, a graphical user interface, or another type of 

interface, depending on the requirements of the system. 

These components interact with each other to perform the 

tasks of the multi-agent system. For example, an agent may 

send a message to another agent, which would be processed by 

the Message Broker and delivered to the recipient agent. The 

recipient agent would then process the message, generate a 

response, and send it back to the original agent. This process 

would continue until the desired goal of the system is achieved. 

Overall, the block diagram of a multi-agent system provides 

a high-level view of the components and interactions that 

make 

The architecture of an agent in a multi-agent system (MAS) 

typically consists of several key components, including: 

(1) Agent Platform: This is the runtime environment for the 

agent, providing the necessary infrastructure for executing the 

agent's code and managing its interactions with other agents. 

JADE is one example of an agent platform that can be used to 

implement agents. 

(2) Agent Behaviors: These are the individual components 

of the agent that implement its functionality. Each behavior 

can perform a specific task, such as receiving and processing 

messages, or making decisions based on data. Behaviors can 

be implemented as classes that inherit from the 

jade.core.behaviours. Behaviour class in JADE. 

(3) Agent Beliefs: These are the beliefs or knowledge that 

the agent has about the world, such as information about other 

agents or information that has been learned through its 

interactions with the environment. Beliefs can be stored in data 

structures, such as arrays, lists, or maps, and can be updated 

based on new information. 

(4) Agent Capabilities: These are the skills and abilities that 

the agent has, such as the ability to send and receive messages, 

or to make decisions based on its beliefs. Capabilities can be 

implemented as methods within the agent's behavior classes. 

(5) Agent Actions: These are the actions that the agent can 

perform, such as sending a message to another agent, or 

updating its beliefs based on new information. Actions can be 

implemented as methods within the agent's behavior classes. 

(6) Agent Communication: This component manages the 

communication between the agent and other agents. It 

provides the necessary infrastructure for sending and receiving 

messages, and for managing the flow of information between 

agents. 

By dividing the agent into these components, the 

architecture of an agent can provide a clear and modular 

structure for implementing and managing the agent's 

functionality. This can make the agent more flexible and easier 

to understand, maintain, and extend over time. 

 

 

4. MULTI-AGNENT SYSTEM COMMUNICATION 

TECHNIQUES AND SCENES 

 

Multi-Agent System (MAS) communication is an integral 

part of the system's functioning, as it enables agents to interact 

and exchange information. There are several techniques and 

scenarios for communication in MAS, including direct 

communication, broker-based communication, and 

publish/subscribe communication. Direct communication 

involves agents exchanging messages directly with each other, 

while broker-based communication uses a central broker to 

manage the flow of messages. In publish/subscribe 

communication, agents subscribe to certain topics and receive 

updates when new information is published on those topics. 

The choice of communication technique depends on the 

specific requirements of the MAS, such as scalability, 

reliability, and security. Some common scenarios for MAS 

communication include negotiating tasks, exchanging 

information, and coordinating actions. In these scenarios, 
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agents must communicate with each other to achieve their 

goals and complete the overall system task. 

Multi-Agent System (MAS) communication languages are 

used to facilitate communication between agents. These 

languages allow agents to exchange messages and coordinate 

their actions to achieve a common goal. Some common MAS 

communication languages include: 

(1) FIPA-ACL (Foundation for Intelligent Physical Agents 

-Agent Communication Language): FIPA-ACL is a 

standardized language for agent communication, defined by 

the Foundation for Intelligent Physical Agents. It provides a 

standard syntax and semantics for representing messages, 

which makes it easy for agents to exchange information and 

interact with each other. 

(2) KQML (Knowledge Query and Manipulation 

Language): KQML is a language for representing knowledge 

and exchanging messages in MAS. It allows agents to express 

complex information and request actions from other agents. 

(3) Jason (Java Agent-Oriented Software Engineering): 

Jason is an open-source language for programming intelligent 

agents in Java. It provides a high-level language for specifying 

the behavior of agents, as well as a framework for managing 

communication between agents. 

(4) TXL (Teaching Executive Language): TXL is a 

language for programming agents in a MAS. It provides a 

high-level syntax for specifying the behavior of agents, as well 

as a framework for managing communication and 

coordination between agents. 

Agent communication can be presented in a number of ways, 

depending on the audience and the goals of the presentation. 

Some common methods include: 

(1) Diagrams: Diagrams, such as flow charts or UML 

diagrams, can be used to visually represent the communication 

between agents. This can help to illustrate the flow of 

information and the interactions between agents. 

(2) Examples: Presenting examples of actual 

communication between agents can help to demonstrate how 

the communication works in practice. This can be done by 

showing code snippets or sample messages exchanged 

between agents. 

(3) Use Cases: Presenting the communication in the context 

of real-world scenarios, or use cases, can help to make the 

communication more relatable and easier to understand. This 

can be done by demonstrating how the communication 

between agents enables the agents to achieve specific goals. 

(4) Simulation: Simulation can be used to demonstrate the 

communication between agents in a virtual environment. This 

can provide a visual representation of the communication and 

help to understand how the agents interact and exchange 

information. 

(5) Demonstrations: Demonstrations can be used to show 

the communication between agents in real-time. This can 

provide a hands-on experience of the communication and help 

to understand how it works in practice. 

Regardless of the method used, it is important to present the 

communication in a clear and concise manner, emphasizing 

the key elements and explaining any complex concepts. The 

presentation should be tailored to the audience, using 

terminology and examples that are appropriate for their level 

of understanding. 

Diagrams are a useful tool for presenting agent 

communication, as they provide a visual representation of the 

flow of information and interactions between agents. 

Diagrams can help to illustrate the relationships between 

agents, the messages they exchange, and the protocols they 

follow. There are several types of diagrams that can be used to 

present agent communication, including flow charts, UML 

diagrams, and sequence diagrams. Flow charts are particularly 

useful for demonstrating the flow of information between 

agents, as they provide a high-level view of the interactions 

between agents. UML diagrams, such as sequence diagrams, 

can be used to show the detailed interactions between agents, 

including the messages they exchange and the timing of these 

interactions. 

Diagrams can also be used to show the communication 

between agents in the context of a specific scenario or use case. 

This can help to demonstrate how the communication enables 

the agents to achieve a specific goal or solve a problem. 

Additionally, diagrams can be used to show the 

communication between agents in different phases of a task, 

or in response to different events.  Overall, diagrams are a 

powerful tool for presenting agent communication, as they 

provide a visual representation of the interactions between 

agents. They can help to understand the flow of information, 

the relationships between agents, and how the communication 

enables the agents to achieve their goals. 

A state diagram in multi-agent systems is a graphical 

representation of the different states that an individual agent 

can be in, and the transitions between those states. It is a type 

of finite state machine that models the behavior of an agent 

over time. In a state diagram, each state is represented by a 

circle and the transitions between states are represented by 

arrows. The transitions are labelled with the conditions or 

events that trigger them, and the diagram can also include 

additional information such as the actions that are performed 

when entering or leaving a state.  State diagrams can be useful 

for modeling and analyzing the behavior of multi-agent 

systems, as they provide a clear and concise representation of 

the different ways that the agents can interact and respond to 

events in the environment. By using state diagrams as shown 

in Figure 3, it is possible to identify potential problems or 

conflicts between agents, as well as to design control 

algorithms that coordinate the behavior of the agents. Overall, 

state diagrams are an important tool for understanding and 

designing multi-agent systems, as they allow for a visual 

representation of the behavior of each agent and the 

interactions between them.  

 

 
 

Figure 3. The state diagram of a scene in multi-agent 

environment 

 

The automaton in Figure 3 has a set of states, including: 

• X0: the initial state 

• X1: waiting for a response to the request 
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• X2: checking the data 

• X3: indicating lack of communication 

• X4: processing the data. 

Petri nets are a type of mathematical modeling tool used to 

describe and analyze complex systems, including multi-agent 

systems. In a multi-agent system, there are typically multiple 

autonomous agents that interact with one another and with 

their environment to achieve specific goals. Petri nets can be 

used to model the interactions between agents, as well as the 

environment they operate in, to better understand the behavior 

of the system as a whole. 

Petri nets are composed of two main elements: places and 

transitions. Places represent states of the system, while 

transitions represent events or actions that can occur within the 

system. Tokens are used to represent the current state of the 

system and are placed within the different places. When a 

transition is enabled, meaning that all the places that lead to 

the transition have tokens, the transition can fire, moving 

tokens from the input places to the output places. 

In a multi-agent system, each agent can be represented as a 

separate Petri net. The places and transitions within the agent's 

net represent the agent's state and possible actions. Interactions 

between agents can be modeled by connecting the input and 

output places of different nets. For example, as in Figure 4, if 

Agent A needs to receive a message from Agent B before it 

can take a certain action, the input place of Agent A's transition 

representing that action can be connected to the output place 

of Agent B's transition representing sending the message. 

 

 
 

Figure 4. Conversational model of between two Agents using the Petri nets 

 

The transitions correspond either to synchronization due to 

the receipt of messages or to conditions of actions. Places IA 

and IB describe the initial states where the PAAs find 

themselves before the beginning of the conversation. Places 

FA1, FA2, FB1 and FB2 represent the end of conversation 

states. Starting from state IA, Agent 1 sends a request “to do 

(T)” to Agent 2 and moves in to state WA1, which represents 

waiting for a response. If AGENT2 can’t do the task, it sends 

a refusal to Agent1, which then goes into state FA1, which 

indicates that Agent 1 must look elsewhere to have its task 

carried out. If Agent 2 can do the task, it sends an acceptance 

message to Agent 1, which places Agent1 into wait for a 

response state WA2. During this time, Agent 2 is in state WB, 

while trying to carry out the task. Once finishing the task, it 

sends a notification of end of accomplishment to Agent1, 

which places Agent1 in state FA2 and places AGENT2 in state 

FB2. If not, Agent 2 indicates that it cannot do the task, which 

places Agent1 in state FA1 and places Agent 2 in state FB1. 

Petri nets can also be used to model the environment in 

which the agents operate. The environment can be represented 

as a separate Petri net, with places representing different states 

of the environment and transitions representing events or 

actions that can occur within the environment. For example, 

the environment may include a place representing the location 

of a resource that agents can access, and a transition 

representing the acquisition of that resource. 

Petri nets can help to identify potential issues in a multi-

agent system, such as deadlocks or live locks. Deadlocks occur 

when none of the agents can take any further action, while live 

locks occur when the agents continue to take actions but are 

unable to achieve their goals. By modeling the system as a 

Petri net, it is possible to identify the conditions that lead to 

these issues and take steps to address them. 
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5. MULTI-AGENT SYSTEM IMPLEMENTATION 

USING JADE FOR BIOMEDICAL LITERATURE 

SEARCH 

 

Managing the complexity of multi-agent systems requires 

employing various strategies and techniques. One approach is 

to decompose the system into modular components or agents, 

dividing the overall complexity into more manageable units. 

Effective coordination and communication mechanisms are 

essential for seamless interactions among agents, ensuring 

information exchange and collaboration. Organizational 

structures and defined agent roles help distribute tasks and 

responsibilities, reducing complexity. Proper information and 

knowledge management, through techniques such as 

knowledge representation and sharing, streamline the handling 

of complex data. Granting agents autonomy and adaptability 

enables them to handle local complexities independently, 

simplifying system management. Simulation and modeling 

techniques allow for analyzing and understanding system 

behavior in controlled environments. Monitoring and analysis 

tools provide insights into system dynamics and performance, 

aiding in complexity management. By applying these 

strategies, developers and researchers can effectively manage 

the complexity of multi-agent systems, achieving efficient and 

robust behavior. 

JADE (Java Agent Development Framework) is a software 

platform for implementing multi-agent systems (MAS) in Java. 

It provides a set of tools and libraries for developing, 

deploying, and running agents, as well as for managing the 

interactions between agents. In JADE, agents are implemented 

as Java classes that extend the jade.core.Agent class. 

The Agent class provides a number of functionalities to the 

agents, including message handling, sending messages, and 

agent mobility. Additionally, JADE also provides a number of 

agent management functionalities, such as starting and 

stopping agents, creating and removing agents, and 

monitoring agent behavior. 

JADE agents can interact with each other by exchanging 

messages, which are instances of the jade.lang.acl. 

ACLMessage class. These messages can be of different types, 

such as requests, proposals, or informations, and can also be 

sent with different communicative intents, such as informing, 

asking, or commanding. 

Another important aspect of JADE is the concept of agent 

roles. Agents can assume different roles in different contexts, 

and can also change their roles dynamically. This makes it 

possible to model complex agent interactions and cooperation, 

as well as to implement flexible and adaptable systems. 

The Agent interface is the core component of JADE, and 

defines the basic methods and behaviors of an agent. 

JADE provides several built-in classes for creating and 

implementing agents, including: 

(1) Base Agent: This is the basic class for creating an agent 

in JADE. It provides the default implementation of the Agent 

interface, including methods for sending and receiving 

messages, and managing the agent's behavior. 

(2) Simple Agent: This is a subclass of Base Agent that 

provides a simplified API for creating and managing agents. It 

is particularly useful for simple, single-function agents that do 

not require advanced features or behaviors. 

(3) Cyclic Behaviour: This class is used for defining the 

behavior of an agent. It provides a simple way to implement 

agents that perform periodic or cyclic tasks. 

(4) One Shot Behaviour: This class is used for defining the 

behavior of an agent that performs a single action or task. It is 

particularly useful for agents that are created for a specific 

purpose, and then terminate after completing their task. 

(5) Sequential Behaviour: This class is used for defining the 

behavior of an agent that performs a series of actions in a 

specific order. It is particularly useful for agents that need to 

perform a complex set of tasks. 

(6) Parallel Behaviour: This class is used for defining the 

behavior of an agent that performs a set of tasks in parallel. It 

is particularly useful for agents that need to perform multiple 

tasks simultaneously. 

In addition to these built-in classes, JADE also allows 

developers to create their own custom agents by subclassing 

Base Agent or one of its subclasses. This allows developers to 

create agents with custom behaviors and functionality that are 

tailored to their specific needs. 

Overall, JADE provides a rich set of classes and tools for 

creating and implementing agents, allowing developers to 

create agents with a wide range of behaviors and functionality. 

To implement an agent in JADE, you typically start by 

defining a class that extends the Agent class, and then 

implement the necessary functionalities, such as message 

handling and sending, and agent mobility. You can also use a 

number of provided behaviors to simplify common tasks, such 

as message handling and periodic tasks. 

Implementing a multi-agent system using JADE typically 

involves the following steps: 

(1) Designing the agents: In JADE, each agent is modeled 

as a Java class that implements the Agent interface. The agents 

can be designed to perform a specific task or role within the 

MAS, and can interact with other agents by sending and 

receiving messages. 

(2) Defining the communication protocol: JADE provides a 

messaging infrastructure that allows agents to exchange 

messages and data with each other. The communication 

protocol defines the structure and format of the messages that 

are exchanged between agents. 

(3) Setting up the environment: JADE provides a runtime 

environment for deploying and executing agents. This 

environment includes the Main Container, which is the core 

component of JADE, and the Agent Container, which is the 

component that manages the individual agents. 

(4) Deploying the agents: Once the agents have been 

designed and the communication protocol has been defined, 

the agents can be deployed to the JADE environment. This 

involves creating instances of the agents and registering them 

with the Main Container. 

(5) Interacting between agents: Once the agents are 

deployed, they can start interacting with each other by sending 

and receiving messages. The interactions between agents can 

be managed by JADE's messaging infrastructure, which 

handles the delivery and processing of messages between 

agents. 

JADE provides a number of additional features and tools for 

developing multi-agent systems, including a graphical 

interface for managing agents and messages, a library of pre-

built agents and behaviors, and support for distributed and 

mobile agents. 

Overall, JADE is a powerful tool for implementing multi-

agent systems, as it provides a comprehensive set of features 

and libraries for developing, deploying, and executing agents, 

and for managing the interactions between agents. 
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6. EXPERIMENT AND SIMULATION RESULTS 

 

There are several factors that can impact the design of a 

multi-agent system for biomedical articles search. Firstly, the 

complexity and heterogeneity of the data sources and the 

information retrieval methods used by the agents can affect the 

design. Secondly, the level of collaboration and 

communication required between the agents can also influence 

the design, as well as the types of decision-making algorithms 

used to coordinate their efforts. Thirdly, the scalability of the 

system, its performance and its ability to handle large volumes 

of data, can affect the design, as well as the security and 

privacy requirements for the system. Additionally, the 

usability and user experience of the system can also play a role 

in the design, including the ability for users to easily access, 

interpret, and use the information retrieved by the agents. 

These are some of the key factors that need to be considered 

when designing a multi-agent system for biomedical articles 

search. 

Testing a multi-agent system (MAS) for biomedical article 

search can be accomplished through various methods, 

including functional testing, performance testing, user 

acceptance testing, integration testing, and regression testing. 

The specific testing methods will depend on the requirements 

and goals of the system. 

The settings for agent service description design, 

communication information, and termination of operation in a 

multi-agent system are specified through various mechanisms 

and protocols. Here is an overview of each aspect: 

Agent Service Description Design: The agent service 

description refers to the specification of the services provided 

by each agent in the system. It involves defining the 

functionalities, capabilities, and parameters of the services 

offered by the agents. This can include details such as the 

input/output data formats, supported operations, required 

resources, and any constraints or limitations. The service 

description design can be standardized using common 

ontology or description languages to ensure interoperability 

and understanding among agents. 

Communication Information: Communication among 

agents in a multi-agent system is crucial for coordination and 

collaboration. The communication information includes 

specifying the communication protocols, message formats, 

and message exchange patterns used for interaction. This can 

involve defining the message structure, message headers, and 

payload data. The communication information also 

encompasses the addressing scheme, identifying the agents 

involved in the communication, and establishing the necessary 

connections or channels for data exchange. 

Termination of Operation: The termination of operation in 

a multi-agent system refers to the process of ending an agent's 

participation or shutting down the system. The specification of 

termination can include conditions or triggers that determine 

when an agent should terminate its operation. These conditions 

can be based on predefined criteria, such as completing a 

specific task, reaching a certain state, or receiving a 

termination signal from another agent or the system. The 

termination process may involve releasing resources, 

notifying other agents about the termination, and ensuring a 

graceful shutdown to maintain system integrity. 

Functional testing verifies that each component of the 

system performs its intended function correctly. This can be 

done by creating test cases that simulate different user 

scenarios and comparing the system's response to expected 

results. Performance testing evaluates the system's speed, 

scalability, and reliability by simulating high usage scenarios, 

measuring response times, and evaluating the system's ability 

to handle large amounts of data and users. User acceptance 

testing evaluates the system from the end-user's perspective. 

This can be done by having a group of users test the system, 

provide feedback, and determine if it meets their needs and 

requirements. Integration testing verifies that the different 

components of the system work together correctly. This can be 

done by creating test cases that involve multiple agents and 

evaluating the system's behavior in these scenarios. 

Regression testing verifies that changes to the system do not 

introduce new bugs or break existing functionality. This can 

be done by re-running functional and performance test cases 

after each change to the system. 

The following steps for implementing the algorithm in Java 

using JADE and Fuzzy JESS: 

(1) Create a fuzzy inference system using Fuzzy JESS to 

compare articles and determine their similarity based on 

various factors such as keywords, author, and publication date. 

(2) Develop a JADE agent to represent the user. The agent 

should be able to send a request to the system to find similar 

articles to a given article. The request should contain the 

details of the article, such as the title, keywords, and author. 

(3) Develop another JADE agent to represent the search 

agent. The agent should be able to retrieve articles from the 

database based on the request from the user agent. 

(4) Develop a Fuzzy Inference Unit that uses the fuzzy 

inference system created in step 1 to compare the retrieved 

articles to the given article and determine their similarity. 

(5) Develop a feedback agent that allows the user to provide 

feedback on the search results. The feedback should be used 

to update the fuzzy inference system, so that it can improve the 

accuracy of the results. 

(6) The search agent should then return the results to the 

user agent, which should present them to the user in a clear 

and user-friendly format. 

(7) Finally, test the system thoroughly to ensure that it meets 

the requirements and goals. 

Algorithm for Finding Similar Articles to a Given Article 

using MAS system with Fuzzy Inference Unit and Feedback 

Agent 

(1) Initialize the system by creating the agents, such as the 

search agent, relevance feedback agent, parser agent, 

presentation agent, user agent, Fuzzy Inference Unit, and 

feedback agent. 

(2) The user submits a query for a specific article by using 

the user interface. 

(3) The search agent retrieves relevant articles from the 

biomedical literature databases based on the user's query and 

applies various search algorithms and filters. 

(4) The parser agent parses the results of the search, extracts 

relevant information, and transforms it into a format that can 

be easily processed by other agents. 

(5) Convert each article into a numerical representation, 

such as a vector, by using techniques such as TF-IDF (Term 

Frequency-Inverse Document Frequency). 

(6) The Fuzzy Inference Unit uses fuzzy logic to process the 

information from the parser agent and determine the similarity 

between the given article and the retrieved articles. The Fuzzy 

Inference Unit uses a fuzzy membership function to determine 

the degree of similarity between the articles. 

(7) The feedback agent collects feedback from the user on 

the relevance of the retrieved articles. This feedback can be 
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used to refine the search results and improve the accuracy of 

the Fuzzy Inference Unit's similarity calculations. 

(8) The presentation agent presents the information to the 

user in a clear and user-friendly format, such as a list of articles 

ordered by similarity to the given article. 

(9) The user can provide additional feedback on the 

relevance of the articles, and the feedback agent updates the 

Fuzzy Inference Unit's similarity calculations accordingly. 

(10) The Fuzzy Inference Unit continues to refine the 

similarity calculations based on the user's feedback and returns 

a updated list of articles ordered by similarity to the given 

article. 

(11) The process continues until the user is satisfied with 

the results, or the system reaches a maximum number of 

iterations. 

The data sources in the simulation process can vary 

depending on the specific context and objectives of the study. 

In the case of multi-agent systems for biomedical literature 

retrieval, potential data sources may include: 

(1) Biomedical Databases: These can include databases 

such as PubMed, MEDLINE, Embase, or other domain-

specific repositories that store biomedical literature and related 

information. These databases can provide a wide range of 

textual data, including research articles, abstracts, keywords, 

author affiliations, and citation networks. 

(2) Knowledge Bases: Knowledge bases such as MeSH 

(Medical Subject Headings) or ontologies specific to the 

biomedical domain can be used to provide structured data and 

semantic relationships between biomedical concepts. These 

knowledge bases can enhance the system's understanding and 

reasoning capabilities. 

(3) User Feedback and Ratings: User feedback, ratings, or 

reviews can be collected from researchers, healthcare 

professionals, or users of the system. This feedback can 

provide valuable insights into the system's performance, 

relevance of recommendations, and user satisfaction. 

Regarding the results and data of different testing types: 

Functional Test: Functional testing focuses on verifying the 

system's compliance with functional requirements. The data 

involved in functional testing includes test cases, expected 

outputs, and actual outputs. This data is used to assess whether 

the system functions as intended and meets the specified 

requirements. 

Performance Test: Performance testing aims to evaluate the 

system's performance under different loads and conditions. 

The data collected during performance testing typically 

includes response times, throughput, resource utilization, and 

system scalability. This data helps assess the system's 

efficiency, stability, and ability to handle varying workloads. 

User Acceptance Testing: User acceptance testing involves 

gathering feedback from end-users to assess their satisfaction 

and acceptance of the system. The data in user acceptance 

testing includes user feedback, survey responses, and usability 

metrics. This data provides insights into the system's user-

friendliness, ease of use, and overall user satisfaction. 

Integration Test: Integration testing focuses on testing the 

interactions and compatibility of different system components 

or modules. The data involved in integration testing includes 

test cases, input data, and output data from integrated 

components. This data helps evaluate the system's ability to 

function seamlessly when different components are combined. 

Regression Testing: Regression testing involves retesting 

the system to ensure that existing functionality is not adversely 

affected by new changes or updates. The data in regression 

testing includes test cases, expected outputs, and actual 

outputs. This data helps identify any unintended consequences 

or regression errors resulting from changes made to the system. 

It's important to note that the specific data sources and 

results may vary based on the study's scope, research 

objectives, and the specific implementation of the multi-agent 

recommendation system for biomedical literature retrieval. 

In order to test a multi-agent system (MAS) for retrieving 

relevant medical articles, the following steps need to be taken. 

Firstly, a dataset of 3000 articles needs to be obtained, which 

can consist of research articles, review articles, and case 

reports from different fields of medicine. Secondly, the articles 

need to be pre-processed through text cleaning, stemming, and 

vectorization, and stored in a database or knowledge base. The 

next step is to implement and deploy the MAS system, which 

includes agents for retrieving articles, computing similarity, 

ranking articles, and returning results. Additionally, the 

system should have a Fuzzy Inference Unit and a feedback 

agent. Once the MAS system is deployed, the input article is 

provided to the system, which then retrieves and ranks the 

articles based on their similarity to the input article. Two 

physicians then evaluate the top n articles returned by the 

system, where n is specified by the system or the user, and 

assess their relevance by comparing them to the input article. 

The feedback agent receives the evaluation results from the 

physicians and adjusts the parameters of the Fuzzy Inference 

Unit accordingly. The above steps are then repeated several 

times, with the parameters of the Fuzzy Inference Unit being 

adjusted based on the feedback received from the physicians, 

until the system produces satisfactory results. The 

performance of the system is evaluated by measuring the 

accuracy and recall of the results. Finally, the results of the 

MAS system are compared with a baseline system, such as a 

simple keyword-based search system or a traditional 

information retrieval system. 

A confusion matrix as in Table 1 is a commonly used tool 

to evaluate the performance of a binary classification system. 

In this case, the system is classifying articles as relevant or not 

relevant to a given query. The matrix shows the count of true 

positive (TP), false positive (FP), true negative (TN), and false 

negative (FN) classifications. 

The above confusion matrix for the MAS system shows that 

the system has classified 1490 articles as relevant and they are 

actually relevant, which is considered a true positive. 17 

articles were classified as relevant but they were actually not 

relevant, which is considered a false positive. 8 articles were 

classified as not relevant but they were actually relevant, 

which is considered a false negative. Finally, 1485 articles 

were classified as not relevant and they were actually not 

relevant, which is considered a true negative. 

To evaluate the performance of the MAS system, we can 

use various metrics such as accuracy, precision, recall, and F1 

score. 

• Accuracy: 

(TP+TN)/(TP+TN+FP+FN)=(1490+1485)/(2000)=2975

/2000=0.988 

• Precision: TP/(TP+FP)=1490/(1490+17)=0.989 

• Recall: TP/(TP+FN)=1490/(1490+8)=0.994 

• F1 Score: 

2*(Precision*Recall)/(Precision+Recall)=2*(0.989*0.99

4)/(0.989+0.994)=0.992 

The results show that the MAS system has a high accuracy, 

precision, recall, and F1 score, indicating that the system is 

performing well in classifying articles as relevant or not 
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relevant to a given query. The two physicians checking the 

results can also provide feedback on the performance of the 

system and suggest any improvements that can be made. 

 

Table 1. Confusion matrix 

 

 Actually Relevant 
Actually  

Not Relevant 

Predicted Relevant 1490 17 

Predicted’ Not Relevant 8 1485 

 

Table 2. The confusion matrix between the physician and 

model 

 
  Model 

  Relevant Not Relevant  

Physician  

Relevant 1491 8 1499 

Not Relevant 7 1494 1501 

 1498 1502 3000 

 

The Confusion Matrix in Table 2 compares the predictions 

made by a model with the ground truth provided by a physician. 

The matrix has two categories: "Relevant" and "Not Relevant". 

The goal is to see how well the model is able to predict the 

physician's categorization of the data. 

In the "Relevant" category, the model correctly predicted 

1491 out of 1499 instances, and made 8 incorrect predictions. 

In the "Not Relevant" category, the model correctly predicted 

1494 out of 1501 instances, and made 7 incorrect predictions. 

The Kappa score can be calculated to assess the agreement 

between the physician and the model. The Kappa score takes 

into account the probability of chance agreement and provides 

a measure of the agreement beyond chance. A Kappa score 

close to 1 indicates a strong agreement between the physician 

and the model, while a score close to 0 indicates little 

agreement beyond chance. The Kappa score can be calculated 

using the following formula: 

Kappa = (Observed agreement - Expected agreement) / (1 - 

Expected agreement) 

where Observed agreement is the number of instances that 

were correctly predicted by the model and the physician, and 

Expected agreement is the number of instances that could be 

expected to be correctly predicted by chance, based on the 

physician's predictions and the number of instances in each 

category. 

To calculate the kappa statistic, you need to calculate the 

following values: 

• p_o: The proportion of the total agreement between the 

two evaluators, which can be calculated as 

(1491+1494)/3000=0.9963 

• p_e: The expected proportion of agreement based on 

chance, which can be calculated as 

(1491+8)*(1491+7)/(3000*3000)+(8+1494)*(7+1494)/

(3000*3000)=0.9906 

Finally, the kappa statistic can be calculated as k=(p_o-

p_e)/(1-p_e), which indicates the degree of agreement 

between the two evaluators beyond chance. 

In this case, k=(0.9963-0.9906)/(1-0.9906)=0.9632, which 

indicates a high degree of agreement between the physician 

and the model, with k=1 indicating perfect agreement. 
 

 

7. CONCLUSIONS 

 

In conclusion, using a Multi-Agent System (MAS) for 

biomedical literature search offers many advantages over 

traditional single-agent systems. The integration of multiple 

agents and sources of information allows for a more 

comprehensive and accurate search result, saving time and 

resources for researchers and healthcare providers. 

Additionally, the use of MAS can also provide a more scalable, 

secure, and user-friendly experience for searching biomedical 

literature. However, the design and implementation of a MAS 

for this purpose require careful consideration of various 

technical and non-technical factors, such as data complexity 

and heterogeneity, communication and collaboration, 

scalability, performance, security, privacy, and user 

experience. By taking these factors into account, a MAS for 

biomedical literature search can greatly improve the access 

and utilization of information in the biomedical field. 
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