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A variational formulation is presented for a system consisting of two coupled single-

walled carbon nanotubes subjected to forced vibrations, longitudinal magnetic field, 

and axial compression, based on the nonlocal elasticity theory. The variational principle 

for the double nanotube system is derived, followed by the application of Hamilton's 

principle to express kinetic and potential energies. Subsequently, the time-independent 

scenario is investigated, and governing equations for the freely vibrating system are 

provided. The variational formulation for this case is established, and expressions for 

Rayleigh quotients concerning the vibration frequency and buckling load are derived. 

The Rayleigh quotient for the frequency demonstrates that the magnetic field increases 

the vibration frequency of the coupled nanotube system. Nonlocal effects appear in both 

the numerator and the denominator of the Rayleigh quotient, influencing the frequency 

increase or decrease depending on the relative values of various problem parameters. In 

contrast, the magnetic field reduces the buckling load, as evidenced by its negative 

contribution to the numerator of the Rayleigh quotient for buckling. The effect of the 

nonlocal parameter on buckling, however, cannot be inferred directly from the Rayleigh 

quotient. In this study, involving a system of two coupled partial differential equations, 

it is crucial to derive variationally consistent boundary conditions. Utilizing the 

formulated variational principle, variationally consistent natural boundary conditions 

are established in terms of moment and shear force expressions. It is revealed that the 

Pasternak interlayer between the nanotubes results in coupled boundary conditions 

when a shear force and/or a moment is specified at the boundaries of the nanotube 

system. 
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1. INTRODUCTION

Magnetic fields play a significant role in various 

nanotechnology applications, particularly in nano and micro 

electromechanical systems and nanosensors. Carbon 

nanotubes (CNTs) exposed to magnetic fields exhibit unique 

features, which can be harnessed for numerous 

nanotechnology applications as reported by Kibalchenko et al. 

[1]. The influence of magnetic fields on the vibration 

frequencies of CNTs was discussed by Zhang et al. [2], 

suggesting that magnetic fields can be utilized to control the 

dynamic characteristics of CNTs. Moreover, magnetic fields 

affect wave propagation in nanotubes with implications for 

fluid conveyance in CNTs, as noted by Arani et al. [3]. 

Alazwari et al. [4] observed that exposure to a magnetic field 

induces a hardening effect, increasing system stiffness and 

resulting in higher frequencies. This effect can be employed 

for resonance control in nanosensors, as reported by Kiani [5]. 

In the realm of biomedicine, magnetic fields offer 

advantages such as the development of non-invasive and 

harmless medical instruments like MRIs, as mentioned by 

Samadishadlou et al. [6]. Another medical application 

involves the use of CNTs with ferromagnetic nanoparticles for 

hyperthermia studies when exposed to a magnetic field, as 

studied by Raniszewski et al. [7]. Several studies by Bellucci 

et al. [8], Klinovaja et al. [9], Kibalchenko et al. [10], Kiani 

[11], and Fedorov et al. [12] have investigated the effect of 

magnetic fields on CNTs and CNT devices, providing valuable 

insights for the development of various nanodevices. For 

instance, Popov et al. [13] devised a magnetic field sensor, 

while Mandal et al. [14] and Pal et al. [15] explored magnetic 

nanomotors. 

Recent investigations have delved into the magnetic 

properties of nanotubes and the behavior of nanotubes in a 

magnetic field. Bellucci et al. [16] examined the impact of 

magnetic fields on the transport properties of nanotubes, while 

Kibalchenko et al. [17] investigated their electronic properties. 

Furthermore, Li et al. [18] and Wang et al. [19] studied the 

influence of magnetic fields on the dynamics of multiwalled 

nanotubes. The mechanics of CNTs in a magnetic field have 

been extensively researched, with studies by Wang et al. [20, 

21], Kiani [22], and Narendar et al. [23] focusing on the effect 

of a longitudinal magnetic field on wave propagation in single-

walled carbon nanotubes (SWCTs). 

More recent studies on wave propagation in SWCTs 

exposed to magnetic fields include works by Arani et al. [24, 

25] involving fluid-conveying single and double-walled

nanotubes, and Li et al. [26], which considered wave

propagation in viscoelastic single-walled nanotubes while

incorporating the surface effect using strain gradient theory.

Zhen and Zhou [27] investigated wave propagation in fluid-

conveying nanotubes under the influence of magnetic fields,
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considering thermal and surface effects. Vibrations of carbon 

nanotubes exposed to magnetic fields were studied for double-

walled nanotubes by Kiani [28, 29] and Murmu et al. [30], and 

for double single-walled carbon nanotube systems by Murmu 

et al. [31] and Arani et al. [32]. Alazwari et al. [4] examined 

vibrations of functionally graded nanobeams in a magnetic 

field, while Kiani [33] investigated vibration and buckling of 

CNTs in a three-dimensional magnetic field. 

Jena et al. [34] and Esen et al. [35] studied the effect of 

magnetic fields on vibrations and buckling of nanobeams. 

Nonlinear vibrations of nanobeams and nanotubes in a 

magnetic field were investigated by Chang [36], Ebrahimi and 

Hosseini [37], and Anh and Hieu [38]. Jalaei et al. [39] 

examined the dynamic stability of a Timoshenko nanobeam in 

a magnetic field, while Bahaadini et al. [40] focused on 

viscoelastic nanotubes conveying magnetic nanoflow in a 

magnetic field. These studies primarily explored wave 

propagation and linear/nonlinear vibrations of single-walled 

nanotubes and nanobeams under specific boundary conditions.  

Complex mechanical systems formed by multiple carbon 

nanotubes, particularly those involving double single-walled 

nanotubes (DSWNTs), have garnered significant attention in 

recent years due to their distinct mechanical properties from 

double-walled nanotubes. A plethora of research has focused 

on studying the vibrational behavior of DSWNTs and double 

nanobeams connected by an elastic layer in the presence of a 

magnetic field, as evidenced by the works of Kiani [28, 29], 

Murmu et al. [30, 31], Arani et al. [32], Nasirshoaibi et al. [41], 

and Stamenkovic et al. [42]. Ebrahimi and Dabbagh [43] 

extended these findings by investigating the effect of magnetic 

fields on the propagation of acoustical waves in rotary double-

nanobeam systems. 

The current study aims to develop a variational formulation 

for a double single-walled carbon nanotube (SWCNT) system 

subjected to forced vibrations, an axial magnetic field, and 

axial compression, based on nonlocal elasticity theory. To date, 

a rigorous derivation of variational principles and associated 

boundary conditions for such double CNT systems exposed to 

magnetic fields remains unavailable. By providing a 

variational framework, the present study paves the way for 

future investigations into the vibration and buckling behavior 

of CNTs in magnetic fields. 

Variational formulations have been previously explored in 

numerous cases involving carbon nanotubes and nanobeams, 

including those by Yang and Lim [44], Baretta et al. [45], 

Barretta et al. [46], and Chalamel [47]. Ike [48] presented a 

formulation based on the system's energy for flexural torsional 

buckling of open cross-section columns, and proposed a 

variational formulation for a Timoshenko beam undergoing 

bending in a subsequent study [49]. 

Deriving variationally consistent boundary conditions is 

crucial for complex mechanical systems. Several studies have 

focused on this topic, such as those by Shi and Voyiadjis [50] 

for shear deformable beams, Robinson and Adali [51] for 

carbon nanotubes subjected to uniformly and triangularly 

distributed axial loads, and Barretta et al. [52] for Timoshenko 

nanobeams based on nonlocal strain gradient theory. Further 

examples include research by Yu et al. [53] on size-dependent 

beams, Xu and Zheng [54] on Timoshenko nanobeams, and 

Pinnola et al. [55] on nonlocal gradient elastic beams. Barretta 

et al. [56] obtained variationally consistent boundary 

conditions for nonlocal strain gradient Timoshenko 

nanobeams. 

Adali [57, 58] derived variational principles and 

variationally consistent boundary conditions for multi-walled 

carbon nanotubes experiencing buckling and vibrations, 

respectively. Xu and Deng [59] extended these findings to 

natural and geometric boundary conditions for multi-walled 

nanotubes subject to buckling and vibrations based on strain 

gradient theory. Additional research on this topic includes 

work by Kucuk et al. [60] on vibrating multi-walled nanotubes 

modeled as Timoshenko beams and Adali [61] on buckling. 

Adali [62] also formulated variational principles and 

variationally consistent boundary conditions for a double 

Rayleigh beam system based on local elasticity theory. 

In this study, we present a variational principle for a double 

nanotube system subjected to a magnetic field, based on 

nonlocal elastic theory. By identifying the kinetic and potential 

energies in the variational expression, we derive Hamilton's 

principle. We then focus on the freely vibrating system, 

formulating the corresponding variational principle and 

deriving Rayleigh quotients for frequency and buckling load. 

The presence of a magnetic field is shown to increase the 

frequency, while decreasing the buckling load. Finally, we 

derive natural and geometric boundary conditions and provide 

expressions for shear force and moment. 

The remainder of this paper is structured as follows: In 

Section 2, we develop the variational principle for a double 

SWCNT system connected by a Winkler-Pasternak interlayer, 

subjected to forced vibrations, axial magnetic field, and 

compressive force. We then present the variational 

formulation of the problem, derive Hamilton's principle based 

on the variational formulation, and obtain expressions for 

Rayleigh quotients for vibration frequency and buckling load. 

In Section 3, we derive variationally consistent boundary 

conditions in terms of moment and shear force expressions, 

which are essential for variational and approximate solution 

methods, particularly those involving the Rayleigh-Ritz 

method. Examples of such methods applied to Kirchhoff plates 

can be found in Ike [63] and Nwoji et al. [64], while 

applications to nanotubes and nanobeams are presented in 

studies by Ansari et al. [65], Chakraverty and Behera [66], 

Behera and Chakraverty [67], and Fakher and Hosseini-

Hashemi [68]. In Section 4, we provide a summary and 

conclude the paper. 

 

 

2. GOVERNING EQUATIONS 

 

Double single-walled nanotube system under consideration 

is subject to a longitudinal magnetic field Hx acting in the axial 

direction and this results in the Lorentz force 𝜂𝐴𝑖𝐻𝑥
2 acting in 

the transverse direction as noted in Stamenkovic et al. [42]. In 

the expression 𝜂𝐴𝑖𝐻𝑥
2 , 𝜂  is the magnetic field permeability 

and Ai is the cross sectional area of the ith nanotube. Nanotubes 

1 and 2 are subject to axial compressive forces P1 and P2 and 

continuous transverse forces fi(x, t) (i=1, 2), respectively, with 

the external forces acting on the beams in the time domain 

𝑡1 ≤ 𝑡 ≤ 𝑡2. 

The nanotubes are connected by an elastic layer between 

them which is modelled as a combination of a Winkler layer 

with an elastic modulus of k0 and a Pasternak (shear) layer with 

an elastic modulus of G0 as shown in Figure 1. 

 

1181



 

 
 

Figure 1. Double single-walled carbon nanotubes with 

Winkler and shear layer subject to axial magnetic field 

 

The deflections of the nanotubes are given by w1(x, t) and 

w2(x, t) with the elastic stiffnesses denoted by 𝐸𝐼𝑖 , cross-

sectional areas by Ai and the densities by ρi. The equations 

governing the forced vibrations of the double nanotubes 

subject to a magnetic field are given in Stamenkovic et al. [42] 

based on the Euler–Bernoulli beam and nonlocal elasticity 

theories detailed in Eringen [69, 70]. These equations can be 

expressed as follows: 

 

𝐿1(𝑤1) − 𝜇𝑁1(𝑤1) + 𝐾(𝑤1, 𝑤2) = 𝑓1(𝑥, 𝑡) −

𝜇
𝜕2𝑓1(𝑥,𝑡)

𝜕𝑥2   
(1) 

 

𝐿2(𝑤2) − 𝜇𝑁2(𝑤2) − 𝐾(𝑤1, 𝑤2) = 𝑓2(𝑥, 𝑡) −

𝜇
𝜕2𝑓2(𝑥,𝑡)

𝜕𝑥2   
(2) 

 

where, the differential operators 𝐿𝑖(𝑤𝑖)  and the coupling 

operators 𝐾𝑖(𝑤1, 𝑤2) are given by: 

 

𝐿𝑖(𝑤𝑖) = 𝐸𝐼𝑖
𝜕4𝑤𝑖

𝜕𝑥4 + 𝑃𝑖
𝜕2𝑤𝑖

𝜕𝑥2 + 𝜌𝑖𝐴𝑖
𝜕2𝑤𝑖

𝜕𝑡2 −

𝜂𝐴𝑖𝐻𝑥
2 𝜕2𝑤𝑖

𝜕𝑥2   
(3) 

 

𝑁𝑖(𝑤𝑖) = 𝑃𝑖
𝜕4𝑤𝑖

𝜕𝑥4 + 𝜌𝑖𝐴𝑖
𝜕4𝑤𝑖

𝜕𝑥2𝜕𝑡2 − 𝜂𝐴𝑖𝐻𝑥
2 𝜕4𝑤𝑖

𝜕𝑥4   (4) 

 

𝐾(𝑤1, 𝑤2) = 𝑘0(𝑤1 − 𝑤2) − 𝐺0 (
𝜕2𝑤1

𝜕𝑥2 −
𝜕2𝑤2

𝜕𝑥2 ) −

𝜇𝑘0 (
𝜕2𝑤1

𝜕𝑥2 −
𝜕2𝑤2

𝜕𝑥2 ) + 𝜇𝐺0 (
𝜕4𝑤1

𝜕𝑥4 −
𝜕2𝑤2

𝜕𝑥4 )  
(5) 

 

It is noted that in Eqs. (1) and (2), 𝜇 = (𝑒0𝑎)2  is the 

nonlocal parameter as defined in Eringen [69, 70]. The 

derivations of the Eqs. (1)-(5) are given in Stamenkovic et al. 

[42] with the formulations of the magnetic field acting on the 

nanotubes based on the works of Murmu et al. [30, 31].  

 

 

3. VARIATIONAL FORMULATION 

 

In the present section, the variational formulation of the 

problem is developed. In order to formulate the variational 

principle applicable to the system of Eqs. (1)-(2), we first 

introduce the variational functionals 𝑉1(𝑤1 , 𝑤2)  and 

𝑉2(𝑤1, 𝑤2) as follows 

𝑉[𝑤1, 𝑤2] = 𝑉1[𝑤1, 𝑤2] + 𝑉2[𝑤1 , 𝑤2] (6) 

 

where, V(w1, w2) is the variational functional to be determined. 

The variational functionals V1(w1, w2) and V2(w1, w2) are 

expressed as follows: 

 

𝑉𝑖[𝑤1, 𝑤2] = Φ𝑖[𝑤𝑖] − 𝜇Ψ𝑖[𝑤𝑖] + Λ𝑊[𝑤1, 𝑤2] +

Λ𝑃[𝑤1, 𝑤2] − 𝑤𝑖𝑓𝑖 + 𝜇𝑤𝑖
𝜕2𝑓𝑖

𝜕𝑥2   
(7) 

 

where the functionals Φ𝑖[𝑤𝑖] , Ψ𝑖[𝑤𝑖] , Λ𝑊[𝑤1, 𝑤2]  and 

Λ𝑃[𝑤1, 𝑤2] are defined as follows: 

 

Φ𝑖[𝑤𝑖] =

1

2
∫ ∫ [

𝐸𝑖𝐼𝑖 (
𝜕2𝑤𝑖

𝜕𝑥2 )
2

− 𝑃𝑖 (
𝜕𝑤𝑖

𝜕𝑥
)

2

−𝜌𝑖𝐴𝑖 (
𝜕𝑤

𝜕𝑡
)

2

+ 𝜂𝐴𝑖𝐻𝑥
2 (

𝜕𝑤

𝜕𝑥
)

2
]

𝐿

0

𝑡2
𝑡1

𝑑𝑥 𝑑𝑡  
(8) 

 

Ψ𝑖[𝑤𝑖] =
1

2
∫ ∫ [

𝑃𝑖 (
𝜕2𝑤𝑖

𝜕𝑥2 )
2

+ 𝜌𝑖𝐴𝑖
𝜕2𝑤𝑖

𝜕𝑥2

𝜕2𝑤𝑖

𝜕𝑡2

−𝜂𝐴𝑖𝐻𝑥
2 (

𝜕2𝑤𝑖

𝜕𝑥2 )
2 ]

𝐿

0
𝑑𝑥 𝑑𝑡

𝑡2
𝑡1

  (9) 

 

𝛬𝑊[𝑤1, 𝑤2] =
𝑘0

2
∫ ∫ [

(𝑤1 − 𝑤2)
2

+𝜇 (
𝜕𝑤1

𝜕𝑥
−

𝜕𝑤2

𝜕𝑥
)

2]
𝐿

0

𝑡2
𝑡1

𝑑𝑥 𝑑𝑡  (10) 

 

Λ𝑃[𝑤1, 𝑤2] =
𝐺0

2
∫ ∫ [

(
𝜕𝑤1

𝜕𝑥
−

𝜕𝑤2

𝜕𝑥
)

2

+𝜇 (
𝜕2𝑤1

𝜕𝑥2 −
𝜕2𝑤2

𝜕𝑥2 )
2]

𝐿

0

𝑡2
𝑡1

𝑑𝑥 𝑑𝑡  (11) 

 

Thus we have: 

 

𝑉1(𝑤1, 𝑤2) = Φ1[𝑤1] − 𝜇Ψ1[𝑤1] + Λ[𝑤1, 𝑤2] −

𝑤1 (𝑓1 − 𝜇
𝜕2𝑓1

𝜕𝑥2 )  
(12) 

 

𝑉2(𝑤1, 𝑤2) = Φ2[𝑤2] − 𝜇Ψ2[𝑤2] + Λ[𝑤1 , 𝑤2] −

𝑤2 (𝑓2 − 𝜇
𝜕2𝑓2

𝜕𝑥2 )  
(13) 

 

where, Λ[𝑤1, 𝑤2] is defined as follows: 

 

Λ[𝑤1, 𝑤2] = Λ𝑊[𝑤1, 𝑤2] + Λ𝑃[𝑤1, 𝑤2] (14) 

 

It is observed that the Euler-Lagrange equations of the 

variational functional V(w1, w2) given by Eq. (6) corresponds 

to the governing equations of the double nanotube system 

given by Eqs. (1)-(2). This can be verified by taking the first 

variation of the functional 𝛿𝑉[𝑤1, 𝑤2] with respect to w1 and 

w2. 

 

 

4. HAMILTON’S PRINCIPLE  

 

The Hamilton’s principle can be expressed as: 

 

∫ [𝛿𝐾𝐸(𝑡) − (𝛿𝑊𝐸(𝑡) + 𝛿𝑃𝐸1(𝑡) +
𝑡2
𝑡1

𝛿𝑃𝐸2(𝑡))]𝑑𝑡 = 0  
(15) 

 

In the present problem, the functionals KE(t), WE(t), PE1(t) 

and PE2(t) are given by: 
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𝐾𝐸(𝑡) =
1

2
∑ ∫ [𝜌𝑖𝐴𝑖  (

𝜕𝑤𝑖

𝜕𝑡
)

2

+
𝐿

0
2
𝑖=1

𝜇𝜌𝑖𝐴𝑖
𝜕2𝑤𝑖

𝜕𝑥2

𝜕2𝑤𝑖

𝜕𝑡2 ] 𝑑𝑥  
(16) 

 

𝑊𝐸(𝑡) = −∑ ∫ (𝑓𝑖 − 𝜇
𝜕2𝑓𝑖

𝜕𝑥2 )  𝑤𝑖(𝑥, 𝑡)
𝐿

0
𝑑𝑥2

𝑖=1   (17) 

 

𝑃𝐸1(𝑡) =
1

2
∑ ∫ [

𝐸𝑖𝐼𝑖 (
𝜕2𝑤𝑖

𝜕𝑥2 )
2

− 𝑃𝑖 (
𝜕𝑤𝑖

𝜕𝑥
)

2

+𝜂𝐴𝑖𝐻𝑥
2 (

𝜕𝑤𝑖

𝜕𝑥
)

2
]

𝐿

0
𝑑𝑥2

𝑖=1   (18) 

 

𝑃𝐸2(𝑡) =

1

2
∑ ∫

[
 
 
 
 
 𝑘0(𝑤1 − 𝑤2)

2 + 𝜇𝑘0 (
𝜕𝑤1

𝜕𝑥

𝜕𝑤2

𝜕𝑥
)

2

+𝐺0 (
𝜕𝑤1

𝜕𝑥
−

𝜕𝑤2

𝜕𝑥
)

2

+𝜇𝐺0 (
𝜕2𝑤1

𝜕𝑥2 −
𝜕2𝑤2

𝜕𝑥2 )
2

]
 
 
 
 
 

𝐿

0
𝑑𝑥 2

𝑖=1   
(19) 

 

In Eqs. (16)-(19), KE(t) is the kinetic energy of the double 

nanotube system, WE(t) is the work done by external forces 

and PE1(t) is the potential energy of deformation which 

includes the contributions by the compressive forces Pi and the 

magnetic field 𝜂𝐴𝑖𝐻𝑥
2. PE2(t) is the potential energy due to the 

Winkler and Pasternak layers between the nanotubes.  

 

 

5. FREE VIBRATIONS 

 

Variational principle for a freely vibrating double beam 

system is formulated next. In this case the external forces 

fi(x,t)=0 with i=1, 2. For freely vibrating beams, the deflection 

can be expressed as: 

 

𝑤𝑖(𝑥, 𝑡) = 𝑊𝑖(𝑥) 𝑒𝑖𝜔𝑡  (20) 

 

where, 𝜔 is the vibration frequency. The differential equations 

for the freely vibrating double nanotube system can be 

obtained from the system of Eqs. (1)-(5) and can be expressed 

as: 

 

𝐿𝐹𝑉1(𝑊1) − 𝜇𝑁𝐹𝑉1(𝑊1) + 𝐾(𝑊1,𝑊2) = 0 (21) 

 

𝐿𝐹𝑉2(𝑊2) − 𝜇𝑁𝐹𝑉2(𝑊2) − 𝐾(𝑊1,𝑊2) = 0 (22) 

 

In Eqs. (21)-(22), the differential operators 𝐿𝐹𝑉𝑖(𝑊𝑖) and 

𝑁𝐹𝑉𝑖(𝑊𝑖) are given by: 

 

𝐿𝐹𝑉𝑖(𝑊𝑖) = 𝐸𝑖𝐼𝑖
𝑑4𝑊𝑖

𝑑𝑥4 + 𝑃𝑖
𝑑2𝑊𝑖

𝑑𝑥2 − 𝜔2𝜌𝑖𝐴𝑖𝑊𝑖 −

𝜂𝐴𝑖𝐻𝑥
2 𝑑2𝑊𝑖

𝑑𝑥2   
(23) 

 

𝑁𝐹𝑉𝑖(𝑊𝑖) = 𝑃𝑖
𝑑4𝑊𝑖

𝑑𝑥4 − 𝜔2𝜌𝑖𝐴𝑖
𝑑2𝑊𝑖

𝑑𝑥2 − 𝜂𝐴𝑖𝐻𝑥
2 𝑑4𝑊𝑖

𝑑𝑥4   (24) 

 

The coupling operator 𝐾(𝑊1,𝑊2) is defined as: 

 

𝐾(𝑊1,𝑊2) = 𝑘0(𝑊1 − 𝑊2) − 𝐺0 (
𝑑2𝑊1

𝑑𝑥2 −
𝑑𝑊2

𝑑𝑥2) −

𝜇𝑘0 (
𝑑2𝑊1

𝑑𝑥2 −
𝑑2𝑊2

𝑑𝑥2 ) + 𝜇𝐺0 (
𝑑4𝑊1

𝑑𝑥4 −
𝑑2𝑊2

𝑑𝑥4 )  
(25) 

 

For the freely vibrating case, the variational functional 

𝑉𝐹𝑉[𝑤1, 𝑤2] is of the form: 

𝑉𝐹𝑉[𝑊1,𝑊2] = 𝑉𝐹𝑉1[𝑊1,𝑊2] + 𝑉𝐹𝑉2[𝑊1,𝑊2] (26) 

 

with the variational functionals 𝑉𝐹𝑉1[𝑊1,𝑊2]  and 

𝑉𝐹𝑉2[𝑊1,𝑊2] given by: 

 

𝑉𝐹𝑉𝑖[𝑊1,𝑊2] = Φ𝐹𝑉𝑖[𝑊𝑖] − 𝜇Ψ𝐹𝑉𝑖[𝑊𝑖]
+ Λ𝐹𝑉[𝑊1,𝑊2] 

(27) 

 

Functionals Φ𝐹𝑉𝑖(𝑊𝑖) , Ψ𝐹𝑉𝑖[𝑊𝑖]  and Λ𝐹𝑉[𝑊1,𝑊2]  in Eq. 

(27) are given by: 

 

Φ𝐹𝑉𝑖[𝑊𝑖] =
1

2
∫ [

𝐸𝑖𝐼𝑖 (
𝑑2𝑊𝑖

𝑑𝑥2 )
2

− 𝑃𝑖 (
𝑑𝑊𝑖

𝑑𝑥
)

2

−𝜔2𝜌𝑖𝐴𝑖𝑊𝑖
2 + 𝜂𝐴𝑖𝐻𝑥

2 (
𝑑𝑊𝑖

𝑑𝑥
)

2
] 𝑑𝑥

 

𝐿

0
  (28) 

 

Ψ𝐹𝑉𝑖[𝑊𝑖] =
1

2
∫ [

𝑃𝑖 (
𝑑2𝑊𝑖

𝑑𝑥2 )
2

+ 𝜔2𝜌𝑖𝐴𝑖 (
𝑑𝑊𝑖

𝑑𝑥
)

2

−𝜂𝐴𝑖𝐻𝑥
2 (

𝑑2𝑊𝑖

𝑑𝑥2 )
2 ] 𝑑𝑥

𝐿

0
  (29) 

 

Λ𝐹𝑉[𝑊1,𝑊2] = Λ𝐹𝑉1[𝑊1,𝑊2] + Λ𝐹𝑉2[𝑊1,𝑊2] (30) 

 

where, 

 

Λ𝐹𝑉1[𝑊1,𝑊2] =
𝑘0

2
∫ [(𝑊1 − 𝑊2)

2 + 𝜇 (
𝑑𝑊1

𝑑𝑥
−

𝐿

0

𝑑𝑊2

𝑑𝑥
)

2

] 𝑑𝑥  
(31) 

 

Λ𝐹𝑉2[𝑊1,𝑊2] =
𝐺0

2
∫ [

(
𝑑𝑊1

𝑑𝑥
−

𝑑𝑊2

𝑑𝑥
)

2

+𝜇 (
𝑑2𝑊1

𝑑𝑥2 −
𝑑2𝑊2

𝑑𝑥2 )
2] 𝑑𝑥

 

𝐿

0
  (32) 

 

5.1 Rayleigh quotient for frequency 

 

Next Rayleigh quotient is given for the freely vibrating 

double beam system. For this purpose, we introduce the 

functionals 𝑌𝐹𝑉𝑖(𝑊𝑖) and 𝑀𝐹𝑉𝑖(𝑊𝑖) given by: 

 

𝑌𝐹𝑉𝑖(𝑊𝑖) = (𝑃𝑖 + 𝜂𝐴𝑖𝐻𝑥
2) ∫ [(

𝑑𝑊𝑖

𝑑𝑥
)

2

+
𝐿

0

𝜇 (
𝑑2𝑊𝑖

𝑑𝑥2 )
2

] 𝑑𝑥  

(33) 

 

𝑀𝐹𝑉𝑖(𝑊𝑖) = ∫ 𝐸𝑖𝐼𝑖 (
𝑑2𝑊𝑖

𝑑𝑥2 )
2

𝑑𝑥
𝐿

0
  (34) 

 

Using the variational principle given in Eq. (26), Rayleigh 

quotient for the vibration frequency ω can now be formulated 

and is given by the expression: 

 

𝜔2 =
∑ [𝑀𝐹𝑉𝑖(𝑊𝑖)−𝑌𝐹𝑉𝑖(𝑊𝑖)]

2
𝑖=1 +Λ𝐹𝑉[𝑊1,𝑊2]

∑ ∫ 𝜌𝑖𝐴𝑖[𝑊𝑖
2−𝜇(

𝑑𝑊𝑖
𝑑𝑥

)
2
] 𝑑𝑥

𝐿
0

2
𝑖=1

  (35) 

 

Frequency ω is computed by minimizing Eq. (35) with 

respect to Wi. In Eq. (35), 𝑀𝐹𝑉𝑖(𝑊𝑖) is defined by Eq. (34), 

𝑌𝐹𝑉𝑖(𝑊𝑖)  by Eq. (33) and Λ𝐹𝑉[𝑊1,𝑊2] by Eq. (30). It is 

observed that the effect of the compressive forces Pi and the 

magnetic field 𝜂𝐴𝑖𝐻𝑥
2 is to reduce the frequency. This is due 

to the fact that the functional 𝑌𝐹𝑉𝑖(𝑊𝑖) given by Eq. (33) is a 

positive definite functional and appears with a negative sign in 
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the numerator of the frequency expression (35). The nonlocal 

effect appears in the denominator of Eq. (35) with a minus sign 

and in the numerator with a negative and a positive sign (in 

Λ𝐹𝑉[𝑊1,𝑊2]) and as such its effect on the frequency depends 

on the relative magnitudes of the problem parameters.  

 

5.2 Rayleigh quotient for buckling load 

 

Next, Rayleigh quotient for buckling load is formulated. For 

this purpose, we introduce the functionals: 

 

𝑍𝐹𝑉𝑖(𝑊𝑖) = ∫ 𝜌𝑖𝐴𝑖 [𝑊𝑖
2 − 𝜇 (

𝑑𝑊𝑖

𝑑𝑥
)

2

]  𝑑𝑥 
𝐿

0
  (36) 

 

𝐵𝐹𝑉𝑖(𝑊𝑖) = ∫ [(
𝑑𝑊𝑖

𝑑𝑥
)

2

+ 𝜇 (
𝑑2𝑊𝑖

𝑑𝑥2 )
2

] 𝑑𝑥
𝐿

0
  (37) 

 

Rayleigh quotient for the buckling load for the case 𝑃1 =
𝑃2 = 𝑃 can be expressed as: 

 

𝑃 =

∑ [
𝑀𝐹𝑉𝑖(𝑊𝑖)−𝜔2𝑍𝐹𝑉𝑖(𝑊𝑖)

−𝜂𝐻𝑥
2𝐴𝑖𝐵𝐹𝑉𝑖(𝑊𝑖)

]2
𝑖=1

+Λ𝐹𝑉(𝑊1,𝑊2)

∑ 𝐵𝐹𝑉𝑖(𝑊𝑖)
2
𝑖=1

  
(38) 

 

where, 𝑍𝐹𝑉𝑖(𝑊𝑖)  is given by Eq. (36) and 𝐵𝐹𝑉𝑖(𝑊𝑖)  by Eq. 

(37). The buckling load P is computed by minimizing Eq. (38) 

with respect to Wi. It is observed that the effect of the magnetic 

field Hx on the buckling load is to reduce the buckling load. 

This is due to the fact that the functional 𝐵𝐹𝑉𝑖(𝑊𝑖) given by 

Eq. (37) is a positive definite functional and appears with a 

negative sign in the numerator of the buckling expression (38). 

The effect of the nonlocal parameter η on the buckling load 

cannot be deduced from the buckling expression (38) and can 

be positive or negative depending on the relative values of 

various quantities. 

 

 

6. BOUNDARY CONDITIONS 

 

In this section, natural and geometric boundary conditions 

are derived using the variational formulation (Eq. (25)) of the 

freely vibrating double beam system. The first variations of 

𝑉𝐹𝑉(𝑊1,𝑊2) with respect to Wi, denoted as 𝛿𝑊𝑖
𝑉𝐹𝑉 , can be 

obtained by integration by parts. We note that: 

 

𝛿𝑤1
𝑉𝐹𝑉 = 𝛿𝑤1

𝑉𝐹𝑉1 + 𝛿𝑤1
𝑉𝐹𝑉2 =

∫ 𝐷1(𝑊1,𝑊2)
𝐿

0
𝛿𝑊1 𝑑𝑥 + 𝜕Ω1(0, 𝐿)  

(39a) 

 

𝛿𝑤2
𝑉𝐹𝑉 = 𝛿𝑤2

𝑉𝐹𝑉1 + 𝛿𝑤2
𝑉𝐹𝑉2 =

∫ 𝐷2(𝑊1,𝑊2)
𝐿

0
𝛿𝑊2 𝑑𝑥 + 𝜕Ω2(0, 𝐿)  

(39b) 

 

where 

 

𝐷𝑖(𝑊1,𝑊2) = 𝐿𝑖(𝑊𝑖) − 𝜇𝑁𝑖(𝑊𝑖) +
(−1)𝑖+1𝐾(𝑊1,𝑊2)  

(40) 

 

In Eqs. (38)-(39), 𝜕Ω𝑖(0, 𝐿)  denotes the boundary terms 

with 𝛿𝑊𝑖
𝑉𝐹𝑉𝑖(𝑊1,𝑊2) given by: 

 

𝛿𝑊𝑖
𝑉𝐹𝑉𝑖(𝑊1,𝑊2) = ∫ [

𝜕𝑉𝐹𝑉𝑖

𝜕𝑊𝑖

𝑑

𝑑𝑥
(

𝜕𝑉𝐹𝑉𝑖

𝜕𝑊𝑖𝑥
)

+
𝑑2

𝑑𝑥2 (
𝜕𝑉𝐹𝑉𝑖

𝜕𝑊𝑖𝑥𝑥
)

]
𝐿

0
𝛿𝑊𝑖  𝑑𝑥 +

𝜕Ω𝑖(0, 𝐿)  

(41) 

 

and 𝜕Ω𝑖(0, 𝐿) is defined as: 

 

𝜕Ω𝑖(0, 𝐿) = (𝑄𝑖  𝛿𝑊𝑖)|𝑥=0
𝑥=𝐿 + (𝑀𝑖  𝛿𝑊𝑖𝑥)|𝑥=0

𝑥=𝐿 (42) 

 

where, 

 

𝑄𝑖 = −(𝑃𝑖 − 𝜂𝐴𝑖𝐻𝑥
2 + 𝜇𝜔2𝜌𝑖𝐴𝑖)

𝑑𝑊𝑖

𝑑𝑥
+ 𝜇𝑘0 (

𝑑𝑊1

𝑑𝑥
−

𝑑𝑊2

𝑑𝑥
) + 𝜇𝐺0 (

𝑑𝑊1

𝑑𝑥
−

𝑑𝑊2

𝑑𝑥
)  

(43) 

 

𝑀𝑖 = 𝐸𝑖𝐼𝑖 + 𝜇(𝑃𝑖 − 𝜂𝐴𝑖𝐻𝑥
2)

𝑑2𝑊𝑖

𝑑𝑥2 + 𝜇𝐺0 (
𝑑2𝑊1

𝑑𝑥2 −

𝑑2𝑊2

𝑑𝑥2 )  
(44) 

 

Here Qi is the shear force and Mi is the moment expression. 

Thus, the boundary conditions at x=0 and x=L are given by: 

 

𝑊𝑖  or 𝑄𝑖(𝑥) = −(𝑃𝑖 − 𝜂𝐴𝑖𝐻𝑥
2 + 𝜇𝜔2𝜌𝑖𝐴𝑖)

𝑑𝑊𝑖

𝑑𝑥
+

𝜇𝑘0 (
𝑑𝑊1

𝑑𝑥
−

𝑑𝑊2

𝑑𝑥
) − 𝜇𝐺0 (

𝑑𝑊1

𝑑𝑥
−

𝑑𝑊2

𝑑𝑥
)  specified  

(45) 

 

𝑊𝑖𝑥  or 𝑀𝑖(𝑥) = 𝐸𝑖𝐼𝑖 + 𝜇(𝑃𝑖 − 𝜂𝐴𝑖𝐻𝑥
2)

𝑑2𝑊𝑖

𝑑𝑥2  +

𝐺0 (
𝑑2𝑊1

𝑑𝑥2 −
𝑑2𝑊2

𝑑𝑥2 )  specified  
(46) 

 

with i=1, 2. It is observed that due to Pasternak interlayer 

between the nanotubes, the boundary conditions are coupled if 

the shear force and/or moment is specified at x=0 or x=L as 

given by Eqs. (45)-(46). 

Derivations of the variational expressions (26)-(29) and the 

boundary conditions (45), (46) are given next. We note that: 

 

∫ 𝐸𝑖𝐼𝑖
𝑑4𝑊𝑖

𝑑𝑥4 𝛿𝑊𝑖  𝑑𝑥 =
𝐿

0
𝐵1𝑖𝐹𝑉(𝑊𝑖 , 𝛿𝑊𝑖) +

𝛿 [
1

2
∫ 𝐸𝑖𝐼𝑖 (

𝑑2𝑊𝑖

𝑑𝑥2 )
2

𝑑𝑥
𝐿

0
]  

(47) 

 

where, 

 

𝐵1𝐹𝑉𝑖(𝑊𝑖 , 𝛿𝑊𝑖) = (𝐸𝑖𝐼𝑖
𝑑3𝑊𝑖

𝑑𝑥3 𝛿𝑊𝑖)|
𝑥=0

𝑥=𝐿

− 

(𝐸𝑖𝐼𝑖
𝑑2𝑊𝑖

𝑑𝑥2
𝛿 (

𝑑𝑊𝑖

𝑑𝑥
))|

𝑥=0

𝑥=𝐿

 

(48) 

 

 

Similarly, 

 

∫ (𝑃𝑖 − 𝜂𝐴𝑖𝐻𝑥
2)

𝑑2𝑊𝑖

𝑑𝑥2

𝐿

0
𝛿𝑊𝑖  𝑑𝑥 = 𝐵2𝑖𝐹𝑉(𝑊𝑖 , 𝛿𝑊𝑖) −

𝛿 [
1

2
∫ (𝑃𝑖 − 𝜂𝐴𝑖𝐻𝑥

2) (
𝑑𝑊𝑖

𝑑𝑥
)

2

𝑑𝑥
𝐿

0
]  

(49) 

 

where, 

 

𝐵2𝐹𝑉𝑖(𝑊𝑖 , 𝛿𝑊𝑖) = ((𝑃𝑖 − 𝜂𝐴𝑖𝐻𝑥
2)

𝑑𝑊𝑖

𝑑𝑥
𝛿𝑊𝑖)|

𝑥=0

𝑥=𝐿

  (50) 

 

1184



 

Eqs. (45)-(47) and (49) indicate the variational expressions 

in Eqs. (34)-(35). Similarly, Eqs. (46), (48), and (50) have the 

boundary terms which appear in the boundary conditions 

shown in Eqs. (43)-(44). 

 

 

7. CONCLUSIONS 

 

A system of two partial differential equations govern the 

vibrations of a system of double single-walled carbon 

nanotubes with the connection between the nanotubes 

modelled as an elastic interlayer. The double nanotube system 

is subject to a longitudinal magnetic field and compressive 

forces. In the present study, the constitutive equations are 

based on nonlocal Euler-Bernouilli beam theory and the 

interlayer between the nanotubes is defined in the form of a 

Winkler-Pasternak layer with the expressions involving the 

displacements (Winkler) and second derivatives of 

displacements (Pasternak). As the constitutive relations are 

based on nonlocal elasticity, the formulation leads to fourth 

order derivatives describing the interlayer. The variational 

formulation of the problem is obtained for the coupled 

differential equations with the system subject to forced 

vibrations. For use in the approximate and variational methods 

of solutions of the problem, vibration frequency and the 

buckling load are expressed in the form of Rayleigh quotients. 

A study of the Rayleigh quotients indicates that the effect of 

the magnetic field is to reduce the frequency and the buckling 

load. An important part of the present study is the derivation 

of variationally consistent boundary conditions. Natural 

boundary conditions are obtained involving the moment and 

shear force expressions. It is observed that the presence of a 

Pasternak interlayer between the nanotubes leads to coupled 

boundary conditions. The results presented in the study can be 

used in a number of approximate and numerical methods of 

solution, especially in the presence of different boundary 

conditions.  

It is noted that variational formulation of a problem defined 

by differential equations provide the weak formulation of the 

problem and the approximations based on this formulation are 

the weak solutions. However, weak formulations can provide 

accurate solutions of the differential equations in the absence 

of an analytical solution as noted in Nicolescu and Bobe [71]. 

Future work on the present study could involve obtaining the 

approximate solutions of the nanotube system subject to a 

combination of clamped, free, simply supported and 

rotational/torsional boundary conditions using the variational 

formulation of the present study. This would require choosing 

suitable trial functions for the approximate solution of the 

specific problem based on the applicable boundary conditions. 

Another direction in further work can involve the study of the 

second variation of the variational functional and determining 

the conditions under which it is positive-definite indicating a 

minimum. Moreover, present formulation is based on Euler-

Bernoulli beam theory and further work can extend the results 

formulation based on Timoshenko beam theory in order to take 

the shear effects into consideration. 
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