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This paper presents a novel nonlinear control strategy tailored for foldable quadrotors 

capable of altering their morphology in-flight. By changing the quadrotor's shape 

through servo motors, these adaptive systems can effectively overcome various 

challenges, including diverse environmental conditions, such as obstacles and climate 

variations. The proposed control approach utilizes a double-loop control method to 

enhance the robustness and performance of the folding quadrotor during flight. The 

outer loop consists of a nonlinear PID controller responsible for regulating motion in 

the X and Y directions, while the inner loop features a sliding mode controller for 

altitude control in the Z direction and attitude stabilization. This dual-loop structure 

ensures the quadrotor's stability even during arm folding. The firefly algorithm is 

employed to optimize the parameters of both controllers, minimizing position errors 

using the Root Mean Square Error (RMSE) as a performance metric. Our results 

demonstrate a significant improvement in the quadrotor's performance and adaptability 

to various proposed morphologies, with error rates reduced to near-negligible levels for 

all shapes. Specifically, the X position error was reduced by 100% for all morphologies, 

the Y position error by 95% for the X shape, 97% for the T shape, 98% for the H shape, 

and 99% for the O shape, and the Z position error by 99% for all morphologies.  
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1. INTRODUCTION

In recent years, quadrotors have garnered significant 

attention from researchers and scientists due to their potential 

applications in various fields, both civilian and military. These 

applications include search and rescue, surveillance, 

photography, and delivery [1]. Consequently, numerous 

studies have been conducted to enhance the stability of 

quadrotors during flight [2, 3] and to improve their utility in 

delivery applications [4, 5]. However, conventional quadrotor 

designs are not well-suited for navigating small spaces and 

irregular surfaces, owing to their inherent stability. This 

limitation has led to a growing demand for adaptable 

quadrotors capable of maintaining in-flight stability while 

encountering obstacles. 

To address this need, several researchers have proposed 

variable-geometry quadrotors capable of altering their shape 

using techniques such as origami or by simulating bird flight 

[6-9]. Nonetheless, morphological changes can compromise 

quadrotor stability, necessitating the development of 

specialized control systems. For instance, Model Reference 

Adaptive Control was implemented to control the angular 

velocity of an X-morphology quadrotor and account for shifts 

in the center of gravity, proving effective in adapting to folding 

maneuvers [10]. However, the alignment of the servo motor's 

axis with the robot's center of rotation weakens the mechanical 

structure [10]. A PID controller was designed for a quad-

morphing robot, but roll control was lost when the robot was 

folded due to the alignment of the four rotors [11]. The 

feedback control module, designed using a Lyapunov 

stabilization approach, effectively tracked the desired roll 

angle but became less efficient when the arms were folded, 

increasing the risk of collision [12]. The Linear Quadratic 

Regulator controller, in conjunction with the computation of 

the inertia matrix, ensured stable flight but reduced the 

aircraft's flight time [13]. The backstepping controller, with 

parameters optimized using the PSO algorithm, showed 

acceptable stability, precision, and speed in simulations, but 

required manual changing of configurations, limiting the 

quadrotor's autonomy [14]. 

In this study, the problem of maintaining stability during 

morphological changes and tracking the desired trajectory of a 

foldable quadrotor is addressed. A double-loop control 

strategy is developed, utilizing two types of nonlinear 

controllers, namely Sliding Mode Control (SMC) and 

Nonlinear PID. The primary objective is to design the 

proposed inner and outer loop controllers, optimizing their 

parameters using the firefly algorithm to minimize position 

errors across various quadrotor shapes while ensuring flight 

continuity during shape changes. 

The remainder of this paper is organized as follows: The 

mechanical design of the foldable quadrotor and the effects of 

its center of gravity are described in Section 2. The proposed 

controllers for the foldable quadrotor are elucidated in Section 

3. The proposed control unit design is presented in detail in

Section 4. An overview of the firefly algorithm and its

application for parameter optimization are provided in Section

5. The simulation results are discussed in detail in Section 6.

Finally, conclusions are offered in Section 7.
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2. MECHANICAL DESIGN OF A FOLDABLE 

QUADROTOR 

 

The foldable quadrotor, as shown in Figure 1, consists of a 

rigid central body 𝑚𝑜 and four arms of masses m2,i that is 

foldable around the main body using servo motors and at 

different angles, see Table 1 [15]. Since these angles represent 

the extension of the folded arm by calculating the potential 

control matrix for each shape, the possible shapes of this quad 

are (X, H, O, Y, YI, T) [14]. Servo motors of masses 𝑚1,𝑖 are 

connected to the central body and the four arms are connected 

to the servo motors, as well as four rotors of masses 𝑚3,𝑖are 

located on the arms. Two rotors (2 and 4) are rotated in a 

clockwise direction and other two rotors (1 and 3) are rotated 

in a counterclockwise direction. Due to changing the 

quadrotor's morphology, the servo motors make the system 

highly coupled. The main body and servo motors are fixed 

around Z-axis while the arms and rotors rotate on the same axis 

(Z-axis). So, the most (conventional) setup leads to numerous 

conceivable arrangements by changing the position of the 

arms [15]. 

Some assumptions are presented to make a suitable model 

for the foldable quadrotor [16]: 

1- The central body, servo motors, and rotation arms are 

rigid. 

2- The propeller is assumed to be rigid, neglecting the 

effect of changing morphology during flight. 

 

 
 

Figure 1. Schematic of the foldable quadrotor [15] 

 

Table 1. Characteristics of the foldable quadrotor 

configuration [14] 

 

Configuration 
Arm Angles 

ψ1(t) ψ2(t) ψ3(t) ψ4(t) 

X π⁄4 π⁄4 π⁄4 π⁄4 

H π⁄2 0 π⁄2 0 

O π π π π 

Y π⁄4 π⁄4 π⁄2 0 

YI π⁄2 0 π⁄4 π⁄4 

T 0 π⁄2 π⁄2 0 

 

2.1 Kinematic model of a foldable quadrotor 

 

The mathematical model of the quadrotor is described in 

two frames see Figure 1. The body frame Rb(Ob, Xb, Yb, Zb), 

which is fixed and the mobile frame Rm(Om, Xm, Ym, Zm). The 

rotation from Rb to Rm consists of three revolutions around an 

(X, Y, Z) axes, which means that the position is obtained at an 

angle (φ, ψ).  So, the total rotation matrix R can be given as 

[15]: 

𝑅 = [

𝑐𝜓𝑐𝜃 𝑐𝜓𝑠𝜃𝑠𝜑 − 𝑠𝜓𝑐𝜑 𝑐𝜓𝑠𝜃𝑐𝜑 + 𝑠𝜓𝑠𝜑
𝑠𝜓𝑐𝜃 𝑠𝜓𝑠𝜃𝑠𝜑 + 𝑐𝜓𝑐𝜑 𝑠𝜓𝑠𝜃𝑐𝜑 − 𝑐𝜓𝑠𝜑
−𝑠𝜃 𝑐𝜃𝑠𝜑 𝑐𝜃𝑐𝜑

] (1) 

 

where, 𝑅 ∈ 𝑆𝑂(3) = {𝑅 ∈ 𝑅3×3|𝑅𝑇𝑅 =

𝐼3×3,det(𝑅)=1} s(. )and c(. )  are abbreviations for sin(.) and 

cos(.), respectively. The linear velocity of the system is 

represented by Α = [𝑢 𝑣 𝑤]𝑇 ∈ 𝑅3  and angular velocity is 

represented by 𝜍 = [𝑝 𝑞 𝑟]𝑇 ∈ 𝑅3. Both of the velocities are 

derived in the mobile frame Rm. The mass of the foldable 

quadrotor is m and the inertia is represented as (𝜓𝑖(𝑡)) ∈

𝑅3×3 . 𝜉 = [𝑋 𝑌 𝑍]𝑇 ∈ 𝑅3  describes the position and 𝜂 =
[𝜑 𝜃 𝜓]𝑇 ∈ 𝑅3 describes the orientation of the quadrotor. 

 

2.2 Dynamic model of a foldable quadrotor 

 

The dynamic model of the foldable quadrotor is derived 

from the Newton-Euler formalism and given as follows [14]: 

 

[
𝑚𝐽3×3(𝜓𝑖(𝑡)) 𝑂3×3

𝑂3×3 𝐽3×3(𝜓𝑖(𝑡))
] [
Α̇
𝜍̇
] + [

𝜍 × 𝑚Α

𝜍 × 𝐽(𝜓𝑖(𝑡))
]

= [
𝑓
𝜏
] 

(2) 

 

where, O3×3 is a zero-matrix dimensional 3×3, and × denotes 

the cross product. 

Many forces act on the quadrotor, such as gravity, thrust, 

hub and drag. So, the total force in the mobile frame is 

expressed [14]: 

 

𝑓 = [

𝑈𝑥
𝑈𝑦
𝐹𝑡

] + 𝑅𝑇 [

𝐹𝐷𝑥
𝐹𝐷𝑦
𝐹𝐷𝑧

] + 𝑅𝑇 [
0
0

−𝑚𝑔
] (3) 

 

The relation between the velocities and the external forces 

is 𝑓 = [𝑓𝑥 𝑓𝑦 𝑓𝑧]
𝑇
∈  𝑅3  and𝑓𝑔 = [0 0 − 𝑚𝑔]

𝑇  is the gravity 

vector, where g is the gravity. Ft is the total thrust force 

generated by the rotation of each rotor, two components 

represent the hub forces Ux, Uy. Also, the quadrotor generates 

drag force 𝐹𝐷 ∈ 𝑅
3 in the body. 

The quadrotor can turn around xm, ym, zm directions by 

applying the moments 𝜏𝜑 , 𝜏𝜃 , 𝜏𝜓. These moments depend on 

the folding angles of the arms and are induced by thrust forces 

Ft. Thus, the moments of roll, pitch and yaw are in the study 

[14]. 

 

𝜏 = [

𝜏𝜑 + 𝑂𝑥 + 𝐿𝑥 +𝑀𝐴𝑋
𝜏𝜃 + 𝑂𝑦 + 𝐿𝑦 +𝑀𝐴𝑌
𝜏𝜓 + 𝐻 +𝑀𝐴𝑍

] (4) 

 

Wind effects can produce an aerodynamic friction torque as 

[14]. 

 

𝑀𝐴 = [𝑀𝐴𝑥  𝑀𝐴𝑦 𝑀𝐴𝑧]
𝑇
= 𝑑𝑖𝑎𝑔(𝑘𝑎𝑥  𝑘𝑎𝑦 𝑘𝑎𝑧)𝜍̇

2 (5) 

 

where, 𝑘𝑎(𝑥,𝑦,𝑧) is the aerodynamic friction coefficient. 

(Ox, Oy) Are the Gyroscopic moments, (Lx, Ly) are the 

flapping moment, and (H) is the hub moment. However, some 

phenomena have a slight effect, such as hub forces and blade 

flapping moments. Thus, they are neglected because the 

quadrotor adopted in this research does not perform any 

aggressive rotation of the four arms during flight [15]. 
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2.3 Center of gravity 

 

The possible shapes of the folding quadrotor are 

asymmetrical, so the center of gravity changes from one form 

to another, as each state has its center of gravity. As a result, it 

is necessary to calculate the center of gravity for each shape. 

The general formula of the center of gravity is shown below 

[6]: 

 

𝑂𝐺 =
∑ ∑ 𝑚𝑗,𝑖𝑂𝐺𝑗,𝑖̅̅ ̅̅ ̅̅3

𝑗=1
4
𝑖=1

𝑚𝑜 +∑ ∑ 𝑚𝑗,𝑖
3
𝑗=1

4
𝑖=1

 (6) 

 

where: 

O is the geometric center. 

𝑂𝐺⃗⃗⃗⃗  ⃗ is the offset between the geometric center of the system 

and the global center of gravity. 

𝑂𝐺𝑜⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ 𝑅3×1  is the vector of the center of gravity of the 

central body, which is zero.  

𝑂𝐺1,𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ 𝑅3×1  is the vector of the center of gravity of the 

servo motors. 

𝑂𝐺2,𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ 𝑅3×1  is the vector of the center of gravity of the 

rotating arms. 

𝑂𝐺3,𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ 𝑅3×1  is the vector of the center of gravity of the 

rotors. 

 

2.4 Control matrix 

 

The control matrix presents the critical values of the 

foldable quadrotor control architecture, as it converts the 

square of the rotational speed of the four propellers 

( Ω𝑖
2|𝑖=1,2,3,4)  into the total thrust force Ft and moments 

𝜏𝜑 , 𝜏𝜃 , 𝜏𝜓 [6]: 

 

𝛥(𝜓𝑖(𝑡))

=

[
 
 
 
 𝑏
𝑏

𝑏(𝑦3,1 − 𝑦𝑔) 𝑏(𝑥𝑔 − 𝑥3,1) 𝑑

𝑏(𝑦3,2 − 𝑦𝑔) 𝑏(𝑥𝑔 − 𝑥3,2) −𝑑

𝑏
𝑏

𝑏(𝑦3,3 − 𝑦𝑔) 𝑏(𝑥𝑔 − 𝑥3,3) 𝑑

𝑏(𝑦3,4 − 𝑦𝑔) 𝑏(𝑥𝑔 − 𝑥3,4) −𝑑]
 
 
 
 
𝑇

 
(7) 

 

Define the control vector of its altitude and attitude as [6]: 

𝑢 = [𝑢1 𝑢2 𝑢3 𝑢4]
𝑇 ∈ 𝑅4×4 , where, 

 

[

𝑢1
𝑢2
𝑢3
𝑢4

] = 𝛥(𝜓𝑖(𝑡))

[
 
 
 
 
𝛺1
2

𝛺2
2

𝛺3
2

𝛺4
2]
 
 
 
 

 (8) 

 

b and d are the aerodynamic coefficients and are taken as [6]: 

 

𝑓𝑖 = 𝑏Ω𝑖
2, 𝑄𝑖 = 𝑑Ω𝑖

2 (9) 

 

where, b is the Thrust coefficient and d is the drag coefficient. 

The foldable quadrotor has eight control inputs. The 

primary four inputs deliver the control vector altitude and 

attitude. The second four control inputs provide the servo 

motors' control vector. To establish the complete dynamic 

model, a state space vector is given, which consists of a set of 

inputs, outputs and states associated with first-order 

differential equations, which will form a model of the space. 

A space with state variables as its axes is referred to as a "state 

space”. The state of the system can be represented as a vector. 

The general state space model is represented as following: 

 

{
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝑐𝑥(𝑡)
 (10) 

 

where, x(t), y(t), and u(t) presented the state, output and control 

vector, respectively. A, B, and C shows system matrix, input 

and output matrix, respectively.  

So, based on Eqs. (2), (3) and (4), the state space vector of 

the nonlinear dynamic model is given as [14]: 

 

X = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]𝑇 (11) 

 

Also, the state space vector is written as [14]: 

 

𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12]
𝑇 (12) 

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

�̇�1 = 𝑥2

�̇�2 = 𝑈1
𝑢𝑥
𝑚
+ 𝑏1𝑥2

�̇�3 = 𝑥4

�̇�4 = 𝑈1
𝑢𝑦

𝑚
+ 𝑏2𝑥4

�̇�5 = 𝑥6

�̇�6 = −𝑔 + 𝑈1
𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃

𝑚
+ 𝑏3𝑥6

�̇�7 = 𝑥8

�̇�8 = 𝑎1�̇��̇� + 𝑎4�̇�𝛺𝑟 +
1

𝐽𝑥𝑥
𝑈2 + 𝑏4�̇�

2

�̇�9 = 𝑥10

�̇�10 = 𝑎2�̇��̇� + 𝑎5�̇�𝛺𝑟 +
1

𝐽𝑦𝑦
𝑈3 + 𝑏5�̇�

2

�̇�11 = 𝑥12

�̇�12 = 𝑎3�̇��̇� +
1

𝐽𝑧𝑧
𝑈4 + 𝑏6�̇�

2

 (13) 

 

where,  𝑎1 =
𝐽𝑦𝑦−𝐽𝑧𝑧

𝐽𝑥𝑥
, 𝑎2 =

𝐽𝑧𝑧−𝐽𝑥𝑥

𝐽𝑦𝑦
 , 𝑎3 = 

𝐽𝑥𝑥−𝐽𝑦𝑦

𝐽𝑧𝑧
, 𝑎4 =

−𝐽𝑟

𝐽𝑥𝑥
, 

𝑎5 =
𝐽𝑟

𝐽𝑦𝑦
,  𝑏1 = 

−𝑘𝐷𝑥

𝑚
, 𝑏2 = 

−𝑘𝐷𝑦

𝑚
, 𝑏3 = 

−𝑘𝐷𝑧

𝑚
, 𝑏4 =

−𝑘𝐴𝑥

𝐽𝑥𝑥
, 

𝑏5 =
−𝑘𝐴𝑦

𝐽𝑦𝑦
, 𝑏6 =

−𝑘𝐴𝑧

𝐽𝑧𝑧
. 

 

𝑢𝑥 = sin𝛹 sin𝜑 + cos𝛹 sin 𝜃 cos 𝜑 (14) 

 

𝑢𝑦 = sin𝛹 sin 𝜃 cos𝜑 − cos𝛹 sin𝜑 (15) 

 

Ω𝑟 = Ω1
2 − Ω2

2 + Ω3
2 − Ω4

2  (16) 

 

where, J(xx,yy,zz) is the moment of inertia Jr, is the rotor inertia, 

kD(x,y,z). Are the translation drag coefficients, kA(x,y,z) are the 

aerodynamic friction coefficients, and Ω is the rotor speed. 
 

 

3. CONTROLLER DESIGN 

 

The foldable quadrotor is a nonlinear, underactuated system, 

as well as a strong coupling due to servo motors that connect 

each arm to the main body making the system highly coupled. 

It has only four control inputs but must control six states as an 

underactuated system. As a result of these reasons, the double 

loop control strategy relied upon using two types of controllers, 

where the control system is divided into two parts. The first 

part is where the input control is available, called the inner 
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loop control, and uses the classic sliding mode control. While 

the second part is where no actual control input is available, it 

is called outer loop control and uses nonlinear PID. 

 

3.1 Classical sliding mode controller 

 

The sliding mode control is one of the methods used to 

control nonlinear systems, as it provides an efficient design to 

ensure the stability of the control unit [17]. The sliding mode 

control consists of two main parts: 

1- The reaching phase, which urges the control in the 

sliding mode to go towards the sliding surface. 

2- The sliding phase forces the reaching phase in the sliding 

mode to remain on the sliding surface and slide until 

reaching the original. The sliding mode control law is 

given as [18]: 

 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑑𝑖𝑠 (17) 

 

where, ueq is the nominal control part, udis. It is the 

discontinuous part. Define the discontinuous part as [18]: 

 

𝑢𝑑𝑖𝑠 = −𝑘𝑠𝑖𝑔𝑛(𝑠) (18) 

 

where, s is the sliding surface and it is assumed as:  

 

𝑠 = �̇� + 𝑐𝑒 (19) 

 

3.2 Nonlinear PID controller 

 

The traditional PID has been developed to have a greater 

degree of freedom to be more scalable to design for nonlinear 

systems It was reconstructed by replacing the linear PID parts 

with nonlinear functions as shown in the equations below [19]: 

 

𝑈𝑁𝐿𝑃𝐼𝐷 = 𝑓1(𝑒) + 𝑓2(�̇�) + 𝑓3(∫ 𝑒𝑑𝑡) (20) 

 

𝑓𝑖 = 𝑘𝑖(𝛽)|𝛽|
𝛼𝑖𝑠𝑖𝑔𝑛(𝛽) (21) 

 

𝑘𝑖(𝛽) = 𝑘𝑖1 +
𝑘𝑖2

1 + exp(𝜇𝑖𝛽
2)
, 𝑖 = 1,2,3 (22) 

 

 

4. DESIGN OF CONTROLLER FOR FOLDABLE 

QUADROTOR 

 

The design process for the inner loop (u1, u2, u3 u4) is based 

on the sliding mode control method, while the design for 

control signals (ux, uy) for the motion in the (x, y) plane are 

based on the nonlinear PID (NLPID) control, see Figure 2. 

 

 
 

Figure 2. Proposed foldable quadrotor control design 

 

4.1 Design of inner loop Sliding Mode Controller (SMC)  

 

For the altitude (Z) [14]:  

 

{

�̇�5 = 𝑥6

�̇�6 = −𝑔 + 𝑈1
𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃

𝑚
+ 𝑏3𝑥6

 (23) 

 

The tracking error of the altitude is e5 is expressed as: 

 

𝑒5 = 𝑥5 − 𝑥5𝑑 (24) 

 

�̇�5 = �̇�5 − �̇�5𝑑 = 𝑥6 − �̇�5𝑑 (25) 

�̈�5 = �̈�5 − �̈�5𝑑 = �̇�6 − �̈�5𝑑 (26) 

 

where, x5 is the actual altitude and x5d is the desired altitude. 

The sliding surface for the altitude is: 

 

𝑠5 = �̇�5 + 𝑐5𝑒5 (27) 

 

Taking the derivative of the sliding surface: 

 

�̇�5 = �̈�5 + 𝑐5�̇�5 (28) 

 

To guarantee �̇�5 = 0, U1 must be: 
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𝑈1 =
𝑚

𝑐𝑜𝑠𝑥7𝑐𝑜𝑠𝑥9
[�̈�5𝑑 + 𝑔 − 𝑏3𝑥6 − 𝑐5(𝑥6 − �̇�5𝑑) −

𝑘5𝑠𝑔𝑛(𝑠5) − 𝑘6𝑠5]  
(29) 

 

Repeat the same steps as above to find the control signal for 

the attitude (φ, θ and ψ), so: 

 

𝑈2 = 𝐽𝑥𝑥[�̈�7𝑑 − 𝑎1𝑥10𝑥12 − 𝑎4𝑥10Ω𝑟 − 𝑏4𝑥8
2

− 𝑐7(𝑥8 − �̇�7𝑑) − 𝑘7𝑠𝑔𝑛(𝑠7)
− 𝑘8𝑠7] 

(30) 

 

𝑈3 = 𝐽𝑦𝑦[�̈�9𝑑 − 𝑎2𝑥8𝑥12 − 𝑎4𝑥8Ω𝑟 − 𝑏5𝑥9
2

− 𝑐9(𝑥10 − �̇�9𝑑) − 𝑘9𝑠𝑔𝑛(𝑠9)
− 𝑘10𝑠9] 

(31) 

 

𝑈4 = 𝐽𝑧𝑧[�̈�11𝑑 − 𝑎3𝑥8𝑥10 − 𝑏6𝑥12
2 − 𝑐11(𝑥12 − �̇�11𝑑)

− 𝑘11𝑠𝑔𝑛(𝑠11) − 𝑘12𝑠11] 
(32) 

 

4.2 Design of outer loop Nonlinear PID Controller (NLPID) 

 

The Quadrotor system has no actual control input for the 

motion in the (X, Y) plane. The following analysis is proposed 

to generate suitable control signals (ux, uy) for the motion in 

the (X, Y) plane: 

From Eqs. (14) and (15) [14]: 

 

𝑢𝑥 = 𝑠𝑖𝑛𝜓𝑑𝑠𝑖𝑛𝜑𝑑 + 𝑐𝑜𝑠𝜓𝑑𝑠𝑖𝑛𝜃𝑑𝑐𝑜𝑠𝜑𝑑  

 

𝑢𝑦 = 𝑠𝑖𝑛𝜓𝑑𝑠𝑖𝑛𝜃𝑑𝑐𝑜𝑠𝜑𝑑 − 𝑐𝑜𝑠𝜓𝑑𝑠𝑖𝑛𝜑𝑑  

 

By solving these two equations: 

 

𝜑𝑑 = asin (𝑢𝑥𝑠𝑖𝑛𝜓𝑑 − 𝑢𝑦𝑐𝑜𝑠𝜓𝑑) (33) 

 

𝜃𝑑 = asin (
𝑢𝑥𝑐𝑜𝑠𝜓𝑑+𝑢𝑦𝑠𝑖𝑛𝜓𝑑

𝑐𝑜𝑠𝜑𝑑
)   (34) 

 

The above two equations represent the desired value for roll 

and pitch angles. The main objective of the NLPID controller 

is to approach the errors of (x and y) positions to zero as 

described below: 

 

�̈�1 + 𝑈𝑁𝐿𝑃𝐼𝐷 = 0 (35) 

 

�̈�1 − �̈�1𝑑 + 𝑓𝑥1(𝑒𝑥) + 𝑓𝑥2(�̇�𝑥) + 𝑓𝑥3(∫ 𝑒𝑥𝑑𝑡) = 0 (36) 

 

�̈�3 + 𝑈𝑁𝐿𝑃𝐼𝐷 = 0 (37) 

 

�̈�3 − �̈�3𝑑 + 𝑓𝑦1(𝑒𝑦) + 𝑓𝑦2(�̇�𝑦) + 𝑓𝑦3(∫ 𝑒𝑦𝑑𝑡) = 0   (38) 

 

Letting (ux, uy) be the virtual control signals for (x, y) 

respectively, thus:  

 

𝑢𝑥 =
𝑚

𝑈1
[
𝑘𝑑𝑥
𝑚
𝑥2 + �̈�1𝑑 − 𝑓𝑥1(𝑒𝑥) − 𝑓𝑥2(�̇�𝑥)

+ 𝑓𝑥3(∫ 𝑒𝑥𝑑𝑡)] 
(39) 

 

𝑢𝑦 =
𝑚

𝑈1
[
𝑘𝑑𝑦

𝑚
𝑥4 + �̈�3𝑑 − 𝑓𝑦1(𝑒𝑦) − 𝑓𝑦2(�̇�𝑦) +

𝑓𝑦3(∫ 𝑒𝑦𝑑𝑡)]   
(40) 

 

 

5. FIREFLY ALGORITHM 

 

Firefly algorithm is a bio-inspired metaheuristic algorithm 

for optimization problems. It is noticeable that the bright 

fireflies attract all the less bright fireflies and that the fireflies 

are attracted to each other Typically since the attraction is 

straightforwardly relative to the brightness and inversely 

proportional to the distance between them. As a result, it is 

conceivable to form an unused arrangement by gravity and 

irregular strolling of fireflies since fireflies move randomly. 

This algorithm is based on two key ideas [20]: 

1. The light intensity emitted. 

2. The degree of Attractiveness that is generated between 

two fireflies. 

For the light intensity of Firefly (i, Ii) depends on the 

intensity Io of light emitted by firefly i and the distance r 

between firefly i and j [20] 

 

𝐼𝑖 = 𝐼𝑜𝑒
−𝛾𝑟𝑖𝑗

2
 (41) 

 

The Attractiveness βij of the Firefly, i depends on the light 

intensity seen by an adjacent firefly j and its distance rij, then 

the Attractiveness βij is [20]: 

 

𝛽𝑖 = 𝛽𝑜𝑒
−𝛾𝑟𝑖𝑗

2
 (42) 

 

γ is the light absorption coefficient. 

βo is the Attractiveness. 

rij is the distance between any two fireflies and can 

represent by [20]: 

 

𝑟𝑖𝑗 = √∑(𝑥𝑖 − 𝑥𝑗)
2 (43) 

 

The movement of firefly 𝑖 towards firefly 𝑗 is represented 

by [20]: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛽𝑒
−𝛾𝑟𝑖𝑗

2
(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜖𝑖 (44) 

 

ϵi is a random parameter generated by a uniform distribution. 

α is the parameter of scale. 

If the light intensity of firefly i is greater than firefly j, the 

firefly moves randomly and is presented by the equation [20]: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛼𝜖𝑖 (45) 

 

A summary of the Firefly optimization algorithm is: 

• Initialize the parameters. 

• Generate a population of (n) fireflies. 

• Calculate the fitness value of each firefly. 

• Check if (t=1 to maximum iteration). 

• Update position and light intensity for each firefly. 

• Report the best solution. 

In this paper, a Root Mean Square Error (RMSE) is 

involved in monitoring the performance of the proposed 

control system (performance index). This is to minimize the 

occurred errors of the virtual control (ux, uy) parameters and 

main control (uz, uψ). The RMSE formula is expressed [21]: 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑑𝑖𝑠,𝑖 − 𝑥𝑎𝑐𝑡,𝑖)
2𝑛

𝑖=0

𝑛
 (46) 
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where,  

xdis is the desired value. 

xact is the actual value. 

 

 

6. SIMULATION RESULTS 

 

The nonlinear system of the 6-degrees of freedom and the 

proposed controller for this quadrotor is simulated using 

Matlab/Simulink. This foldable quadrotor is simulated under 

ideal conditions (no external disturbances or uncertainties 

affected). The parameter values used in the simulation are 

listed in Table 2 [15]. Since this quadrotor has the ability to 

change the configuration according to the tasks assigned to it, 

it will have an important effect on the inertial matrix since each 

shape has a specific value of inertia, as in the Table 3 [15]. 

 

Table 2. Foldable quadrotor parameters [15] 

 
Parameters Description Value 

m Mass platform 1,133g 

g Gravity 9.81 

l Length of arm  21cm 

d Drag coefficient 1.61×10-4 

b Thrust coefficient 6.317×10-4 

 

Table 3. The possible inertia values for each shape [15] 

 
Configuration Jxx (kg.m2) Jyy (kg.m2) Jzz (kg.m2) 

X 1.211×10-2 1.213×10-2 2.370×10-2 

H 2.888×10-3 1.978×10-2 2.112×10-2 

O 4.719×10-3 7.743×10-3 7.491×10-3 

Y 7×10-3 1.597×10-2 2.241×10-2 

YI 7×10-2 1.597×10-2 2.241×10-2 

T 1.082×10-2 1.084×10-2 2.112×10-2 

 

The Fireflies algorithm is used to find the lowest value of 

the proposed cost function (Eq. (45)). The parameters used in 

the firefly algorithm are shown in Table 4. A reference path, 

shown in Figure 3, is applied. To calculate the cost function to 

set 32 parameters of the model, 24 parameters are used for the 

nonlinear PID controller, see Table 5, and 8 parameters are 

used for the sliding mode control, see Table 6. Satisfactory 

results were reached by proving that the minimum cost 

function reached as shown in Figure 4. 

Followed the desired trajectory as when 0 < 𝑡 < 20 sec., 

𝑥𝑑 = 0; 20 < 𝑡 < 30, 𝑥𝑑 = 𝑡 − 20; 30 < 𝑡 < 50, 𝑥𝑑 = 10; 

50 < 𝑡 < 60 , 𝑥𝑑 = −1(𝑡 − 50) ; 60 < 𝑡 < 70 , 𝑥𝑑 = 0 . 

When 0 < 𝑡 < 30, 𝑦𝑑 = 0; 30 < 𝑡 < 40, 𝑦𝑑 = 𝑡 − 30; 40 <
𝑡 < 60, 𝑦𝑑 = 10; 60 < 𝑡 < 70, 𝑦𝑑 = −1(𝑡 − 60). and when 

0 < 𝑡 < 70, 𝑧𝑑 = 10. The quadrotor flights upward with a 

fixed path until it reaches a height of 10 m from the initial 

positions (X, Y, Z)=(0, 0, 0). 

The simulation results were carried out using 

MATLAB/Simulink with a time set to 70 sec, As shown in the 

Figures 5 and 6 below. 

 

Table 4. Firefly algorithm parameters 

 
Parameters Value 

Light absorption coefficient 1 

Attraction coefficient base value 1 

Mutation coefficient 1 

Mutation coefficient damping ratio 0.98 

Population size 20 

Iteration max 40 

Table 5. Optimal parameters for nonlinear PID 

 
Parameter Value Parameter Value Parameter Value 

k11x 3.0151 y3x 0.01 k31y 1.0242 

k12x 1.2504 a1x 0.01 k32y 2.5960 

k21x 4 a2x 0.3450 y1y 1.9688 

k22x 2.0480 a3x 1.3632 y2y 0.01 

k31x 0.1105 k11y 4 y3y 3.7522 

k32x 1.9498 k12y 2.8314 a1y 0.01 

y1x 2.5793 k21y 3.1710 a2y 1.9894 

y2x 0.01 k22y 0.01 a3y 0.8624 

 

Table 6. Optimal parameters for sliding mode controller 

 
Parameters Value 

k5 4 

k6 4 

k7 3.5165 

k8 0.01 

k9 0.01 

k10 0.01 

k11 0.01 

k12 0.3410 

 

 
 

Figure 3. Performance of RMSE using Firefly algorithm 
 

 
 

Figure 4. Control of a foldable quadrotor using trapezoidal 

trajectory 

 

Figures 5 and 6 show the proposed controller's efficiency in 

ensuring the stability of all possible shapes of the quadrotor 

while following the proposed path as the error in position 

approaches zero. Figure 7 shows that the error in the x-axis 

position varies between 0.02 m to -0.02 m and approaches zero. 

The error in the y-axis position fluctuates between 0.024 m to 

-0.024 m and settles at 0.0006686 m. 
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(a) X trajectory 

 

 
 

(b) Y trajectory 

 

 
 

(c) Z trajectory 

 

 
 

(d) Yaw angle 

 

Figure 5. Response of the position and yaw angle: (a) X 

trajectory; (b) Y trajectory; (c) Z trajectory; (d) Yaw angle 

 
 

(a) Tracking error in X position 
 

 
 

(b) Tracking error in Y position 
 

 
 

(c) Tracking error in Z position 
 

 
 

(d) Tracking error in yaw angle 

 

Figure 6. Tracking error in position and yaw angle: (a) 

Tracking error in X position; (b) Tracking error in Y 

position; (c) Tracking error in Z position; (d) Tracking error 

in yaw angle 
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The square shape path, shown in Figure 5, is applied and the 

quadrotor flights upward with a fixed path until it reaches a 

height of 5 m from the initial positions (0,0,0). It is noticed 

from Figure 8 that the quadrotor follows the required path 

angles with small errors as changed the folded angles every 12 

seconds. Using a switch, the foldable angles toggle between 

these values allowing the quadrotor to change its morphology. 
 

 
(a) first arm angle ψ1 

 
(b) second arm angle ψ2 

 
(c) third arm angle ψ3 

 
(d) fourth arm angle ψ4 

 

Figure 7. Servomotor's angle variations: (a) first arm angle 

ψ1; (b) second arm angle ψ2; (c) third arm angle ψ3; (d) fourth 

arm angle ψ4 

 
(a) Evolution of the command U1 

 
(b) Evolution of the command U2 

 
(c) Evolution of the command U3 

 
(d) Evolution of the command U4 

 

Figure 8. Control signals. (a) Evolution of the command U1; 

(b) Evolution of the command U2; (c) Evolution of the 

command U3; (d) Evolution of the command U4 

 

The value of the control signal U1 changes during the 

trajectory to reach its highest value after 40 seconds and settles 

at a fixed value of around 17.76 N. As for the second and third 

control signals U2, U3, differences appear due to the presence 

of the multirotor. The fourth control signal U4 takes the highest 

value at the beginning of the path with the presence of 
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fluctuations and then stabilizes at zero. 
 

 

7. CONCLUSIONS 
 

This paper presents a proposed architectural control for the 

foldable quadrotor, known for its complexity and non-linearity, 

in addition to its high coupling due to the presence of servo 

motors. Therefore, a control strategy based on the double loop 

was proposed using two nonlinear controllers (sliding mode 

control in the inner loop and nonlinear PID in the outer loop). 

Fireflies algorithm based on the Root Main Square 

performance indicator was used to improve parameters in each 

controller.  

The proposed controller proved its efficiency in reducing 

errors in the position and deflection angles and making them 

close to zero and the controller is suitable for all possible 

shapes as compared with reference number 13, while 

maintaining the transit stability of the quadrotor even with the 

changes its shape. 
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