
A Comprehensive Machine Learning Framework for Automated Book Genre Classifier

Abhisek Sethy1* , Ajit Kumar Rout2 , Archana Uriti2 , Surya Prakash Yalla3

1 Department of Computer Science & Engineering, Silicon Institute of Technology, Bhubaneswar 751024, Odisha, India
2 Department of Information Technology, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
3 Department of Computer Science & Engineering, MVGR College of Engineering, Chintalavalasa, Vizianagaram 535005,

Andhra Pradesh, India

Corresponding Author Email: abhisek.sethy@silicon.ac.in

https://doi.org/10.18280/ria.370323 ABSTRACT

Received: 21 February 2023

Accepted: 1 April 2023

Machine learning has been leveraged in the digital era, resulting in an increasing desire for

computers to perform human-like tasks. Text classification is rapidly becoming one of the

most significant applications of machine learning. However, the manual reading and

classification of books based on genre requires substantial time and effort. As a result,

machine learning methods are critical for enabling automated classification. In this study,

a book description-based text classification framework was proposed, utilizing a wealth of

information about book contents. The automated classification of books was achieved

through the implementation of supervised machine learning. A variety of classifiers were

employed, including Multinomial Naive Bayes, Gradient Boosting, and Random Forest, to

categorize book genres. According to the results, the Naive Bayes classifier outperformed

the other two techniques in classification accuracy, while comparable performance was

achieved with Gradient Boosting and Random Forest. The comprehensive machine learning

framework efficiently and accurately categorized books by extracting information from

book descriptions. The proposed methodology has the potential to facilitate large-scale

book classification for both academic and industrial purposes. Overall, this study provided

an automated solution to relieve the burden of manual classification while achieving high

accuracy.

Keywords:

machine learning, natural language Toolkit,

Naive Bayes, TF-IDF vectorizer, Random

Forest, Gradient Boosting

1. INTRODUCTION

Machine learning enables computers to learn from previous

experiences and improve future predictions without being

explicitly programmed. Machine learning can address many

real-time complex situations. Book genre classification is one

of the most prevalent issues facing the world today. It is quite

important in daily life. Humans can quickly identify a

particular book's genre by reading its content. However, new

readers may have difficulty determining the book's category,

and there are many volumes in libraries that are not organized

by genre. It is not always feasible for people to read the

complete text to discern its genre because doing so requires

substantial time and effort.

As a result, machine learning and natural language

processing to address this prevalent problem could be quite

beneficial. Natural language processing is commonly used in

text classification and summarization challenges for

application-oriented tasks. Gathering data, applying data pre-

processing techniques, selecting features, and eventually

implementing classifiers on the dataset are common steps in

text classification using natural language processing [1]. The

proposed method employed a labeled book dataset for testing

purposes, as well as several classifiers such as Naive Bayes,

Gradient Boosting, and Random Forest. The data pre-

processing procedures and implementation of multiple

machine learning classifiers were explained in this study. All

classifiers were trained to categorize books into up to six

distinct genres. Finally, the findings were reviewed and

depicted using graphical representations, followed by a

conclusion.

2. PRIOR WORK

In the study, Panchal et al. [2] used a variety of machine

learning approaches on the books dataset. Text cleaning is

done as part of pre-processing to eliminate tokens that are not

important to categorization. Several classifiers were used,

including KNN, SVM, and LR. To predict the genre of test

samples, the above classifiers were trained using the feature

matrix or values created using the TF-IDF vectorizer.

However, one issue discovered is that all of the above-

mentioned classifiers provide erroneous results and are unable

to function well on bigger datasets. In the study, Gupta et al.

[3] presented an Adaboost classifier approach to determine

books based on genre. The tagged data from the gathered

books is pre-processed through several phases. However, the

feature matrix turned out to be sparse, which might prevent the

model from correctly classifying. In order to solve this

problem, the Principle Component Analysis approach is then

used to minimise the dimensionality of the feature matrix. The

Decision tree classifier was initially employed as a model, but

because it was inaccurate, the Adaboost classifier was used to

the training set to study it and it improved the accuracy of the

Decision tree classifier model. Agarwal and Vijay [4] used a

Revue d'Intelligence Artificielle
Vol. 37, No. 3, June, 2023, pp. 745-751

Journal homepage: http://iieta.org/journals/ria

745

https://orcid.org/0000-0002-3025-0823
https://orcid.org/0000-0002-9853-0258
https://orcid.org/0000-0001-9123-3296
https://orcid.org/0000-0002-0896-0714
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370323&domain=pdf

Character Network-based Genre Classification in their study.

The pre-processed text is run through a parts of speech (POS)

tagger, which assigns all of the words to their appropriate parts

of speech. All the same characters but referred to by various

names were connected together once the text was POS tagged

[5], and all the interactions between those characters were

identified. The character interaction graphs for the texts in the

dataset are then created utilising the information provided

above. The edges were weighed using the interaction scores.

The eigenvalues are then used as a comparison to determine

how similar the graphs are. Thus, for each book text, the p

closest graphs were picked, yielding a (nsamples × p) matrix,

which was then fed into a variety of classifiers, including

SVM, Multi-Layer Perceptron, Random Forest, Adaboost,

Gradient Boosting, and Gaussian Naive Bayes, Gaussian

Process Classifier. However, pronouns are sometimes difficult

to determine and resolve in the context of a book, which is a

huge disadvantage.

Li et al. [6] developed a text categorization model with the

use of the Latent Dirichlet Allocation (LDA) approach. The

information is initially obtained via twenty different news

group data packets, which are a component that is widely

utilised in classification algorithms. The authors decided to use

three distinct varieties of 20 news group data packets for their

research. After the data has been pre-processed, the LDA

model is applied in order to determine the topic distribution of

the news data used for the training collection. The distribution

of topics is carried out with the assistance of a topic model in

order to reduce the text dimension, which is too high, and to

acquire features. After the training and modelling have been

finished, the results of the anticipated categories are obtained

with the use of a classifier called Softmax Regression. Yao et

al. [7] demonstrated a fastText-based text classification model.

This model included modules for data pre-processing, feature

extraction, training, and assessment. Because the sample that

was used in this research came from a Chinese source, the

training samples that were used in the training phase of the

method were all tokenized in advance. Once the word

tokenization process is complete, the useless garbled letters,

phrases, and stop-words are removed. This helps to improve

the overall quality of the corpus. The input layer of the fast

Text approach, in contrast to the typical bag-of-words model,

takes into consideration the n-gram feature of the sentence in

addition to the word forms for each word in the sentence as an

additional feature to input. In addition to having elements that

enable it to acquire word order information to a level, fastText

also has features that enable it to generate a more accurate

representation of a phrase. FastText combines word form and

n-gram features from the input layer in the hidden layer and

uses hierarchical softmax to discover the tag of the input data

in the output layer. H-Softmax speeds training. Learning rate,

epoch, window size, bucket, loss, and dim are hyper-

parameters.

Zhang et al. [8] proposed the Mahalanobis-based KNN

classifier. In this paper undergo pre-processing. Training

simples initially filtered out stop words. Popular classifiers and

learning algorithms cannot directly process text documents.

During pre-processing, feature vectors represent documents.

TF-IDF uses term and document frequency to compute a

word's weight in a document and create a weight table.

Document r's phrase frequency shows e's appearances.

Document frequency is the number of e-containing

documents. The TF-Gini feature weight approach by Shang [9]

greatly increases classification performance. A promising text

feature weighting technique. This algorithm computes no

logarithms. Text feature weight methods require more

calculation. Gini index non-purity split. SVM, kNN, and fkNN

classifiers assessed the unique feature weight technique Gini

Index. kNN finds the most similar (cosine similar) documents

in training sets. It analyses the test document's candidate

classes by their neighbours' classes. The test document's

similarity determines the neighbor document's class weight.

Fuzzy theory improved kNN. In the text pre-processing phase,

each classifier was compared to the revised Gini index using

Information Gain, Odds Ratio, Mutual Information, Expected

Cross Entropy, Weight of Evidence of Text, and CHI.

Liu et al. [10] presented multi-hierarchy text categorization.

It's Vector Space Model-based. This method encodes

document content as a dot in multi-dimensional space and

represents it as a vector. Calculating and comparing vector

distances determines the vector's related classes. Most VSM

documents are represented in the TF-IDF vector format, which

calculates term weight using term frequency and inverse

document frequency. This study explores the TF.IDF.IG

approach and rationalises the term weight calculation

algorithm to improve TF-IDF. VSM-based multi-hierarchy

text classification is also demonstrated. All class training

records are combined into a single class document as a tree

based on hierarchical relationships. Building class models is

as simple as comparing class documents related to the same

layer node. Checking texts hierarchically until a relevant

subclass is found. Roger Alan Stein et al. proposed

hierarchical text categorization using word embeddings in the

study [11]. With publicly available data, it employed

classification models with fastText, SVM, XGBoost, Keras'

CNN, GloVe, word2vec, and fastText. Text can be expressed

numerically to become a vector. The Bag-of-words (BoW)

model describes this representation. Data cleaning and

homogenization usually precede BoW conversion from plain

text. Weight is calculated using the compound value from TF

and IDF.

3. PROPOSED METHODOLOGY

The proposed system has been established to perform a

Book genre classification using various machine learning

approaches [12] and all the essential stages has been depicted

in below Figure 1.

Figure 1. Steps implemented in proposed system

746

3.1 Data acquisition

Initially, a book dataset with a.csv file and around 3000

rows was obtained from the website [1]. In this paper the data

acquisition has been collected CMU book summary dataset.

About books that were converted from Gujarati or Hindi to

English are in the dataset. The columns in the dataset are Book

Id, Book Name, Summary, Authors, details, language,

Abstarct, Summary and Genre. Among all these attributes, the

proposed work has focused on four attributes like Book_id,

Book_name, Genre and summary. All the rows included of

each above book genre type. The collection included about

books. Every 500 rows of the 3000 rows are the same genre,

completing six different genres. Python is used for all of the

programming in the proposed work. In Figure 2 depicts the

process of reading a CSV file into the project environment,

which is done with the help of the read_csv() function of the

pandas library.

Figure 2. Books dataset

3.2 Data preprocessing

Pre-processing [13] of data is done using libraries like

pandas and numpy. The dataset being collected comprises

columns that are redundant for genre classification, such as

Book Id and Book Name, which have been removed from the

dataset and staged for various preprocessing approaches as

follows. In the preprocessing steps involves removal of

punctuation and symbols in text followed up by removal of

stop words that described in the below section.

3.2.1 Cleaning test

In order to classify the book appropriately according to its

category, the proposed need to read an overview of it.

However, the synopsis of each book in our collection contains

unwanted characters such as punctuation and other special

symbols that aren't required for classification [14]. As a

consequence of this, the proposed system made use of a

significant number of the built-in Python functions in order to

clean up the text. All the steps involved in the data cleaning

are listed below.

3.2.2 Removal of stopwords

The cleansed data is next pre-processed by removing

stopwords, which are useless for data classification. The

elimination of stop words is one of the preprocessing stages

that is utilized the vast majority of the time in a variety of

applications that utilize NLP. The objective is to simply get rid

of the words that are used regularly throughout all of the

different documents that make up the database. Stop words are

typically comprised of grammatical constructs such as articles

and pronouns [15] like "the", "and" and "to" in English, for

example, which are inappropriate for categorization and

cannot be employed. So the nltk.corpus package is imported

to get all the English stopwords and delete them from all

summaries by scanning through entire text and depicted in

Figure 3.

Figure 3. Removal of stopwords

3.2.3 Lemmatization

Lemmatization is a process that attempts to reduce a word

to its root form, which is also known as a lemma. As an

illustration, the verb "running" would be rendered simply as

"run." The study of lemmatization focuses on the

morphological, or structural, analysis of words in addition to

their context.A word is analysed by the process of

lemmatization, which reduces it to its lemma. Following the

elimination of stopwords, the text is lemmatized [16], which

reduces all versions of a given word to their simplest form. The

nltk.stem library, which includes the WordNetLemmatizer

class, is imported here. All of the terms are lemmatized to their

basic forms using the lemmatize() function and have shown in

Figure 4.

Figure 4. Lemmatization

3.2.4 Stemming

Stemming is a method of eliminating attachments from the

word in order to ensure we are left with the word's primary

747

component, which is called the stem. After having stemming

performed on them, the words 'run,' 'running,' and 'runs' can all

be reconstructed from the root word 'run,' as seen in the

following example. One of the most important aspects of stem

words is that it is not necessary for them to have any meaning.

After that, the text is subjected to a stemming process in order

to acquire the base form of all words by eliminating affixes.

The library nltk.stem, which contains the Stemmer class, is

imported to accomplish this. The stem() method is used to

execute a text stemming procedure and shown in Figure 5.

Figure 5. Lemmatization

3.3 Applying TF-IDF vectorizer

In order to understand how term frequency (TF) works, you

must first examine the frequency of a certain phrase that you

are interested in in relation to the document. There are many

different standards or approaches to defining frequency,

including the unrounded count of the number of times a word

appears in a document. The raw count of occurrences is

divided by the total number of words in the document, and the

result is the term frequency adjusted for the length of the

document. The summary of any book in the dataset is of the

type string, and it should not be put into the model directly.

The input to ML models is solely in the form of numerical

representations which is doable with the TF-IDF vectorizer

[17]. It's a method for converting text into finite-length vectors

that's mostly used to normalize data. The two terms that it is

constructed on are Term Frequency (TF) and Inverse

Document Frequency (IDF). The following formula is used to

find TF-IDF values shown in Eq. (1), Eq. (2) and Eq. (3).

𝑡𝑓𝑖𝑑𝑓 = 𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
(1)

Term frequency (TF)=It is a statistic that counts the number

of times a word (x) appears in a document (y).

TF(x. y) =
number of instances of x in document y

whole number of words in document y
(2)

Inverse Document Frequency (IDF) It's a statistic for

assessing a word's importance. The Term frequency (TF)

method overlooks the importance of terms. The word’s IDF is

measured as follows

IDF(x, C)

= In (
whole number of documents contained in corpus C

whole number of documents that contain x
)

(3)

After substituting Eq. (2) and Eq. (3) in Eq. (1), we get

tf − idf = TF(x, y) × IDF(x, C) (4)

Instead of manually computing the TF-IDF values, the

library sklearn.feature_extraction.text, which contains the

TFidfVectorizer class, is used to automate the process. As a

result, in Eq. (4), the feature matrix is created to represent the

original summary text in numerical form, and this matrix

together with the target variable "genre" is supplied into the

model as an input.

3.4 Implementing classifiers

3.4.1 Naïve Bayes (NB)

The Naive Bayes classifier [18] is widely used in

classification tasks, such as text categorization, and is a

prominent supervised machine learning technique. It's a

machine learning algorithm; therefore, it simulates how a

class's inputs are typically distributed. The speed and accuracy

of the algorithm's recommendations are predicated on a belief

that the features of the input data are conditionally independent

given the class. Given a set of facts and some background

knowledge, this theorem calculates the probability of a

hypothesis. The inexperienced Bayes classifier makes an

inference that the input data's features are unrelated to one

another, which is rarely the case in reality. It is mainly used

for classification problems. It's a probabilistic learning

approach, which means it makes predictions based on the

likelihood of the object. The Bayes theorem formula is

P(X
Y⁄) =

P(Y
X⁄) × P(X)

P(Y)
(5)

where, P(X) = prior probability

P(X/Y) = posterior probability

P(Y/X) = likelihood probability

P(Y) = Marginal probability

It computes the event A’s probability given that event B

already occurred. Using the MultinomialNB in Eq. (5) class

from the sklearn.naive_bayes package, the classifier instance

is first generated. For multi-class text classification, the

Multinomial Naive Bayes classifier is appropriate. The feature

matrix, together with the encoded target variable "genre" is

then input into the Naive Bayes Classifier model using the fit()

method for training and depicted in Figure 6.

Figure 6. Implementing Naive Bayes classifier

3.4.2 Random Forest (RF)

Random Forest [19] is a popular supervised Machine

Learning algorithm which can be used for both regression and

classification problems. When there is a labeled target variable,

748

Random Forests can be used for supervised machine learning.

Both regression (with a numeric target variable) and

classification (with a categorical target variable) issues are

amenable to Random Forests. As an ensemble method,

Random Forests pool the results of various models to get an

overall forecast. Individually, the component models that

make up the Random Forest ensemble are decision trees. First,

"bagging" generates a new training subset from existing

training data samples using a majority voting system. Take

Random Forest as an illustration. The second method, called

"boosting," mixes models in a sequential fashion to increase

the accuracy of the final model. Such brands include ADA

BOOST and XG BOOST. It uses ensemble learning where it

uses a combination of classifiers (decision trees) to predict the

final result taken based on max voting. It is a special case of

bagging in which the Bootstrap Sampling is the core idea in

the bagging technique. This algorithm is very helpful for

solving complicated problems [17] and in turn, the model’s

performance would be greatly improved.

Random Forest Classifier model object is imported from the

sklearn.ensemble package to construct Random Forest. The

fit() method is then used to train the model using the feature

matrix and encoded target variable, show in Figure 7.

Figure 7. Implementing Random Forest classifier

3.4.3 Gradient Boosting classifier

It's a Boosting technique that uses an ensemble learning

method. It combines numerous weak classifiers into a

powerful model (a good accuracy model). Each model tries to

fix the flaws of the previous one. At each iteration, it does not

fit a predictor to the data, instead the new predictor [20] is

fitted upon the residual bias given by the previous predictor.

In especially when dealing with huge and complicated

datasets, the method known as "Gradient Boosting" stands out

because to the speed and precision with which it makes

predictions. Errors play a significant part in every machine

learning system, which is something we already know. Error

can be broken down into two primary categories: bias error

and variance error. The gradient boost approach assists us in

reducing the amount of bias error produced by the model.

Gradient Boosting Classifier class imported from the

sklearn.ensemble package is used to implement Gradient

Boosting in Python. The feature matrix and encoded target

variable, which are supplied as input to the model, are then

utilised to train the model using the fit() function and shown

in Figure 8.

Figure 8. Implementing Gradient Boosting classifier

3.5 Serializing the models and TF-IDF vectorizer into

pickle files

The models established in the preceding phase are in the

form of Python objects. In order to use the models created in

the real websites, they must be stored as pickle files. Pickle is

Python's standard serialization and de-serialization

mechanism. Pickling is the process of transforming any

Python object into byte streams. Unpickling is the process of

converting byte streams back into Python objects. It's the

pickling process in reverse. By importing the pickle library,

Python objects are serialized to pickle files.

3.6 Integrating the models into a website

In the project built, the pickle files generated following the

pickling phase are used. Unpickling is accomplished by

loading the pickle files into a website and re-importing the

same models and shown in Figure 9.

Figure 9. Integrating the models into a website

4. RESULTS AND DISCUSSIONS

Figure 10. Naive Bayes classifier performance

The 3000 row books dataset is divided into 80:20 training

and testing sets, with the test set containing 600 rows. The

graphs below depict the working of several classifiers on the

Test dataset. The entire feature has been evaluated with respect

to various classifiers. All the results have been evaluated based

on six class type of Book genre. Among the datasets certain

amount of data or rows has been taken for the classification of

Book category. In below Figure 10 depicts the analysis with

749

respect to NaiveBayes, Figure 11 depicts the analysis with

respect to Random Forest [21], and Figure 12 depicts the

analysis of Gradient Boosting approach.

Figure 11. Random Forest classifier performance

Figure 12. Gradient Boosting classifier performance

The accuracy of several classifiers is tabulated below. By

looking the results, the Naive Bayes classifier clearly seems to

be better than that of the other classifiers [19] and comparison

over all techniques has been listed in the Table 1 below.

Table 1. Accuracies of various classifiers

Model Training Set (%) Test Set (%)
CMU Book Accuracy

Classification

Naive Bayes 80 20 78%

Random Forest 80 20 65.66%

Gradient Boosting 80 20 65.33%

5. CONCLUSIONS

Text classification is becoming an increasingly widespread

challenge in modern times, and it is challenging for people to

discover solutions. As a result, the use of machine learning in

this domain is a viable option for simplifying the situation.

Therefore, this proposed classification scheme makes use of a

variety of distinct classifiers in order to categorize the types of

books. The text is pre-processed first, and then it is turned into

feature vectors. Finally, the feature vectors are input into the

multiple classifiers, where they are trained. According to the

findings, Naive Bayes performs significantly better than the

other two classifiers, which are Random Forest and Gradient

Boosting.

REFERENCE

[1] Bejan, A. (2015). Constructal thermodynamics.

Constructal Law & Second Law Conference, Parma, pp.

S1-S8.

[2] Panchal, B.Y., Shiroya, P., Vaghasiya, D., Soni, M.

(2021). Book Genre Categorization Using Machine

Learning Algorithms (K-Nearest Neighbor, Support

Vector Machine and Logistic Regression) Using

Customized Dataset.

http://dx.doi.org/10.47760/ijcsmc.2021.v10i03.002

[3] Gupta, S., Agarwal, M., Jain, S. (2019). Automated genre

classification of books using machine learning and

natural language processing. In 2019 9th International

Conference on Cloud Computing, Data Science &

Engineering (Confluence), Noida, India, pp. 269-272.

https://doi.org/10.1109/CONFLUENCE.2019.8776935

[4] Agarwal, D., Vijay, D. (2021). Genre classification using

character networks. In 2021 5th International Conference

on Intelligent Computing and Control Systems (ICICCS),

Madurai, India, pp. 216-222.

https://doi.org/10.1109/ICICCS51141.2021.9432303

[5] Ozsarfati, E., Sahin, E., Saul, C.J., Yilmaz, A. (2019).

Book genre classification based on titles with

comparative machine learning algorithms. In 2019 IEEE

4th International Conference on Computer and

Communication Systems (ICCCS), Singapore, pp. 14-20.

https://doi.org/10.1109/CCOMS.2019.8821643

[6] Li, Z., Shang, W., Yan, M. (2016). News text

classification model based on topic model. In 2016

IEEE/ACIS 15th International Conference on Computer

and Information Science (ICIS), Okayama, Japan, pp. 1-

5. https://doi.org/10.1109/ICIS.2016.7550929

[7] Yao, T., Zhai, Z., Gao, B. (2020). Text classification

model based on fasttext. In 2020 IEEE International

Conference on Artificial Intelligence and Information

Systems (ICAIIS), Dalian, China, pp. 154-157.

https://doi.org/10.1109/ICAIIS49377.2020.9194939

[8] Zhang, S., Pan, X. (2011). A novel text classification

based on Mahalanobis distance. In 2011 3rd International

Conference on Computer Research and Development, 3:

156-158. https://doi.org/10.1109/ICCRD.2011.5764268

[9] Shang, W., Dong, H., Zhu, H., Wang, Y. (2008). A novel

feature weight algorithm for text categorization. In 2008

International Conference on Natural Language

Processing and Knowledge Engineering, Beijing, China,

pp. 1-7.

[10] Liu, S., Dong, M., Zhang, H., Li, R., Shi, Z. (2001). An

750

approach of multi-hierarchy text classification. In 2001

International Conferences on Info-Tech and Info-Net.

Proceedings (Cat. No. 01EX479), 3: 95-100.

[11] Stein, R.A., Jaques, P.A., Valiati, J.F. (2019). An

analysis of hierarchical text classification using word

embeddings. Information Sciences, 471: 216-232.

[12] Sethy, A., Patra, P.K., Nayak, S.R. (2022). A hybrid

system for handwritten character recognition with high

robustness. Traitement du Signal, 39(2): 567-576.

http://dx.doi.org/10.18280/ts.390218

[13] Sethy, A., Patra, P.K., Nayak, S.R., Poonia, R.C. (2022).

Offline handwritten character and numeral recognition:

A kernel-based approach. International Journal of Social

Ecology and Sustainable Development (IJSESD), 13(1):

1-21. http://dx.doi.org/10.4018/IJSESD.295087

[14] Sethy, A., Patra, P.K., Nayak, S.R. (2022). A deep

convolutional neural network-based approach for

handwritten recognition system. In Computational

Intelligence in Pattern Recognition, Singapore, pp. 607-

617. http://dx.doi.org/10.1007/978-981-16-2543-5_52

[15] Uriti, A., Yalla, S.P., Chintada, K.R. (2021). An

approach of understanding customer behavior with an

emphasis on rides. In 2021 Innovations in Power and

Advanced Computing Technologies (i-PACT), Malaysia,

pp. 1-5. https://doi.org/10.1109/i-

PACT52855.2021.9696837

[16] Yalla, S.P., Uriti, A., Sethy, A. (2022). Wheel chair

movement through eyeball recognition using raspberry

Pi. Specialusis Ugdymas, 1(43): 8583-8591.

[17] Rout, A.K., Sethy, A., Kumar, M.R., Ahamed, M.F.,

Mohan, S. (2022). Text summarization adaptive models

for semantic relevance information: A survey.

Specialusis Ugdymas, 1(43): 10836-10844.

[18] Archana, U., Sridhar, U. (2017). A novel quantization

approach for approximate nearest neighbor search to

minimize the quantization error. JIRSET, pp. 11976-

11982. https://doi.org/10.15680/IJIRSET.2017.0606287

[19] Yalla, S.P., Uriti, A., Sethy, A. (2022). GUI

implementation of modified and secure image

steganography using least significant bit substitution.

International Journal of Safety and Security Engineering,

12(5): 639-643. https://doi.org/10.18280/ijsse.120513

[20] Rout, A.K., Sethy, A., Nayak, S.R. (2022). Adaptive

MLELM-AE model for efficient prediction of stock

market data. Journal of Statistics and Management

Systems, 25(7): 1541-1552.

http://dx.doi.org/10.1080/09720510.2022.2130567

[21] Sethy, A., Patra, P.K. (2018). Optical character

recognition of Odia handwritten scripts and numerals: A

survey on web based utility application. Journal of Web

Engineering, 17(6): 3629-3653.

751

