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Machine learning has been leveraged in the digital era, resulting in an increasing desire for 

computers to perform human-like tasks. Text classification is rapidly becoming one of the 

most significant applications of machine learning. However, the manual reading and 

classification of books based on genre requires substantial time and effort. As a result, 

machine learning methods are critical for enabling automated classification. In this study, 

a book description-based text classification framework was proposed, utilizing a wealth of 

information about book contents. The automated classification of books was achieved 

through the implementation of supervised machine learning. A variety of classifiers were 

employed, including Multinomial Naive Bayes, Gradient Boosting, and Random Forest, to 

categorize book genres. According to the results, the Naive Bayes classifier outperformed 

the other two techniques in classification accuracy, while comparable performance was 

achieved with Gradient Boosting and Random Forest. The comprehensive machine learning 

framework efficiently and accurately categorized books by extracting information from 

book descriptions. The proposed methodology has the potential to facilitate large-scale 

book classification for both academic and industrial purposes. Overall, this study provided 

an automated solution to relieve the burden of manual classification while achieving high 

accuracy. 
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1. INTRODUCTION

Machine learning enables computers to learn from previous 

experiences and improve future predictions without being 

explicitly programmed. Machine learning can address many 

real-time complex situations. Book genre classification is one 

of the most prevalent issues facing the world today. It is quite 

important in daily life. Humans can quickly identify a 

particular book's genre by reading its content. However, new 

readers may have difficulty determining the book's category, 

and there are many volumes in libraries that are not organized 

by genre. It is not always feasible for people to read the 

complete text to discern its genre because doing so requires 

substantial time and effort. 

As a result, machine learning and natural language 

processing to address this prevalent problem could be quite 

beneficial. Natural language processing is commonly used in 

text classification and summarization challenges for 

application-oriented tasks. Gathering data, applying data pre-

processing techniques, selecting features, and eventually 

implementing classifiers on the dataset are common steps in 

text classification using natural language processing [1]. The 

proposed method employed a labeled book dataset for testing 

purposes, as well as several classifiers such as Naive Bayes, 

Gradient Boosting, and Random Forest. The data pre-

processing procedures and implementation of multiple 

machine learning classifiers were explained in this study. All 

classifiers were trained to categorize books into up to six 

distinct genres. Finally, the findings were reviewed and 

depicted using graphical representations, followed by a 

conclusion. 

2. PRIOR WORK

In the study, Panchal et al. [2] used a variety of machine 

learning approaches on the books dataset. Text cleaning is 

done as part of pre-processing to eliminate tokens that are not 

important to categorization. Several classifiers were used, 

including KNN, SVM, and LR. To predict the genre of test 

samples, the above classifiers were trained using the feature 

matrix or values created using the TF-IDF vectorizer. 

However, one issue discovered is that all of the above-

mentioned classifiers provide erroneous results and are unable 

to function well on bigger datasets. In the study, Gupta et al. 

[3] presented an Adaboost classifier approach to determine

books based on genre. The tagged data from the gathered

books is pre-processed through several phases. However, the

feature matrix turned out to be sparse, which might prevent the

model from correctly classifying. In order to solve this

problem, the Principle Component Analysis approach is then

used to minimise the dimensionality of the feature matrix. The

Decision tree classifier was initially employed as a model, but

because it was inaccurate, the Adaboost classifier was used to

the training set to study it and it improved the accuracy of the

Decision tree classifier model. Agarwal and Vijay [4] used a
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Character Network-based Genre Classification in their study. 

The pre-processed text is run through a parts of speech (POS) 

tagger, which assigns all of the words to their appropriate parts 

of speech. All the same characters but referred to by various 

names were connected together once the text was POS tagged 

[5], and all the interactions between those characters were 

identified. The character interaction graphs for the texts in the 

dataset are then created utilising the information provided 

above. The edges were weighed using the interaction scores. 

The eigenvalues are then used as a comparison to determine 

how similar the graphs are. Thus, for each book text, the p 

closest graphs were picked, yielding a (nsamples × p) matrix, 

which was then fed into a variety of classifiers, including 

SVM, Multi-Layer Perceptron, Random Forest, Adaboost, 

Gradient Boosting, and Gaussian Naive Bayes, Gaussian 

Process Classifier. However, pronouns are sometimes difficult 

to determine and resolve in the context of a book, which is a 

huge disadvantage. 

Li et al. [6] developed a text categorization model with the 

use of the Latent Dirichlet Allocation (LDA) approach. The 

information is initially obtained via twenty different news 

group data packets, which are a component that is widely 

utilised in classification algorithms. The authors decided to use 

three distinct varieties of 20 news group data packets for their 

research. After the data has been pre-processed, the LDA 

model is applied in order to determine the topic distribution of 

the news data used for the training collection. The distribution 

of topics is carried out with the assistance of a topic model in 

order to reduce the text dimension, which is too high, and to 

acquire features. After the training and modelling have been 

finished, the results of the anticipated categories are obtained 

with the use of a classifier called Softmax Regression. Yao et 

al. [7] demonstrated a fastText-based text classification model. 

This model included modules for data pre-processing, feature 

extraction, training, and assessment. Because the sample that 

was used in this research came from a Chinese source, the 

training samples that were used in the training phase of the 

method were all tokenized in advance. Once the word 

tokenization process is complete, the useless garbled letters, 

phrases, and stop-words are removed. This helps to improve 

the overall quality of the corpus. The input layer of the fast 

Text approach, in contrast to the typical bag-of-words model, 

takes into consideration the n-gram feature of the sentence in 

addition to the word forms for each word in the sentence as an 

additional feature to input. In addition to having elements that 

enable it to acquire word order information to a level, fastText 

also has features that enable it to generate a more accurate 

representation of a phrase. FastText combines word form and 

n-gram features from the input layer in the hidden layer and

uses hierarchical softmax to discover the tag of the input data

in the output layer. H-Softmax speeds training. Learning rate,

epoch, window size, bucket, loss, and dim are hyper-

parameters.

Zhang et al. [8] proposed the Mahalanobis-based KNN 

classifier. In this paper undergo pre-processing. Training 

simples initially filtered out stop words. Popular classifiers and 

learning algorithms cannot directly process text documents. 

During pre-processing, feature vectors represent documents. 

TF-IDF uses term and document frequency to compute a 

word's weight in a document and create a weight table. 

Document r's phrase frequency shows e's appearances. 

Document frequency is the number of e-containing 

documents. The TF-Gini feature weight approach by Shang [9] 

greatly increases classification performance. A promising text 

feature weighting technique. This algorithm computes no 

logarithms. Text feature weight methods require more 

calculation. Gini index non-purity split. SVM, kNN, and fkNN 

classifiers assessed the unique feature weight technique Gini 

Index. kNN finds the most similar (cosine similar) documents 

in training sets. It analyses the test document's candidate 

classes by their neighbours' classes. The test document's 

similarity determines the neighbor document's class weight. 

Fuzzy theory improved kNN. In the text pre-processing phase, 

each classifier was compared to the revised Gini index using 

Information Gain, Odds Ratio, Mutual Information, Expected 

Cross Entropy, Weight of Evidence of Text, and CHI. 

Liu et al. [10] presented multi-hierarchy text categorization. 

It's Vector Space Model-based. This method encodes 

document content as a dot in multi-dimensional space and 

represents it as a vector. Calculating and comparing vector 

distances determines the vector's related classes. Most VSM 

documents are represented in the TF-IDF vector format, which 

calculates term weight using term frequency and inverse 

document frequency. This study explores the TF.IDF.IG 

approach and rationalises the term weight calculation 

algorithm to improve TF-IDF. VSM-based multi-hierarchy 

text classification is also demonstrated. All class training 

records are combined into a single class document as a tree 

based on hierarchical relationships. Building class models is 

as simple as comparing class documents related to the same 

layer node. Checking texts hierarchically until a relevant 

subclass is found. Roger Alan Stein et al. proposed 

hierarchical text categorization using word embeddings in the 

study [11]. With publicly available data, it employed 

classification models with fastText, SVM, XGBoost, Keras' 

CNN, GloVe, word2vec, and fastText. Text can be expressed 

numerically to become a vector. The Bag-of-words (BoW) 

model describes this representation. Data cleaning and 

homogenization usually precede BoW conversion from plain 

text. Weight is calculated using the compound value from TF 

and IDF. 

3. PROPOSED METHODOLOGY

The proposed system has been established to perform a 

Book genre classification using various machine learning 

approaches [12] and all the essential stages has been depicted 

in below Figure 1. 

Figure 1. Steps implemented in proposed system 
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3.1 Data acquisition 

Initially, a book dataset with a.csv file and around 3000 

rows was obtained from the website [1]. In this paper the data 

acquisition has been collected CMU book summary dataset. 

About books that were converted from Gujarati or Hindi to 

English are in the dataset. The columns in the dataset are Book 

Id, Book Name, Summary, Authors, details, language, 

Abstarct, Summary and Genre. Among all these attributes, the 

proposed work has focused on four attributes like Book_id, 

Book_name, Genre and summary. All the rows included of 

each above book genre type. The collection included about 

books. Every 500 rows of the 3000 rows are the same genre, 

completing six different genres. Python is used for all of the 

programming in the proposed work. In Figure 2 depicts the 

process of reading a CSV file into the project environment, 

which is done with the help of the read_csv() function of the 

pandas library. 

Figure 2. Books dataset 

3.2 Data preprocessing 

Pre-processing [13] of data is done using libraries like 

pandas and numpy. The dataset being collected comprises 

columns that are redundant for genre classification, such as 

Book Id and Book Name, which have been removed from the 

dataset and staged for various preprocessing approaches as 

follows. In the preprocessing steps involves removal of 

punctuation and symbols in text followed up by removal of 

stop words that described in the below section. 

3.2.1 Cleaning test 

In order to classify the book appropriately according to its 

category, the proposed need to read an overview of it. 

However, the synopsis of each book in our collection contains 

unwanted characters such as punctuation and other special 

symbols that aren't required for classification [14]. As a 

consequence of this, the proposed system made use of a 

significant number of the built-in Python functions in order to 

clean up the text. All the steps involved in the data cleaning 

are listed below. 

3.2.2 Removal of stopwords 

The cleansed data is next pre-processed by removing 

stopwords, which are useless for data classification. The 

elimination of stop words is one of the preprocessing stages 

that is utilized the vast majority of the time in a variety of 

applications that utilize NLP. The objective is to simply get rid 

of the words that are used regularly throughout all of the 

different documents that make up the database. Stop words are 

typically comprised of grammatical constructs such as articles 

and pronouns [15] like "the", "and" and "to" in English, for 

example, which are inappropriate for categorization and 

cannot be employed. So the nltk.corpus package is imported 

to get all the English stopwords and delete them from all 

summaries by scanning through entire text and depicted in 

Figure 3. 

Figure 3. Removal of stopwords 

3.2.3 Lemmatization 

Lemmatization is a process that attempts to reduce a word 

to its root form, which is also known as a lemma. As an 

illustration, the verb "running" would be rendered simply as 

"run." The study of lemmatization focuses on the 

morphological, or structural, analysis of words in addition to 

their context.A word is analysed by the process of 

lemmatization, which reduces it to its lemma. Following the 

elimination of stopwords, the text is lemmatized [16], which 

reduces all versions of a given word to their simplest form. The 

nltk.stem library, which includes the WordNetLemmatizer 

class, is imported here. All of the terms are lemmatized to their 

basic forms using the lemmatize() function and have shown in 

Figure 4. 

Figure 4. Lemmatization 

3.2.4 Stemming 

Stemming is a method of eliminating attachments from the 

word in order to ensure we are left with the word's primary 

747



component, which is called the stem. After having stemming 

performed on them, the words 'run,' 'running,' and 'runs' can all 

be reconstructed from the root word 'run,' as seen in the 

following example. One of the most important aspects of stem 

words is that it is not necessary for them to have any meaning. 

After that, the text is subjected to a stemming process in order 

to acquire the base form of all words by eliminating affixes. 

The library nltk.stem, which contains the Stemmer class, is 

imported to accomplish this. The stem() method is used to 

execute a text stemming procedure and shown in Figure 5. 

Figure 5. Lemmatization 

3.3 Applying TF-IDF vectorizer 

In order to understand how term frequency (TF) works, you 

must first examine the frequency of a certain phrase that you 

are interested in in relation to the document. There are many 

different standards or approaches to defining frequency, 

including the unrounded count of the number of times a word 

appears in a document. The raw count of occurrences is 

divided by the total number of words in the document, and the 

result is the term frequency adjusted for the length of the 

document. The summary of any book in the dataset is of the 

type string, and it should not be put into the model directly. 

The input to ML models is solely in the form of numerical 

representations which is doable with the TF-IDF vectorizer 

[17]. It's a method for converting text into finite-length vectors 

that's mostly used to normalize data. The two terms that it is 

constructed on are Term Frequency (TF) and Inverse 

Document Frequency (IDF). The following formula is used to 

find TF-IDF values shown in Eq. (1), Eq. (2) and Eq. (3). 

𝑡𝑓𝑖𝑑𝑓 = 𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
(1) 

Term frequency (TF)=It is a statistic that counts the number 

of times a word (x) appears in a document (y). 

TF(x. y) =
number of instances of x in document y

whole number of words in document y
(2) 

Inverse Document Frequency (IDF) It's a statistic for 

assessing a word's importance. The Term frequency (TF) 

method overlooks the importance of terms. The word’s IDF is 

measured as follows 

IDF(x, C)

= In (
whole number of documents contained in corpus C

whole number of documents that contain x 
) 

(3) 

After substituting Eq. (2) and Eq. (3) in Eq. (1), we get 

tf − idf = TF(x, y) × IDF(x, C) (4) 

Instead of manually computing the TF-IDF values, the 

library sklearn.feature_extraction.text, which contains the 

TFidfVectorizer class, is used to automate the process. As a 

result, in Eq. (4), the feature matrix is created to represent the 

original summary text in numerical form, and this matrix 

together with the target variable "genre" is supplied into the 

model as an input. 

3.4 Implementing classifiers 

3.4.1 Naïve Bayes (NB) 

The Naive Bayes classifier [18] is widely used in 

classification tasks, such as text categorization, and is a 

prominent supervised machine learning technique. It's a 

machine learning algorithm; therefore, it simulates how a 

class's inputs are typically distributed. The speed and accuracy 

of the algorithm's recommendations are predicated on a belief 

that the features of the input data are conditionally independent 

given the class. Given a set of facts and some background 

knowledge, this theorem calculates the probability of a 

hypothesis. The inexperienced Bayes classifier makes an 

inference that the input data's features are unrelated to one 

another, which is rarely the case in reality. It is mainly used 

for classification problems. It's a probabilistic learning 

approach, which means it makes predictions based on the 

likelihood of the object. The Bayes theorem formula is 

P(X
Y⁄ ) =

P(Y
X⁄ ) × P(X)

P(Y)
(5) 

where, P(X) = prior probability 

P(X/Y) = posterior probability 

P(Y/X) = likelihood probability 

P(Y) = Marginal probability 

It computes the event A’s probability given that event B 

already occurred. Using the MultinomialNB in Eq. (5) class 

from the sklearn.naive_bayes package, the classifier instance 

is first generated. For multi-class text classification, the 

Multinomial Naive Bayes classifier is appropriate. The feature 

matrix, together with the encoded target variable "genre" is 

then input into the Naive Bayes Classifier model using the fit() 

method for training and depicted in Figure 6. 

Figure 6. Implementing Naive Bayes classifier 

3.4.2 Random Forest (RF) 

Random Forest [19] is a popular supervised Machine 

Learning algorithm which can be used for both regression and 

classification problems. When there is a labeled target variable, 
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Random Forests can be used for supervised machine learning. 

Both regression (with a numeric target variable) and 

classification (with a categorical target variable) issues are 

amenable to Random Forests. As an ensemble method, 

Random Forests pool the results of various models to get an 

overall forecast. Individually, the component models that 

make up the Random Forest ensemble are decision trees. First, 

"bagging" generates a new training subset from existing 

training data samples using a majority voting system. Take 

Random Forest as an illustration. The second method, called 

"boosting," mixes models in a sequential fashion to increase 

the accuracy of the final model. Such brands include ADA 

BOOST and XG BOOST. It uses ensemble learning where it 

uses a combination of classifiers (decision trees) to predict the 

final result taken based on max voting. It is a special case of 

bagging in which the Bootstrap Sampling is the core idea in 

the bagging technique. This algorithm is very helpful for 

solving complicated problems [17] and in turn, the model’s 

performance would be greatly improved.  

Random Forest Classifier model object is imported from the 

sklearn.ensemble package to construct Random Forest. The 

fit() method is then used to train the model using the feature 

matrix and encoded target variable, show in Figure 7. 

Figure 7. Implementing Random Forest classifier 

3.4.3 Gradient Boosting classifier 

It's a Boosting technique that uses an ensemble learning 

method. It combines numerous weak classifiers into a 

powerful model (a good accuracy model). Each model tries to 

fix the flaws of the previous one. At each iteration, it does not 

fit a predictor to the data, instead the new predictor [20] is 

fitted upon the residual bias given by the previous predictor. 

In especially when dealing with huge and complicated 

datasets, the method known as "Gradient Boosting" stands out 

because to the speed and precision with which it makes 

predictions. Errors play a significant part in every machine 

learning system, which is something we already know. Error 

can be broken down into two primary categories: bias error 

and variance error. The gradient boost approach assists us in 

reducing the amount of bias error produced by the model. 

Gradient Boosting Classifier class imported from the 

sklearn.ensemble package is used to implement Gradient 

Boosting in Python. The feature matrix and encoded target 

variable, which are supplied as input to the model, are then 

utilised to train the model using the fit() function and shown 

in Figure 8. 

Figure 8. Implementing Gradient Boosting classifier 

3.5 Serializing the models and TF-IDF vectorizer into 

pickle files 

The models established in the preceding phase are in the 

form of Python objects. In order to use the models created in 

the real websites, they must be stored as pickle files. Pickle is 

Python's standard serialization and de-serialization 

mechanism. Pickling is the process of transforming any 

Python object into byte streams. Unpickling is the process of 

converting byte streams back into Python objects. It's the 

pickling process in reverse. By importing the pickle library, 

Python objects are serialized to pickle files. 

3.6 Integrating the models into a website 

In the project built, the pickle files generated following the 

pickling phase are used. Unpickling is accomplished by 

loading the pickle files into a website and re-importing the 

same models and shown in Figure 9. 

Figure 9. Integrating the models into a website 

4. RESULTS AND DISCUSSIONS

Figure 10. Naive Bayes classifier performance 

The 3000 row books dataset is divided into 80:20 training 

and testing sets, with the test set containing 600 rows. The 

graphs below depict the working of several classifiers on the 

Test dataset. The entire feature has been evaluated with respect 

to various classifiers. All the results have been evaluated based 

on six class type of Book genre. Among the datasets certain 

amount of data or rows has been taken for the classification of 

Book category. In below Figure 10 depicts the analysis with 
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respect to NaiveBayes, Figure 11 depicts the analysis with 

respect to Random Forest [21], and Figure 12 depicts the 

analysis of Gradient Boosting approach. 

Figure 11. Random Forest classifier performance 

Figure 12. Gradient Boosting classifier performance 

The accuracy of several classifiers is tabulated below. By 

looking the results, the Naive Bayes classifier clearly seems to 

be better than that of the other classifiers [19] and comparison 

over all techniques has been listed in the Table 1 below. 

Table 1. Accuracies of various classifiers 

Model Training Set (%) Test Set (%) 
CMU Book Accuracy 

Classification 

Naive Bayes 80 20 78% 

Random Forest 80 20 65.66% 

Gradient Boosting 80 20 65.33% 

5. CONCLUSIONS

Text classification is becoming an increasingly widespread 

challenge in modern times, and it is challenging for people to 

discover solutions. As a result, the use of machine learning in 

this domain is a viable option for simplifying the situation. 

Therefore, this proposed classification scheme makes use of a 

variety of distinct classifiers in order to categorize the types of 

books. The text is pre-processed first, and then it is turned into 

feature vectors. Finally, the feature vectors are input into the 

multiple classifiers, where they are trained. According to the 

findings, Naive Bayes performs significantly better than the 

other two classifiers, which are Random Forest and Gradient 

Boosting. 
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